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Abstract Let G(V,E) be a finite, simple, and connected graph, where |V | and |E| denote the number of vertices and
edges, respectively. A subset D ⊆ V is called a dominating set if every vertex in V \D is adjacent to at least one vertex
in D. If no two vertices in D are adjacent, then D is referred to as an independent set. The independent domination
number of G, denoted by γi(G), is the minimum size of an independent dominating set. For a given vertex v ∈ V ,
its metric representation with respect to an ordered set W = {w1, w2, . . . , wk} is defined as the k-vector r(v|W ) =
{d(v|w1), d(v|w2), d(v|w3), . . . , d(v|wk)}, where d(v, w) is the shortest path distance between vertices v and w. A set W
is called a resolving independent dominating set (RIDS) if it is an independent dominating set and every pair of distinct
vertices in G has a unique metric representation relative to W . The smallest cardinality of such a set is known as the resolving
independent domination number, denoted by γri(G). In this paper, we will obtain the lower and upper bounds of γri(G) and
determine the exact value of the resolving independent domination number of some graph classes. Furthermore, to see the
robust application of resolving independent domination, at the end of this paper, we will Illustrate the implementation of it
on analysing Spatial Temporal Graph Neural Network (STGNN) model for multi-step forecasting on relative humidity (RH)
and CO2 concentration of coffee agroforestry.
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1. Introduction

Shade trees play a crucial role in maintaining the relative humidity and concentration of CO2 in coffee agroforestry.
This agricultural practice involves cultivating coffee plants under the canopy of taller, diverse tree species rather
than in full sunlight. This method offers numerous benefits to the coffee ecosystem, environmental conservation,
and the overall quality of the coffee produced. Some of their benefits are described in [1, 2, 3] and [4]. They are:
Humidity Regulation: Shade trees help maintain optimal humidity levels in the coffee agroforestry environment.
The canopy of these trees acts as a natural barrier against excessive evaporation, preventing rapid moisture loss
from the soil [5]. This is particularly important in regions where coffee is grown, as maintaining consistent humidity
levels is essential for the healthy growth of coffee plants; Temperature Control: The shade provided by the trees
helps regulate the temperature in the coffee agroforestry [6, 7]. By mitigating the impact of direct sunlight, the
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trees create a microclimate that is cooler and more stable. This is beneficial for coffee plants, as they thrive
in moderate temperatures, and it helps prevent stress and damage caused by extreme heat; CO2 Sequestration:
Trees are excellent carbon sinks, absorbing CO2 from the atmosphere during photosynthesis [8, 9]. By integrating
shade trees into coffee Agroforestry, farmers contribute to carbon sequestration and help offset the carbon footprint
associated with agricultural activities. This is an essential aspect of sustainable and environmentally friendly coffee
farming; Biodiversity Support: Biodiversity Support: Shade tree systems facilitate the enhancement of biodiversity
by offering habitats conducive to the flourishing of diverse plant and animal species [10, 11]. The diversity of the
ecosystem created by the canopy of trees encourages the presence of beneficial insects, birds, and other organisms
that contribute to a balanced and healthy agricultural environment. This, in turn, reduces the need for synthetic
pesticides and fosters a more sustainable and resilient ecosystem; Soil Conservation: The root systems of shade
trees help prevent soil erosion by stabilising the soil structure[12]. This is particularly important in hilly or sloped
coffee-growing regions where erosion can be a significant concern. Furthermore, trees contribute to soil health
and fertility by providing organic matter to the soil through leaf litter. The illustration of shade tree in coffee
Agroforestry is shown in Figure 1 and Figure 2.

Figure 1. Coffee plants with shade tree

Figure 2. Coffee plants with no shade tree

Optimal placement of shade trees using the Resolving Independent Dominating Set (RIDS) approach not only
provides advantages in spatial monitoring efficiency and microclimate prediction but also carries significant
ecological implications. One of them is the contribution to carbon dioxide (CO2) sequestration from the
atmosphere. Shade trees in coffee agroforestry systems have great potential as carbon sinks, depending on their
species, age and distribution. Trees used in agroforestry systems show an average carbon sequestration of 2.1-
4.2 tons of CO2/ha/year [13]. In this context, tree placement based on the RIDS algorithm allows the use of
a minimum number of trees with maximum coverage, thus increasing the ecological efficiency per unit of tree
planted. We assume the shade tree species used have an average sequestration rate of 20 kg CO2/tree/year [14].
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The estimated annual carbon sequestration on a coffee farm with a total of 96 coffee trees having 26 shade trees
is 520 kg CO2/year, while on a grid layout with a total of 117 coffee plants having 31 shade trees is 620 kg
CO2/year. This value may seem small at a local scale, but at the scale of a large plantation, this approach can
be scaled to achieve significant carbon mitigation in aggregate. Furthermore, these trees also support increased
relative humidity, reduced soil temperature, and biodiversity conservation [15]. Thus, the RIDS approach is not only
algorithmically efficient but also contributes to tangible ecosystem benefits. The integration of spatial dominator
placement and ecological impact estimation provides a new direction for the development of AI-based smart
agroforestry.

The problem is how to place the shade tree for coffee agroforestry? So far, the placement is not properly
designed; see [16] and [17]. In fact, the proper placement of shade trees is crucial for their effective function
in providing shade, maintaining ecological balance, and contributing to the overall health of the environment. In
this study, we will use Resolving Independent Dominating Sets (RIDS) to place shade trees. It also benefits the
development of control environment agriculture (CEA) technology in coffee agroforestry. The use of RIDS for
the placement of shade trees also focuses on relative humidity and CO2 monitoring by using smart sensors. RIDS
involves identifying optimal locations for certain elements (in this case, shade trees) to maximise their impact on
the specified objectives.

What is RIDS? We will define it in the following description. Let G = (V,E) be a simple connected graph with
vertex set V (G) and edge set E(G) [18, 19]. We define a dominating set as a set D of vertices of graph G(V,E)
where every vertex u ∈ V (G)−D is adjacent to some vertex v ∈ D [20, 21]. A set D in a graph G is known
as an independent set if no two vertices within D are connected by an edge. When such a set D also serves as
a dominating set, the smallest number of vertices it can contain is called the independent domination number,
denoted by γi(G) [22, 23, 24, 25].

