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Abstract The alpha power family of distributions introduces a new type of distribution by adding an extra parameter to its
baseline distribution, making it highly suitable for lifetime data analysis. In this paper, we propose the three-parameter alpha
power Erlang (APEr) distribution, where the baseline Erlang distribution is composed of the sum of multiple exponential
distributions and is a special case of the gamma distribution. After defining the probability density and caumulative distribution
functions of the APEr distribution, we present its theoretical properties, including quantiles, moments, and maximum
likelihood estimation (MLE) of its parameters. Furthermore, using a simulation study, we verify the consistency of the
parameter estimators and demonstrate the improvement in inference quality with increasing sample size. Finally, we compare
the performance of the proposed distribution in fitting on two real-world datasets against the alpha power exponential,
exponential, and Erlang distributions, demonstrating its superiority in these applications.
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1. Introduction

Statistical distributions modeling lifetime data are widely applied in various fields such as reliability engineering,
survival analysis, and queuing theory. These distributions are crucial for understanding and predicting the time-to-
event data in systems or processes. By incorporating flexibility into their mathematical forms, they can adapt to
various data patterns. Adding an extra parameter to an existing family of distribution functions is a common practice
in statistical distribution theory. This approach often enhances the flexibility of the cumulative and probability
density functions, making them more suitable for data analysis. Such modifications allow statisticians to better fit
the model to empirical data, improving accuracy and interpretability in practical applications.

Although classical lifetime distributions such as the Gamma, Weibull, and Generalized Exponential are commonly
used in reliability and survival analysis, they sometimes do not provide enough flexibility to model different shapes
of hazard functions, especially non-monotonic patterns like the bathtub curve. The alpha power transformation
(APT) is a general method that improves the flexibility of standard distributions by adding an extra shape parameter.
Based on this idea, the proposed APEr distribution extends the Erlang model into a three-parameter version. As
discussed in Section 3, this model allows for controlling skewness and kurtosis, and can represent various shapes
of hazard rates. These features make the APEr distribution useful for modeling complex lifetime data.

In the last decade of the 20th century and the first decade of the 21st century, enhancing standard statistical
distributions has become a fundamental aspect of statistical theory. One common approach involves introducing
additional parameters to the existing distributions for creating new ones [8]. These modifications aim to improve

*Correspondence to: Amir Hossein Ghatari (Email: a.h.ghatari @aut.ac.ir). Department of Statistics, Faculty of Mathematics and Computer
Science, Amirkabir University of Technology, Tehran, Iran.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



M. ALIABADI, A.H. GHATARI, E. KHORRAM 1

the analytical flexibility and adaptability of classical distributions, enabling them to effectively model complex
data structures. For instance, [21] and [19] proposed methodologies for embedding new parameters into existing
distributions to increase their versatility. Similarly, [11] introduced the concept of beta-generated distributions,
where the basic distribution is beta, and the baseline distribution corresponds to the cumulative distribution
function (CDF) of any continuous random variable. Building on this idea, [12] replaced the beta distribution
with the Kumaraswamy distribution, offering an alternative approach to achieve greater tractability. Moreover,
[3] advanced the development of the T-X family of continuous distributions by replacing the beta distribution’s
probability density function (PDF) with that of any continuous random variable and using a functional form
of the CDF satisfying specific conditions. [14] provided an extensive review of various methods for generating
univariate continuous distributions, offering insights into their theoretical and practical implications. For more
recent years, [2] proposed a generalized version of the Kumaraswamy distribution and demonstrated its superiority
in modeling various types of real-life data. [26] introduced the Balakrishnan-alpha-beta-skew-Laplace distribution,
which incorporates shape and skewness parameters to better capture asymmetry and tail behavior. Moreover, [16]
developed the Exponentiated-Gompertz-Marshall-Olkin-G family of distributions, offering greater modeling power
through an advanced compounding technique.