In a connected graph G, the metric representation of a vertex v relative to an ordered set W =
{w1, w2, w3, . . . , wk} of vertices in G is defined as the k-vector

r(v|W ) = {d(v, w1), d(v, w2), d(v, w3), . . . , d(v, wk)},

where d(v, w) signifies the shortest path distance between vertices v and w.
The set W is said to be a resolving independent dominating set (RIDS) in G if it satisfies two conditions: it is

an independent dominating set, and all distinct vertices in G have unique metric representations with respect to
W . The least cardinality of such a set is known as the resolving independent domination number, symbolised by
γri(G) [26].

RIDS has theoretical implications. There are a lot of relevant results that have been found, see [27] and [28].
However, the practical application of this research may not be as widespread. In this paper, we will obtain the
lower and upper bounds of γri(G) and determine the exact value of the resolving independent domination number
of some graph classes. Moreover, an analysis will be provided at the conclusion of the present document to illustrate
the significant impact of resolving independent dominance. This analysis will demonstrate how this approach can
be utilised in order to analyse the Spatial Temporal Graph Neural Network (STGNN) model for the multi-step
forecasting of relative air humidity and CO2 concentration in coffee agroforestry.

Spatial-Temporal Graph Neural Networks (STGNN) are a class of Graph Neural Network (GNN) models
designed to handle data that exhibit both spatial and temporal dependencies within a graph structure [29, 30]
and [31]. These networks are particularly useful for modeling and analyzing complex systems where entities are
interconnected in both spatial and temporal dimensions [32]. STGNN have found applications in various domains,
including traffic prediction, urban mobility, smart farming, climate modelling, and social network analysis; see
[33, 34, 35, 36, 37] and [38]. With its ability to efficiently handle spatio-temporal dependencies, STGNN is the
best approach for the prediction and classification of data involving dynamic graph structures. This model not only
excels in predictive performance but also provides a deeper understanding of the interaction patterns between data
in the context of space and time.
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2. Method

This research uses analytical and experimental methods. In the analytical study, we used a mathematical deductive
approach to obtain some theorems. The strategy used to find the new theorems is based on some known lower
bounds.

Preposition 1
[27] For every graph G, we have γri(G) ≥ max{γi(G), dim(G)}

Theorem 1
[27] γri(Pn) = ⌈n

3 ⌉.

Theorem 2
[24] For two paths Pn and Pm, γi(Pm2Pn) ≤ ⌈mn

2 ⌉.

However, in the experimental method, we used a computer programming language, Python, to do a simulation
on STGNN multistep time series forecasting for RH and CO2 concentrations of coffee agroforestry with the
placement of shade trees in the ground using the dominant set of resolution. We place the smart sensors for relative
humidity and CO2 in the selected location of the shade trees. We will use STGNN programming to train a model
of the 70% data set and test the 30% data set, and finally forecast RH and CO2 with respect to the data collected
from the smart sensors in real time. The multi-step prediction of relative humidity (RH) and CO2 concentration in
coffee agroforestry using a Graph Neural Network (GNN) follows a structured workflow. Each shade tree is treated
as a node with spatial relations forming the graph edges, and sensor data as node features. This process, from graph
modeling to prediction, is illustrated in Figure 3.

Single Layer GNN Algorithm

Step 0. Given that a graph G(V,E) of order n and feature matrix Hn×m of n
vertices and m features from some coffeeagroforestry, and give
a tolerance ϵ.

Step 1. Determine the matrix adjacency A of graph G arising from spatiality
of coffee agroforestry s and set a matrix B = A+ I, where I is an
identity matrix.

Step 2. Initialize the weight matrix W, bias β, and learning rate α. For
simplicity, let Wm×1 = [w1 w2 . . . wm]T with 0 < wj < 1, set β = 0, and choose
0 < α < 1.

Step 3. Apply a message-passing function by multiplying the weights with
node features: ml

u = MSGl(hl−1
u ) = W lhl−1

u .
Step 4. Aggregate messages from neighbors of node v using an aggregation

function: hl
v = AGGl{ml−1

u | u ∈ N(v)}, implemented as hl
v = SUMl{ml−1

u | u ∈ N(v)} with
respect to matrix B.

Step 5. Calculate the error: errorl =
∥hvi

−hvj
∥2

|E| , where vi and vj are any two
connected nodes.

Step 6. Check if error ≤ ϵ. If true, terminate the algorithm. Otherwise,
proceed to update the weights in Step 7.

Step 7. Update the weights using the rule: W l+1 = W l
j − α · zj · el, where zj is the

mean of the j-th column of H l
vi.

Step 8. Save the resulting embeddings into a vector. If working with time
series data, repeat the entire process for the next time step.

Step 9. Load the embedding vectors and apply time series machine learning
techniques for training, testing, and performing multi-step forecasting.
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Step 10. If the RMSE is less than or equal to ϵ, stop. Otherwise, adjust W
and repeat Steps 2 through 9.

Figure 3. Simple Step Single Layer GNN Algorithm

3. Main Result

3.1. Resolving Independent Dominating Set

In this section, we will show the existence of a resolving independent dominating set of some graphs, and determine
the exact value of the resolving independent domination number of Cm ▷ Pn and the grid graph. Further, we will
use the obtained theorem for analysing the STGNN model for autonomous Controlled Environment Agriculture
(CEA) development on multi-step time series forecasting for relative humidity and CO2 concentration of coffee
agroforestry.

Theorem 3
Let Cm ▷ Pn be a comb product of Cm and Pn graphs of m ≥ 3, n ≥ 2. We have the following:

γri(Cm ▷ Pn) =


⌈
n
3

⌉
m for m ≥ 3, n ≡ 2(mod 3), n ≥ 2

mn
3 for m ≥ 3, n ≡ 0(mod 3)n ≥ 2⌈
m
2

⌉ ⌊
n
3

⌋
+
⌊
m
2

⌋ ⌈
n
3

⌉
for m ≡ 1(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥ 2

n
2

(⌊
n
3

⌋
+
⌈
n
3

⌉)
for m ≡ 0(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥ 2.

Proof. Comb product Cm ▷ Pn is a connected graph with vertex set V (Cm ▷ Pn) = {xi,j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}
and edge set E(Cm ▷ Pn) = {xi,jxi,j+1; 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1} ∪ {xi,1xi+1,1; 1 ≤ i ≤ m− 1} ∪ {xi,1xm,1}.
The cardinality of the vertex set Cm ▷ Pn is mn, and the cardinality of the edges set Cm ▷ Pn is mn. To prove the
resolving independent domination number of Cm ▷ Pn, we split it into four cases.
Case 1. m ≥ 3, n ≡ 2(mod 3), n ≥ 2
For this case, we define a subset D into two subcases. For m ≡ 0(mod 2), n ≡ 2(mod 3), n ≥ 2, we define a
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subset D = {xi,j ; i ≡ 1(mod 2), 1 ≤ i ≤ m− 1, j ≡ 1(mod 3), 1 ≤ j ≤ n} ∪ {xi,j ; i ≡ 0(mod 2), 2 ≤ i ≤ m, j ≡
0(mod 3), 1 ≤ j ≤ n− 2} ∪ {xi,j ; i ≡ 0(mod 2), 2 ≤ i ≤ m, j = n}. For m ≡ 1(mod 2), n ≡ 2(mod 3), n ≥ 2,
we define a subset D = {xi,j ; i ≡ 1(mod 2), 1 ≤ i ≤ m− 1, j ≡ 1(mod 3), 1 ≤ j ≤ n} ∪ {xi,j ; i ≡ 0(mod 2, 2 ≤
i ≤ m− 1, j ≡ 0(mod 3), 1 ≤ j ≤ n− 2} ∪ {xi,j ; i ≡ 0(mod 2), 2 ≤ i ≤ m− 1, j = n} ∪ {xi,j ; i = n, j ≡
0(mod 3, 1 ≤ j ≤ n− 2} ∪ {xi,j ; i = n, j ≡ 0(mod 3, j = n}. Based on this subset, we have |D| =

⌈
n
3

⌉
m.

Further, we will show that for any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any
two dominators that are not adjacent to each other. It is an independent dominating set. Moreover, we need to
show that the subset D complies with the resolving set properties, namely each vertex xi,j ∈ V (Cm ▷ Pn) has a
different representation with respect to D. To show that the subset of distances from each vertex to the dominators
is distinct, we develop some distance function written after Case 4. Based on this function, the subset D satisfies
the resolving set criterion. The last, we need to prove that the cardinality of D is the smallest one. Suppose the least
|D| =

⌈
n
3

⌉
m− 1, thus there is xm,n /∈ D which is not dominated by D. It concludes that γri(Cm ▷ Pn) =

⌈
n
3

⌉
m

for m ≥ 3, n ≡ 2(mod 3), n ≥ 2.
Case 2. m ≥ 3, n ≡ 0(mod 3)n ≥ 2
For this case, we define a subset D = {xi,j ; 1 ≤ i ≤ m, j ≡ 2(mod 3), 1 ≤ j ≤ n}. Based on this subset, we have
|D| = mn

3 . Further, we will show that for any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies
that for any two dominators that are not adjacent to each other. It is an independent dominating set. Moreover, we
need to show that the subset D complies with the resolving set properties, namely each vertex xi,j ∈ V (Cm ▷ Pn)
has a different representation with respect to D. To establish the uniqueness of a subset’s representation, we utilize
the distance function to calculate the distance from each vertex to a dominator, see the function after Case 4. Based
on this function, the subset D satisfies the resolving set criterion. The last, we need to prove that the cardinality
of D is the smallest one. Suppose |D| = mn

3 − 1 is the minimum one, thus there are xm,n, xm,n−1, xm,n−2 /∈ D
which is not dominated by D. It concludes that γri(Cm ▷ Pn) =

mn
3 for m ≥ 3, n ≡ 0(mod 3)n ≥ 2.

Case 3. m ≡ 1(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥ 2
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 2), 1 ≤ i ≤ m− 2, j ≡ 0(mod 3), 1 ≤ j ≤ n− 1} ∪
{xi,j ; i ≡ 0(mod 2), 2 ≤ i ≤ m− 1, j ≡ 1(mod 3), 1 ≤ j ≤ n} ∪ {xi,j ; i = m, j ≡ 0(mod 3, 1 ≤ j ≤ n− 1}.
Based on this subset, we have |D| =

⌈
m
2

⌉ ⌊
n
3

⌋
+
⌊
m
2

⌋ ⌈
n
3

⌉
. Further, we will show that for any two vertices

xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two dominators that are not adjacent to
each other. It is an independent dominating set. Moreover, we need to show that the subset D complies
with the resolving set properties, namely each vertex xi,j ∈ V (Cm ▷ Pn) has a different representation with
respect to D. To establish the uniqueness of a subset’s representation, we utilize the distance function
to calculate the distance from each vertex to a dominator, see the function after Case 4. Based on this
function, the subset D satisfies the resolving set criterion. The last, we need to prove that the cardinality
of D is the smallest one. Suppose |D| =

⌈
m
2

⌉ ⌊
n
3

⌋
+
⌊
m
2

⌋ ⌈
n
3

⌉
− 1 is the minimum one, thus there are

xm,n, xm,n−1, xm,n−2 /∈ D which is not dominated by D. It concludes that γri(Cm ▷ Pn) =
⌈
m
2

⌉ ⌊
n
3

⌋
+
⌊
m
2

⌋ ⌈
n
3

⌉
for m ≡ 1(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥ 2.
Case 4. m ≡ 0(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥ 2
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 2), 1 ≤ i ≤ m− 1, j ≡ 0(mod 3), 1 ≤ j ≤ n} ∪ {xi,j ; i ≡
0(mod 2), 2 ≤ i ≤ m, j ≡ 1(mod 3), 1 ≤ j ≤ n}. Based on this subset, we have |D| = n

2

(⌊
n
3

⌋
+
⌈
n
3

⌉)
. Further,

we will show that for any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two
dominators that are not adjacent to each other. It is an independent dominating set. Moreover, we need to show
that the subset D complies with the resolving set properties, namely each vertex xi,j ∈ V (Cm ▷ Pn) has a different
representation with respect to D. To establish the uniqueness of a subset’s representation, we utilize the distance
function to calculate the distance from each vertex to a dominator, see the function after Case 4. Based on this
function, the subset D satisfies the resolving set criterion. The last, we need to prove that the cardinality of D
is the smallest one. Suppose the least |D| = n