[18] introduced the alpha power transformation (APT) as a flexible framework for generating univariate
distributions, focusing on the alpha power-transformed exponential distribution as a special case. Building on
this foundation, [20] provided a comprehensive analysis of the alpha power transformation family, exploring
its theoretical properties and a range of potential applications. Subsequent advancements have led to various
extensions and specialized applications of the APT framework. [22] proposed the alpha power extended inverted
Weibull distribution, investigating its properties, inference methods, and practical uses. [24] studied the alpha
power exponential distribution under progressive Type-1I censored samples, presenting theoretical insights and
practical implementations. [27] extended the framework by introducing the alpha power transformed inverse
Lomax distribution, comparing estimation techniques, and highlighting its utility in real-world data analysis.
Recently, [5] introduced the Marshall-Olkin alpha power inverse Weibull distribution with Bayesian and non-
Bayesian estimation methods. [23] proposed the alpha power inverse Weibull distribution, showcasing its
effectiveness in modeling lifetime data, particularly gastric cancer cases. [25] further expanded the alpha power
framework by integrating beta parameters, and applying the resulting distributions to exponential models. The
Generalized Alpha Power Inverted Weibull (GAPIW) distribution was introduced as a novel probability model
by [9], extending the alpha power family by compounding it with the inverted Weibull distribution. Their study
explored its various statistical properties, including quantile function, moments, and stress-strength reliability, with
a practical application to air pollution data. The Erlang distribution is the sum of several exponential distributions.
The exponential distribution, being one of the most intriguing topics in lifetime distributions, motivates us to
introduce the alpha power version of the Erlang distribution and investigate its properties.

In this paper, we introduce the alpha power version of the Erlang distribution (APEr), which is essentially a
composition of multiple exponential distributions. Using the general structure of alpha power distributions, we
derive the probability density function (PDF), cumulative distribution function (CDF), survival function, and hazard
rate function for the APEr, a three-parameter distribution. Next, based on fundamental statistical definitions, we
provide the methodology for calculating quantiles (particularly quartiles), the mean, variance, moments, order
statistics, and other mathematical properties of the new distribution. Subsequently, we theoretically examine the
maximum likelihood estimation (MLE) of the distribution parameters and discuss the lack of closed-form solutions
for the estimates. To evaluate the performance of the distribution, we conduct a simulation study to assess the
consistency of the MLEs and analyze estimation errors under various conditions of simulated data. The results
indicate that the MLEs for the distribution parameters are consistent and converge to their true values as the
sample size increases. Finally, we compare the performance of the proposed APEr distribution with other related
distributions, such as the alpha power exponential distribution, Erlang distribution, and exponential distribution,
using two real-world datasets.

In Section 2, we recall the definition of alpha power transformation and Erlang distribution. In Section 3, we
introduce alpha power Erlang (APEr) distribution, then we provide mathematical aspects like quantiles, moments
and etc. In Section 4, we study the performance of APEr using simulated and real datasets.
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2 ALPHA POWER ERLANG DISTRIBUTION FOR MODELING LIFETIME DATA

2. Alpha Power Distribution

Mahdavi and Kundu [18] introduced the alpha power transformation (APT), adding a parameter to a family
of distributions. This parameter increases the flexibility of the CDF and PDF of an APT family, which can be
expressed as

aF(m)—l .
ifa>0,a#1
F = a-1 ’ 1

(@) {F(x) ifo=1 M

where F'(z) represents the CDF of any continuous distribution, furthermore, it should be noted that = > 0 in this
type of distribution makes it suitable for lifetime data.
The corresponding probability density function (PDF) can be written as:

loga | F(x) .
Japrr(z) = {ala flx) ifa>0,a#1 o

f(z) ifa=1

where f(z) represents the PDF of any continuous distribution.
For o« > 0, a # 1, Eq (2) can be expanded using the power series:

i loga "

k=0

Thus, the APT family density can be easily verified that:

o0

o O[ k+1
Z OB () (.
=0

fapr(z @-1)

Mead et al.[20] considered hy41(z) = (k + 1) f(x)F(x)* to represent the exponentiated-F (Exp-F) distribution
with parameter k£ + 1 (for £ > 0). This distribution arises by exponentiating the baseline CDF, leading to flexible
shapes useful in modeling skewed data. Thus, APT densities are linear combinations of Exp-F distributions.

Japr(z Z bphii1(z 3)

k=0

where by, = (log a)* ™1 /[(a — 1)(k + 1)1].
Hence, the structural features of the APT family can be obtained from Exp-F properties. The integration of (3)
results in:

Fapr( Z b Hpi1(x 4)
where Hy,1(x) is the CDF of the Exp-F family with parameter k + 1.

2.1. Erlang Distribution

The Erlang distribution is a special case of the gamma distribution, when the shape parameter w is a positive
integer. It is named after A. K. Erlang, who introduced it in queuing systems [10]. The Erlang distribution has two
parameters: the shape w (a positive integer) and the rate A (a positive real number). Its probability density function

(PDF) is given by:
)\wmw—le—)\x
f(l’,w, )\) = T fOI‘ x > O7 (5)

where I'(-, -) is Gamma function and I'(w) = (w — 1)!. Also the cumulative distribution function (CDF) is:
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w—1

F(m;w’A):Wzl_e_MZW' ©)

n=0

Also, the lower incomplete Gamma function (-, -) is defined as follows:

Az
’y(w7)\x):/ e v ldt.
0

Note that the exponential distribution is Erlang with w = 1. In essence, the Erlang distribution models the sum
of w independent, exponentially distributed random variables, making it useful for modeling multiple stages of
processes or waiting times.Its expected value and variance are:

w
EF(X)=—
(x) =%
and
w

Applications of the Erlang distribution are common in telecommunications, reliability engineering, and queuing
theory, where it models service times and lifetimes of systems. Its relationship with the gamma distribution allows
broader flexibility when w is not an integer, but the Erlang form remains fundamental in practical scenarios
involving integer event [17, 1, 4].

3. Alpha Power Erlang (APEr) Distribution

Before presenting the formal definition of the APEr distribution, it is helpful to briefly explain the intuition behind
the model. The Erlang distribution is widely used for modeling waiting times in queuing systems and reliability
analysis. However, it lacks flexibility in capturing various hazard rate shapes. To address this, we introduce an
additional shape parameter using the alpha power transformation, which enables the model to adapt to a wider
range of data behaviors. This extension results in the Alpha Power Erlang (APEr) distribution.

In this section, we use the APT method on the Erlang distribution by substituting (5) and (6) into (1) and (2).
The resulting distribution, known as the alpha power Erlang (APEr), has three parameters that A\(> 0) is the rate
parameter, and w and « are shape parameters. Thus random variable X following the APEr distribution will be
denoted by X ~ APEr(a,w, A) and X has the PDF and CDF as follows:

y(w,Az)
a '™ -1 o> 1
T ifao =
%xwle*“a% ifa>0,a#1
fAPEr(iIf) = E\%_.w)fl(wf))\a: . (8)
% fa=1

This PDF introduces a new parameter o which modulates the tail behavior of the distribution. When o = 1, the
distribution reduces to the standard Erlang. Increasing or decreasing « allows for greater or lesser skewness, which
improves fit for datasets with varying shapes. The following is how the survival and hazard rate functions are
determined, respectively:

Y(w,Ax)

a—a W) :
Sappola) =9 a1 o Hez el ©
1-— W lfOé =1
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T(w)
)\wxwflesz
T(@) =7 (wa)

log @) A¥ RN
— —_ w .
%Iw 16 Az <OW> ifa > 0,0l # 1
hAPE'r(x) = a—a T

ifa=1

The hazard rate function of the APEr distribution exhibits diverse shapes including increasing, decreasing, and
bathtub forms depending on the choice of parameters. This makes the APEr model suitable for a wide variety of
lifetime data applications.
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(a) PDF, CDF and HRF for w = 5 and o = 2. (b) PDF, CDF and HRF for w = 10 and o = 2.

Figure 1. Side-by-side plots for various values of .