2

(⌊
n
3

⌋
+
⌈
n
3

⌉)
− 1, thus there are xm,n, xm,n−1 /∈ D which is not

dominated by D. It concludes that γri(Cm ▷ Pn) =
n
2

(⌊
n
3

⌋
+
⌈
n
3

⌉)
for m ≡ 0(mod 2),m ≥ 3, n ≡ 1(mod 3), n ≥

2.
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Based on Case 1 - Case 4, we can write the distance function of any two vertices in the following: d(xi,jxk,l) ={
|j − l| if i = k

|i− k|+ |j − l| if i ̸= k.
For illustration of the resolving independent dominating set, it can be seen in Figure

4. The distance representation of the graph C5 ▷ P3 can be written in Table 1.

Figure 4. The Illustration of resolving independent dominating set of C5 ▷ P3

Table 1. The distance representation xi,j ∈ C5 ▷ P3 to W = {x1,2, x2,2, x3,2, x4,2, x5,2}

xi,j r(xi,j |W ) xi,j r(xi,j |W ) xi,j r(xi,j |W )

x1,1 (1, 2, 3, 3, 2) x2,3 (4, 1, 4, 5, 5) x4,2 (4, 4, 3, 0, 3)
x1,2 (0, 3, 4, 4, 3) x3,1 (3, 2, 1, 2, 3) x4,3 (5, 5, 4, 1, 4)
x1,3 (1, 4, 5, 5, 4) x3,2 (4, 3, 0, 3, 4) x5,1 (2, 3, 3, 2, 1)
x2,1 (2, 1, 2, 3, 3) x3,3 (5, 4, 1, 4, 5) x5,2 (3, 4, 4, 3, 0)
x2,2 (3, 0, 3, 4, 4) x4,1 (3, 3, 2, 1, 2) x5,3 (4, 5, 5, 4, 1)

Theorem 4
Let Gm,n be a grid graph with m ≥ 3, n ≥ 3. We have the following:

γri(Gm,n) =



⌈n
2 ⌉

m
4 + ⌊n

2 ⌋(
m
4 + 1) for m ≡ 0(mod 4), n ≡ 1(mod 2), n ≥ 3

mn
4 for m ≡ 0(mod 4), n ≡ 0(mod 2), n ≥ 3⌈
n
2

⌉ ⌊
m
4

⌋
+
⌊
n
2

⌋ ⌈
m
4

⌉
for m ≡ 1(mod 4), n ≥ 3

⌈m
4 ⌉n for m ≡ 2(mod 4), n ≡ 1(mod 2), n ≥ 3

for m ≡ 2(mod 4),m ̸≡ 0, 4(mod 10), n ≡ 0(mod 2)

for m ≡ 3(mod 4), n ≥ 3
n
2

(⌊
m
3

⌋
+
⌈
m
5

⌉)
for m ≡ 2(mod 4),m ≡ 0, 4(mod 10), n ≡ 0(mod 2)

.

Proof. Grid graph Gn,m is a connected graph with vertex set V (Gm,n) = {xi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge
set E(Gm,n) = {xi,jxi,j+1; 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} ∪ {xi,jxi+1,j ; 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}. Thus, the order
and size of (Gn,m) are |V (Gm,n)| = mn and |E(Gm,n)| = 2mn−m− n. To prove this theorem, we split it into
several cases.
Case 1. m ≡ 0(mod 4), n ≡ 1(mod 2), n ≥ 3
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 2), j ≡ 3(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {xi,j ; i ≡
0(mod 2), j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m− 3} ∪ {xi,j ; i ≡ 0(mod 2), j = m}. Based on this subset, we
have |D| =

⌈
n
2

⌉
m
4 +

⌊
n
2

⌋ (
m
4 + 1

)
. Further, we will show that this subset satisfies the the resolving independent

dominating set of Gn,m. We find that for any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It
implies that for any two dominators are not adjacent each other. It is independent dominating set. Moreover,
we need to show that the subset D complies the resolving set properties, namely each vertex v ∈ V (G) has
different representation with respect to D. To establish the uniqueness of a subset’s representation, we utilize
the distance function to calculate the distance from each vertex to a dominator, see the function after Case 6.
Based on this function, the subset D satisfies the resolving set criterion. The last, we need to prove that the
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cardinality of D is the smallest one. Suppose |D| = ⌈n
2 ⌉

m
4 + ⌊n

2 ⌋(
m
4 + 1)− 1 is the minimum one, thus there

are xm,n−1, xm,n−2 /∈ D which is not dominated by D. It concludes that γri(Gm,n) =
⌈
n
2

⌉
m
4 +

⌊
n
2

⌋ (
m
4 + 1

)
for

m ≡ 0(mod 4), n ≡ 1(mod 2), n ≥ 3.

Case 2. m ≡ 0(mod 4), n ≡ 0(mod 2), n ≥ 3
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 4), j ≡ 2(mod 4)1 ≤ j ≤ m− 2} ∪ {xi,j ; i ≡
2(mod 4), j ≡ 0(mod 4)1 ≤ j ≤ m} ∪ {xi,j ; i ≡ 3(mod 4), j ≡ 1(mod 4)1 ≤ j ≤ m− 3} ∪ {xi,j ; i ≡
0(mod 4), j ≡ 3(mod 4)1 ≤ j ≤ m− 1}. Based on this subset, we have |D| = mn

4 . Further, we will show
that this subset satisfies the resolving independent dominating set of Gn,m. We find that for any two vertices
xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two dominators are not adjacent each
other. It is independent dominating set. Moreover, we need to show that the subset D complies the resolving
set properties, namely each vertex v ∈ V (G) has different representation with respect to D. To establish the
uniqueness of a subset’s representation, we utilize the distance function to calculate the distance from each
vertex to a dominator, see the function after Case 6. Based on this function, the subset D satisfies the resolving
set criterion. The last, we need to prove that the cardinality of D is the smallest one. Suppose |D| = mn

4 − 1 is
the minimum one, thus there is xi,j /∈ D which is not dominated by D. It concludes that γri(Gm,n) =

mn
4 for

m ≡ 0(mod 4), n ≡ 0(mod 2), n ≥ 3.

Case 3. m ≡ 1(mod 4), n ≥ 3
For this case, we define a subset D = {xi,j , i ≡ 1(mod 2), j ≡ 3(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m− 2} ∪ {xi,j , i ≡
0(mod 2), j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Based on this subset, we have |D| =

⌈
n
2

⌉ ⌊
m
4

⌋
+
⌊
n
2

⌋ ⌈
m
4

⌉
.