Figure 1 includes the PDF,CDF and HRF plots of the APEr distribution for w = 5, 10, a = 2, and various values
of A. According to the plots of the figure, skewness and kurtosis both decrease as w increases, while the other
two parameters are constant. It is evident that the density range shrinks as w decreases until it approaches zero,
indicating an increase in kurtosis. Furthermore, A has a direct impact on how skewed the distribution is; a higher A
equals a mo re skewed distribution. The distribution is extremely close to symmetry when the values of A equal 0.5
and omega equal 5. When A = 1.5 and w = 5, the condition is the most skewed and peaked. The density function’s
height reduces as w grows, indicating that the dispersion rises and the concentration of frequencies involve the data
mode.

Remark 1. It is important to note that the APEr distribution tends the Erlang distribution when the shape parameter
« = 1. consequently, all subsequent calculations will focus solely on the o > 0, « # 1 for the sake of brevity.
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3.1. Quantile Function

Theorem 3.1. Let X ~ APEr(a,w, \), then p™ quantile is :

v Hw,T(w)log, ((a—1)p+ 1))
A

Tp =

where 0 < p < 1 and v~1(-,-) is the inverse of the incomplete Gamma function.

Proof
One definition of the quantile function is the inverse of the distribution function. Examine the identity

F(X)=U=X=FYU)

then

W(I:v(,k)w) 1

a T —
U= ———
a—1
and
I'(w) logy [(0 = 1)U + 1] = 5(w, Aa)
after simple mathematical calculations, Eq (13) is obtained. O

Using Theorem 3.1, the median of APEr can be calculated as follows:

77 (@.Tw) log, (A(a + 1))
T0.50 = A

Additionally, the first quantile (25" percentile) and the third quantile (75" percentile) of the APEr are provided
as:

7! (@, D(w)log, (f(a+3)))

Q1 =025 = :
Qs =075 =~ I loi"‘ (13a+1))) .

3.2. Mode

The equation (10) can be solved to determine the distribution mode:

d

oo faper(@) = {a

22 oo }g@) —0 (10)

log(log o)
A

The APEr distribution is unimodal and has a distinct mode at x = 2o . Whenw = 1, zg = is the mode and

when w > 1, the mode at x is solution of g(x) = 0, where

T —Mx“e_)‘z w—1)— Az

3.3. Moments
The moment generating function (MGF) Mx (t) = E(e*X) of APEr distribution can be expressed from (3) as

M(t) = (k+ Dber(t k), (11)

k=0

o0
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6 ALPHA POWER ERLANG DISTRIBUTION FOR MODELING LIFETIME DATA

where 7(t, k) = fol exp [tQr (u)] u*du and

17w, w0 )

Qr(u) = F(v) = 3

The moment generating function (MGF) of the APEr distribution is represented as an infinite weighted sum,
where each term involves an integral of the form 7(¢, k) = fol et@F W)y k dy. Notably, the quantile function Q ()
has an explicit form based on the inverse incomplete gamma function, allowing for numerical evaluation with high
precision. This semi-analytic structure provides a tractable yet flexible approach to compute moments of various
orders without resorting to purely simulation-based methods. By taking the derivative of (11), we can write the 7"
order moment of APEr distribution as

M8

. =E (@)= (k+1)bd, s (12)

=
Il

0

- /0 Qe uf = /O 1 (W)ukdu

Therefore, it is possible to compute the expected value, second raw moment, and variance of the APEr
distribution as

where

[M]¢

E(X)=) (k+1)bxd s (13)

b
Il
<)

M8

E(X?) =) (k+1)bkboy

>
I

0

o~ (loga)r*! ~ (log ) H7+2

v = ———00 — —————01.01 | -

ar(@) =3 (o — Dkt "2 ) (o — 1)Zatjt o4
k=0 2,7=0

In this formulation, the shape parameter « directly affects the weighting coefficients b, which in turn influence

the skewness and kurtosis of the distribution. As a result, the APEr distribution allows for rich tail behavior and

moment structures that can adapt to different empirical data shapes. The measure of skewness (S;) and kurtosis
(K) for the APEr distribution are given, respectively, as follows

_ p3 = 3pape + 24}
SK - 3 )
(:U‘Q - :ul) 2 (14)
o Ma = dpspn + 6pips — 3p

(h2 — p1)”

where ji1,/19,113, and gy are the 11, 2t 3% and 4" moments obtained from (12), respectively.

Since closed-form expressions for the moments rely on infinite series and are not available necessarily, numerical
methods are needed to approximate them. In this situation, one can approximate them using numerical methods.
For example, the infinite series can be truncated after a sufficient number of terms, and the integrals can be
evaluated using numerical quadrature techniques such as Gaussian quadrature. These methods usually provide
accurate results with manageable computational effort. To implement such calculations, software tools like R or
MATLAB can be used, as they offer built-in functions for numerical integration and summation.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. ALIABADI, A.H. GHATARI, E. KHORRAM 7

3.4. Mean Residual Life and Mean Waiting Time

The mean residual life (MRL) and mean waiting time (MWT) functions provide practical interpretations of the
distribution in reliability and survival contexts. The MRL function represents the expected remaining lifetime
given survival up to time ¢, while the MWT describes the average time until failure from the perspective of time ¢.

The mean residual life (MRL) function is defined as the expected additional lifetime that a component has
survived until time ¢, assuming that Xis a continuous random variable with a survival function shown in (9).
Consider that p(t) is obtained from

1 o0
M(t)p(X>t)/o p(X > x)dx t>0

1 t

u(t) = 50 (E(t) _/0 a:f(x)dx) —t t>0 (15)
where : )
t _ (loga)®
/0 zf(z)de = mfa,w)\(t) (16)
and

t A vy(a,Ax)
Cawn(t) = / ¥e Mo T dx
0
Thus, the MRL of APEr is obtained by substituting (13) and (15) into (14), as follows:

ult) = mqwm)h]wum%wawm%wxw—t

Pw) (a-a 1) S

Similarly, the mean waiting time (MWT) of X, i(t), can be defined as follows:
If it possesses the CDF (7):

(L ——i txxx
i) = t= g5 | fte a7

where f(f x f(x)dx represents the first incomplete moment as defined by Eq(24). Thus, the MWT of the APEr
can be obtained by substituting the Eqgs (4), (7), and (16) in (17),

)‘wgaw,)\(t)
D reo(log a)F Hypa (t)
While these expressions involve nested integrals and summations, they are particularly useful in engineering
applications where understanding the aging or failure behavior of a system is important. The MRL function, for
instance, is increasing when the system becomes more likely to survive longer as time passes, which is controlled
by « and w jointly.

alt) =t

3.5. Stochastic Ordering

Stochastic ordering is crucial for assessing and comparing the behavior of continuous random variables by
establishing structured relationships between them.The pdf, cdf, and hrf of two positive random variables X; (i =
1,2) are represented by fx, (), Fx,(-), and hx,(-), respectively. Then, the following definitions are given:

o If ;;(1 Ezg decreases in z then the likelihood ratio order X7 <(;,.,) X2 ;
2

* If hx, (z) < hx,(z) for all x then the hazard rate order X1 <(,0) X2 ;
e If Fx, (z) < Fx,(z) for all = then the stochastic order X1 <(40) X2 .
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8 ALPHA POWER ERLANG DISTRIBUTION FOR MODELING LIFETIME DATA

A distribution that follows likelihood ratio order (Iro) will also follow hazard rate (hro) and stochastic order (sto).
Furthermore, if a distribution family exhibits likelihood ratio ordering, a uniformly most powerful test exists [6].

Theorem 3.2. Let X; ~ APEr(ay,w,\) and Xo ~ APEr(as,w,\). If a1 < ag, then [ X1 <;ro Xa|, [X1 <hro
} and [Xl Ssto X2]

Proof
For any z the likelihood ratio is given by

Ixi@) <loga1> <a21) (m> A
fXQ(x) B log az Q11 o%)
A <10g <fw1(x)>> (log ( )) A w—1 Az

far () I(w)

Hence,
Xl S(lro) X2

for all = , other ordering follow that

X1 <(hro) X2 = X1 <(st0) X2-
O

This result shows that increasing the « parameter leads to a stochastic shift in the distribution, making the
random variable stochastically larger. This monotonic behavior in « is especially helpful when ranking systems or
components by reliability, as it ensures consistent ordering under different model configurations.