Further, we will show that this subset satisfies the resolving independent dominating set of Gn,m. We find that for
any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two dominators are not adjacent
each other. It is independent dominating set. Moreover, we need to show that the subset D complies the resolving
set properties, namely each vertex v ∈ V (G) has different representation with respect to D. To establish the
uniqueness of a subset’s representation, we utilize the distance function to calculate the distance from each vertex to
a dominator, see the function after Case 6. Based on this function, the subset D satisfies the resolving set criterion.
The last, we need to prove that the cardinality of D is the smallest one. Suppose |D| = mn

4 − 1 is the minimum
one, thus there is xi,j /∈ D which is not dominated by D. It concludes that γri(Gm,n) =

⌈
n
2

⌉ ⌊
m
4

⌋
+
⌊
n
2

⌋ ⌈
m
4

⌉
for

m ≡ 1(mod 4), n ≥ 3.

Case 4. m ≡ 2(mod 4), n ≡ 1(mod 2), n ≥ 3 and m ≡ 2(mod 4),m ̸≡ 0, 4(mod 10), n ≡ 0(mod 2)
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 2), j ≡ 3(mod )4, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 3} ∪ {xi,m; i ≡
1(mod 2), 1 ≤ i ≤ n} ∪ {xi,j ; i ≡ 0(mod 2), j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}. Based on this subset, we
have |D| =

⌈
m
4 ⌉n Further, we will show that this subset satisfies the resolving independent dominating set of

Gn,m. We find that for any two vertices xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two
dominators are not adjacent each other. It is independent dominating set. Moreover, we need to show that the
subset D complies the resolving set properties, namely each vertex v ∈ V (G) has different representation with
respect to D. To establish the uniqueness of a subset’s representation, we utilize the distance function to calculate
the distance from each vertex to a dominator, see the function after Case 6. Based on this function, the subset
D satisfies the resolving set criterion. The last, we need to prove that the cardinality of D is the smallest one.
Suppose |D| =

⌈
m
4

⌉
n− 1 is the minimum one, thus there is xi,j /∈ D which is not dominated by D. It concludes

that γri(Gm,n) =
⌈
m
4

⌉
n for m ≡ 2(mod 4), n ≡ 1(mod 2), n ≥ 3.

Case 5. m ≡ 3(mod 4), n ≥ 3
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 2), j ≡ 3(mod 2), 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {i ≡
0(mod 2), j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m− 2}. Based on this subset, we have |D| =

⌈
m
4 ⌉n Further, we will

show that this subset satisfies the resolving independent dominating set of Gn,m. We find that for any two vertices
xi,j , xk,l ∈ D, the distance d(xi,j , xk,l) ≥ 2. It implies that for any two dominators are not adjacent each other. It
is independent dominating set. Moreover, we need to show that the subset D complies the resolving set properties,
namely each vertex v ∈ V (G) has different representation with respect to D. To establish the uniqueness of a
subset’s representation, we utilize the distance function to calculate the distance from each vertex to a dominator,
see the function after Case 6. Based on this function, the subset D satisfies the resolving set criterion. The last, we
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need to prove that the cardinality of D is the smallest one. Suppose |D| =
⌈
m
4

⌉
n− 1 is the minimum one, thus

there is xi,j /∈ D which is not dominated by D. It concludes that γri(Gm,n) =
⌈
m
4

⌉
n for m ≡ 3(mod 4), n ≥ 3.

Case 6. m ≡ 2(mod 4),m ≡ 0, 4(mod 10), n ≡ 0(mod 2)
For this case, we define a subset D = {xi,j ; i ≡ 1(mod 4), j ≡ 2(mod 10)} ∪ {xi,j ; i ≡ 1(mod 4), j ≡
6(mod 10)} ∪ {xi,j ; i ≡ 1(mod 4), j ≡ 8(mod 10)} ∪ {xi,j ; i ≡ 2(mod 4), j ≡ 0(mod 10)} ∪ {xi,j ; i ≡
2(mod 4), j ≡ 4(mod 10)} ∪ {xi,j ; i ≡ 3(mod 4), j ≡ 1(mod 10)} ∪ {xi,j ; i ≡ 3(mod 4), j ≡ 7(mod 10)} ∪
{xi,j ; i ≡ 0(mod 4), j ≡ 3(mod 10)} ∪ {xi,j ; i ≡ 0(mod 4), j ≡ 5(mod 10)} ∪ {xi,j ; i ≡ 0(mod 4), j ≡
9(mod 10)}. Based on this subset, we have |D| = n

2

(⌊
m
3

⌋
+
⌈
m
5

⌉)
. Further, we will show that this subset

satisfies the resolving independent dominating set of Gn,m. We find that for any two vertices xi,j , xk,l ∈ D, the
distance d(xi,j , xk,l) ≥ 2. It implies that for any two dominators are not adjacent each other. It is independent
dominating set. Moreover, we need to show that the subset D complies the resolving set properties, namely
each vertex v ∈ V (G) has different representation with respect to D. To establish the uniqueness of a subset’s
representation, we utilize the distance function to calculate the distance from each vertex to a dominator, see
the function after Case 6. Based on this function, the subset D satisfies the resolving set criterion. The last, we
need to prove that the cardinality of D is the smallest one. Suppose |D| = n

2

(⌊
m
3

⌋
+
⌈
m
5

⌉)
− 1 is the minimum

one, thus there is xi,j /∈ D which is not dominated by D. It concludes that γri(Gm,n) =
n
2

(⌊
m
3

⌋
+
⌈
m
5

⌉)
for

m ≡ 2(mod 4),m ≡ 0, 4(mod 10), n ≡ 0(mod 2).
Based on Case 1 - Case 6, we can write the distance function of any two vertices in the following: d(xi,jxk,l) ={
|j − l| if i = k

|i− k|+ |j − l| if i ̸= k.
For illustration of the resolving independent dominating set can be seen in Figure 5.

The distance representation of the graph G5,3 can be written in Table 2.

Figure 5. The Illustration of resolving independent dominating set of G5,3

Table 2. The distance reresentation xi,j ∈ G5,3 to W = {x1,3, x2,1, x2,5, x3,3}

xi,j r(xi,j |W ) xi,j r(xi,j |W )

x1,1 (2, 1, 4, 5) x2,4 (2, 3, 1, 2)
x1,2 (1, 2, 4, 3) x2,5 (3, 4, 0, 3)
x1,3 (0, 3, 3, 2) x3,1 (4, 1, 5, 2)
x1,4 (1, 4, 2, 3) x3,2 (3, 2, 4, 1)
x1,5 (2, 5, 1, 4) x3,3 (2, 3, 3, 0)
x2,1 (3, 0, 4, 3) x3,4 (3, 4, 3, 1)
x2,2 (2, 1, 3, 2) x3,5 (4, 5, 1, 2)
x2,3 (1, 2, 2, 1)

3.2. The Application of Resolving Dominating Independent Set

The subsequent research result pertains to the implementation of Resolving Independent Dominating Sets in the
context of precision agriculture. From now on, we will do time series forecasting on the precision agriculture
dataset, namely, the Relative Humidity (RH) and CO2 concentration of coffee agroforestry. The dataset is obtained
from the simulation of placing the smart sensor for Relative Humidity (RH) and CO2 concentration. The placement
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of those sensors with respect to the planting design is derived from Theorem 4. The number of Relative Humidity
(RH) and Carbon Dioxide (CO2) sensors is equal to the obtained resolving independent domination number
γri(Gm,n).

To implement RIDS for shade tree placement and its application to STGNN multi-step forecasting on RH and
CO2 concentration of coffee agroforestry, we follow the following steps: (1) Capture coffee agroforestry map
using Google Earth App, (2) Design a planting layout of coffee agroforestry (3) Determine RA and RRA using
DepthmapX (4) Place shading trees using RIDS (5) Choose two smart sensors (6) Assemble the smart sensors (7)
Write an Arduino IDE program (8) Place the smart sensors on the shading trees (9) Create Thinkspeak Channel
(10) Collect the Thinkspeak data output (11) Convert RH and CO2 data on Excel, (12) Run STGNN programming
for data training and testing (13) Observe the performance of STGNN on the MSE, RMSE MAE, Accuracy, R2,
(14) Compare the performance between several Models. For details, see Figure 6.

Figure 6. Conceptual Framework Design for Implementing RIDS in Precision Agriculture

Figure 7. Coffee Agroforestry of Kalibendo Coffee Plantation, Banyuwangi Regency

The initial step is to identify the coffee plantation’s location. The chosen location is Kalibendo Coffee Plantation,
Banyuwangi Regency, which covers an area of 599 m2. To facilitate the planting layout, we captured images of the
land using the Google Earth App, as shown in Figure 7. Subsequently, we designed the planting layout on the land
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using a grid. The outcome of the planting layout is visible in Figure 8. The results from Figure 8 were converted
to an SHP file for RA and RRA analysis using the DepthmapX application. The results of the analysis can be
observed in Figure 9.

Figure 8. Illustration of the Coffee Agroforestry Layout at Kalibendo Plantation in a Grid Format (Planting Design 1).

Figure 9. The Illustration of Coffee Agroforestry on Grid
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Figure 10. Sensor Placement in Shading Trees using RIDS

The Figure 9 shows that the epicentre in the coffee plantation area has the smallest RRA value of 0.997168,
indicating the easiest access to each point. Therefore, the monitoring centre of the coffee plantation is located
there. Next, we apply RIDS to lay shading trees, as shown in Figure 10. Smart sensors are placed in each shading
tree. To facilitate understanding for readers from agricultural domains, Table 3 presents a mapping between the
graph components used in this study and their real-world counterparts in coffee agroforestry systems.

Table 3. Mapping between graph components and real-world counterparts in coffee agroforestry systems

Graph Component Symbol Real-World Counterpart Description
Vertex Set V (G) Shade Tree Locations Each vertex represents a location where a

/ Sensor Nodes shade tree is planted or a sensor is placed.
Edge Set E(G) Adjacency / Spatial An edge exists if two shade trees (or sensors)

Proximity are considered adjacent based on spatial
criteria (e.g., within 3 meters).

Independent D ⊆ V (G) Optimal Subset of A subset of shade trees that efficiently
Dominating Set Shade Trees covers the entire agroforestry area, ensuring

no two selected trees are adjacent.
Resolving W ⊆ D Optimal Monitoring A selected subset of D used for sensor

Independent Points (Sensor deployment to enable unique identification
Dominating Set Placement) of microclimatic conditions.

Adjacency Matrix A Matrix of Shade A binary matrix representing which trees
Tree Adjacency are adjacent (connected).

Modified B = A+ I Self-loop Enhanced Adds self-loops to allow each sensor to
Adjacency Matrix Adjacency include its own readings during message

passing in GNN.

In addition to the Kalibendo grid-based layout, we also conducted a comparison using an alternative planting
layout from a different location, namely the Arabica Sidomulyo agroforestry system. This layout, which features a
more irregular and heterogeneous tree arrangement, is illustrated in Figure 11. This comparison was conducted to
evaluate the generalizability and robustness of the proposed method across different agroforestry configurations.
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Figure 11. Illustration of the coffee agroforestry layout at Arabica Sidomulyo Plantation in a grid format (Planting Design
2).

3.3. Numerical Analysis and Programming Simulation

We will now discuss the results of the programming simulation. Prior to showing the results, we will describe
the numerical analysis. We first show analytically the embedding process of vertex features and the Resolving
Independent Dominating Sets of a specific graph, see Observation 1. Lastly, we use collected data to train and test
the STGNN model for multi-step time series forecasting of the RH and CO2 concentration in coffee agroforestry.
We split the dataset into two sets, namely 70% of training data and 30% of testing data.

To support model transparency and reproducibility, we provide a schematic representation of the Graph
Convolutional Network (GCN) architecture used in this study, as shown in Figure 12. The model consists of two
GCN layers, where the first layer generates a 32-dimensional embedding with ReLU activation, followed by a
dropout layer to prevent overfitting. The second GCN layer reduces the embedding to 16 dimensions, which are
then passed to the output layer to compute node classification scores or sensor placement priorities. The adjacency
matrix is formulated as B = A+ I , incorporating self-loops to allow each node to retain its own feature information
during the message passing phase.

The hyperparameters used for training the model are listed in Table 4. These values were selected empirically
to balance performance and generalization, particularly in the context of a small sensor network graph within a
coffee agroforestry system. The node embedding dimension of 32 in the first layer provides expressive capacity
while remaining computationally efficient.

Table 4. Hyperparameters used in the GCN model

Parameter Value
Number of GCN Layers 2
Node Embedding Dimensions 32 (Layer 1), 16 (Layer 2)
Activation Function ReLU
Dropout Rate 0.3
Optimizer Adam
Learning Rate 0.001
Number of Epochs 200
Batch Size Full-batch
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Input Layer
Node Features (e.g., environmental data)

GCN Layer 1
32-dim embedding + ReLU

Dropout Layer
Rate = 0.3

GCN Layer 2
16-dim embedding

Output Layer
Node Classification or Sensor Score

Figure 12. Graph Convolutional Network (GCN) architecture for node-level prediction and sensor selection in coffee
agroforestry systems.

Observation 1
Let G be a graph with order n. Assume the vertex and edge sets are defined as V (G) = {v1, v2, . . . , vn−1, vn}
and E(G) = {vivj |vi, vj ∈ V (G)}, respectively. Let the vertex features be represented by the matrix hvi =
s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m

...
...

. . .
...

sn,1 sn,2 · · · sn,m

. The embedding of a vertex is computed through message passing from its neighboring

vertices as hl+1
v = AGG{ml+1

u , u ∈ N(v)} using the aggregation function sum(·), where l = 0, 1, 2, 3, . . . , k.
Hence, hl+1

v = SUM{ml+1
u , u ∈ N(v)} based on the matrix B = A+ I , with A being the adjacency matrix and I

the identity matrix.

Proof. By graph G, we can determine the matrix adjacency A. Since, we need to consider the self adjacency for
each vertex of G, we need to add A by identity matrix I and we have matrix B as follow.

B = A+ I =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n


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According to the single layer GNN algorithm, we need to initialize the learning weight matrix as follow.

W =


w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wm,1 wm,2 · · · wm,m


The assigned weight is utilized to compute the value of mvi and will also serve as the updated weight in the

subsequent iteration. The vertex embedding process in Graph Neural Networks (GNNs) consists of two primary
stages: message passing and aggregation. During the initial phase, message passing is performed through the
function mu = MSG(hu). When using a linear transformation layer, this becomes mu

l+1 = W l · hl
u, where

l = 0, 1, 2, . . . , k. The iterative computation process can thus be initiated as follows:

m1
vi = H0

vi ·W
0 =


s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m

...
...

. . .
...

sn,1 sn,2 · · · sn,m

×


w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wm,1 wm,2 · · · wm,m



=


s1,1 × w1,1 + · · ·+ s1,m × wm,1 · · · s1,1 × w1,m + · · ·+ s1,m × wm,m

s2,1 × w1,1 + · · ·+ s2,m × wm,1 · · · s2,1 × w1,m + · · ·+ s2,m × wm,m

...
. . .

...
sn,1 × w1,1 + · · ·+ sn,m × wm,1 · · · sn,1 × w1,m + · · ·+ sn,m × wm,m


After completing the message passing phase, the process proceeds to the second stage: aggregation, which

focuses on the neighborhood of vertex v. Using an aggregation function such as sum(·), the node representation is
updated according to the rule

hl+1
v = AGG

{
ml+1

u | u ∈ N(v)
}
.

Specifically, when using summation as the aggregation operator, we have

hl+1
v =

∑
u∈N(v)

ml+1
u .

With respect to the matrix formulation where B = A+ I (the adjacency matrix plus identity), the updated
embedding vector for node vi at layer l = 1, denoted h1

vi
, can be expressed as follows:

hl+1
vi =


ml+1

v1,1 ml+1
v1,2 · · · ml+1

v1,m

ml+1
v2,1 ml+1

v2,2 · · · ml+1
v2,m

...
...

. . .
...

ml+1
vn,1

ml+1
vn,2

· · · ml+1
vn,m


The next step involves calculating the error value, which quantifies the proximity between two adjacent vertices

within the embedding space. A lower error indicates a shorter distance between the embeddings of the connected
vertices. This error can be defined mathematically as:

errorl =

∥∥hvi − hvj

∥∥
∞

|E(G)|
, where i, j ∈ {1, 2, . . . , n}.

We then evaluate whether the condition error ≤ ϵ is satisfied. If not, the weight matrix W l must be updated using
the previous embedding hl

vi . The update rule for the learning weight matrix is given by:

W l+1 = W l + α · errorl · (hl
vi)

T · hl+1
vi ,
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Figure 13. Distribution of RH and CO2

and this process is repeated until the error value falls below the threshold ϵ. 2

The implementation of the Single-Layer Graph Neural Network (SLGNN) algorithm enables the development
and execution of programming to analyse the concentration of relative humidity and carbon dioxide in the context
of coffee agroforestry systems. First, we collected some data from the smart sensors of RH and CO2 within 62
days observations. We developed the STGNN programming to train 70% input data, test 30% input data and finally
forecast the RH and CO2 concentration for several days ahead. Figure 13 shows the data distribution for 6 days.

In regards with the algorithm above, we need to deal with node embedding along with 26 agroforestry. This
embedding process converted the original feature of three dimensions into one dimension by using message passing
and an aggregation technique. In the message passing process, we assume that each node has some information
and sends that information to its neighbours. Thus, in this process we consider the adjacency matrix including the
loop of each node. Thus, instead of considering the adjacency matrix P, we consider the adjacency matrix Q = P +
I. Following the steps of the above algorithm, we obtained the time series data, which is ready for analysis by using
STGNN. To consider how effective the result of the node embedding, we asses the closeness of their nodes in the
original networks and the embedding space. We determine the error by considering each pair of adjacent nodes by
using an infinity norm. Later, we develop STGNN multi-step time series forecasting to train 70% of the data and
obtain the smallest Root Mean Square Error (RMSE) or Mean Square Error (MSE) of the testing data.

To convince the robustness of the STGNN model, we compared six models, namely Historical Average (HA),
Auto Regressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), Graph Convolutional
Networks (GCN), Gated Recurrent Unit (GRU), and Spatio-Temporal Graph Neural Networks (STGNN). The
comparison results between these models can be seen in Figure 14 and Table 5, based on Dataset 1, which was
derived from a structured planting design with uniform shading tree distribution. Figure 14 shows that STGNN
needed approximately 200 epochs to reach the lowest error, with a stable convergence pattern and minimal
oscillation compared to other models. The superior performance of STGNN was consistently reflected by various
metrics, including RMSE, MAE, accuracy, and the coefficient of determination (R2), especially in forecasting 5,
10, 15, and 20 days ahead. Based on these results, we conclude that STGNN is capable of accurately forecasting
and monitoring 26 agroforestry sensor points in this layout, using the Resolving Independent Dominating Sets
concept to minimise sensor deployment.

To validate the representativeness of the selected nodes, we conducted a one-way ANOVA test comparing RH
and CO2 values across RIDS and non-RIDS nodes. The results (p > 0.05) indicate no statistically significant
difference, suggesting that the selected nodes adequately capture environmental variability across the plantation.

To further examine the model’s generalizability across different agroforestry conditions, we conducted the
same comparative experiment on Dataset 2, which represents a heterogeneous planting design with irregular tree
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Table 5. The prediction results of the T-GCN model and other baseline methods on Dataset 1 (Planting Design 1)

T Metric HA ARIMA SVR GCN GRU STGNN

5 Days

RMSE 7.7087 8.0051 7.1357 8.1706 4.0081 3.3051
MAE 5.2856 6.0092 4.9165 7.2225 2.2303 2.2061

Accuracy 0.6706 0.1378 0.6871 0.6123 0.4068 0.5106
R2 0.2324 0.0372 0.6101 0.4037 0.7437 0.7531

10 Days

RMSE 7.7087 8.1212 7.4736 9.1130 4.0667 3.8606
MAE 5.4836 6.1141 4.8719 7.1101 2.5006 2.5541

Accuracy 0.5406 0.4231 0.6856 0.5305 0.7141 0.7115
R2 0.6824 0.0712 0.6131 0.5086 0.8344 0.7413

15 Days

RMSE 7.6087 8.1101 7.4633 9.2021 4.0002 3.7740
MAE 5.2758 6.1141 5.0121 7.3204 2.4007 2.2355

Accuracy 0.4506 0.3160 0.5975 0.5373 0.5032 0.4143
R2 0.7224 0.0716 0.8111 0.2027 0.7350 0.8109

20 Days

RMSE 7.7077 8.2031 7.4371 9.4303 4.1101 4.0021
MAE 5.4448 6.2107 5.0503 7.3110 2.7311 2.5778

Accuracy 0.5606 0.3172 0.5771 0.5155 0.6015 0.5028
R2 0.6524 0.0714 0.7141 0.5822 0.7620 0.7702

Table 6. The prediction results of the T-GCN model and other baseline methods on Dataset 2 (Planting Design 2)

T Metric HA ARIMA SVR GCN GRU STGNN

5 Days

RMSE 7.8201 8.1123 7.3050 8.2214 4.0507 3.4003
MAE 5.3120 6.0845 4.9822 7.3010 2.2785 2.1810

Accuracy 0.6580 0.1292 0.6734 0.6015 0.4187 0.5288
R2 0.2203 0.0254 0.6020 0.3951 0.7412 0.7629

10 Days

RMSE 7.8333 8.2305 7.5088 9.2507 4.1051 3.9308
MAE 5.5329 6.1890 4.9244 7.2294 2.5521 2.4976

Accuracy 0.5253 0.4104 0.6705 0.5230 0.7010 0.7239
R2 0.6675 0.0658 0.6009 0.4953 0.8265 0.7487

15 Days

RMSE 7.6908 8.1898 7.5041 9.3400 4.0754 3.8205
MAE 5.3182 6.1345 5.0340 7.3922 2.4519 2.2683

Accuracy 0.4395 0.2993 0.5823 0.5242 0.4972 0.4281
R2 0.7092 0.0629 0.8005 0.1892 0.7210 0.7991

20 Days

RMSE 7.8156 8.3112 7.4795 9.5108 4.1958 4.1113
MAE 5.4911 6.2804 5.0730 7.3803 2.7815 2.6211

Accuracy 0.5454 0.3025 0.5632 0.5020 0.5984 0.5193
R2 0.6380 0.0611 0.7038 0.5682 0.7543 0.7658

spacing and microclimatic variation. The results, presented in Table 6, show that STGNN again outperformed
baseline models across all forecast horizons, despite slightly fluctuating performance values due to environmental
complexity. This reinforces the model’s adaptability and robustness across varying field layouts. Consequently, the
findings suggest that the proposed STGNN framework is not only effective in uniform agroforestry systems but
also scalable and generalizable to more complex, real-world plantation configurations.

In addition to its superior forecasting accuracy, the STGNN model offers structural advantages by combining
spatial and temporal learning. The spatial structure, derived from tree adjacency graphs, enables the model to
consider interactions between neighbouring plants, while the temporal component—via recurrent layers—captures
evolving trends in environmental variables. This contrasts with classical models such as ARIMA, which rely solely
on temporal autoregression and ignore spatial dependencies, limiting their capacity to model agroforestry systems
with complex spatial heterogeneity.

Nevertheless, the STGNN framework is not without limitations. Its reliance on graph structures and multi-
step temporal encoding leads to higher computational demands compared to traditional models. Furthermore,
performance may be sensitive to missing or corrupted sensor data, particularly when such data is associated with
nodes of high connectivity. These factors should be considered when deploying the model in resource-constrained
environments or in systems with sparse sensor coverage.
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Figure 14. Comparison of predicted performance

Figure 15. Training and Testing Process of RH and CO2

Figure 16. Multi-Step Time Series Forecasting on RH and CO2 for 10 Days Ahead
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4. Conclusion

In this paper, we have studied the Resolving Independent Dominating Sets (rids) of a specific family of graphs,
namely Cm ▷ Pn, and Gn,m. We have shown that the local (a, d)-edge chromatic numbers of the two graphs
attain the best lower bound. However, since this study is considered to be a NP-hard problems, finding the exact
value of γri(G) is still widely open. Thus, we propose the open problem: Find the exact values of the Resolving
Independent Domination number of other specific family of graphs and their operations. Apply the results for shade
tree placement and for STGNN multi-step forecasting on Controlled Environment Agriculture (CEA) in a smart
agroforestry.
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