3.6. Order statistics

The following theorem proposes the structure of obtaining order statistics in APEr distributions.

Theorem 3.3. Let X1, Xo, ..., X,, be the observed values with sample size of n from APEr and X,.,, denote ™
order statistics, then the density of X,..,, stated as follows:

frn(®) =Y crhiga ()
k=0
where
. _(10gak+1s+r 1n—r e+](]+1) n—r s+r—1
Pk + 1) BrnfrJrl)(lfoz)S*’“ s j ‘

j=0 s=0
and B(-,-) refers to the Beta function.

Proof
The density of X,..,, can be defined as

fron@) = ——f (@) [Fa(@)] " 1 - Fa(@)]"

(r—1(n-r)!
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the following is an expansion of the binomial series:
(@2 =3 (=1 " )2z (18)
s=0 s
using the binomial series expansion as presented in (18), f,..,,(z) can be expressed as follows

frn(@) = m ;(_1)8 (n ; r) FAPET(I“)S"’T_l

for fapgr - Fapgr-(x), (18) can be derived as

s+r—1 .
faper Faper(e)™ ' = 5% f(a) 3 (-1 ( e 1) (ar)™

— s+
(1 —a)tr = J

Considering the PDF and CDF of the APEr distribution in Eqs (7) and (8) and also applying the above equation,
we can conclude that:

faper(z)F )= ili ) log o)t (s 7 — 1) (Aa®"1e A\ (y(w,Az)\"
APET APET s+7-k| . F(w) F(w)
7=0 k=0 J

3.7. Rényi and Shannon Entropies

Entropy measures the variability or uncertainty associated with a random variable, X. Two widely used entropy
measures are Rényi and Shannon entropies.
The Rényi entropies for arandom variable X, which has a probability density function f(z), is defined as follows:

iylog(/omf(x)”dx>;u>0,y7é1

using the PDF specified in Eq (10), REx(v) has no closed-form solution and cannot be caculated with
mathematical formulas; it can be solved using numerical methods.

f%l;)((l/) =

Theorem 3.4. [t can be demonstrated that the Shannon entropy of random variable X, assuming it has an APEr
distribution, is as follows:

- A log o A log o A log o
s —os (5555 )+ (@omre ) (Som =B 470 (1= 2255 ) 09

where
> w—1 ——Aw Ve Az)
Cawr = (log x) a T dx,
0
and
o0
Y(w,Ax)
na,w,)\:/ e N T@ dr.
0
Proof

The Shannon entropy SEx of random variable X with PDF f(z) is obtained as
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o0
SEx = Bl-log f(a)) =~ [ log /(o)) f(o)d 20)
0
Inserting (8) into (20) can be derived as
SE; =
log A\ log o0 w1l —\z ’Y(;/.A(z) )\w(loga)Q o wel —ag e A@)
(w) 5 7 T(w)
log (af 1> ((af 0@ ) J, 7 e Yo dx + @-1w) /, Y(w, Ax)x” " e” M dzx
A\ log A\ log /oo w1l —\g A=) DNt log o /OO wel —ag 2w A@)
4+ — x e a Tw de+ ——FF—— (logx) x e a T dx
(- D0 Jo @ Dhw-1) Jy %7
W+1 oo w,A(x w oo w,A(x
A log o x“e_’\gca%dx— A log(T'(w)) log a mw—le—kwa”%(ﬁ )dm
(a=1DI(w) Jo (a=Dl(w) Jo
after some simplification, we can easily reach to Equation (19). O

Remark 2. Note that

(W, )

o0
awx = lm &, () = e Mo Tw  dg.
7
W, S San, .

3.8. Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) for the parameters of APEr distribution.
Assume X1, X, ..., X,, be random sample from the APEr distribution with parameters in © = (a,w, A). Then
likelihood function for © reduces to

w—1
T4 aX(loga) \™ _se-rsm aoremann (T AYT, @
L= Ef(‘rlyoé7wa )\) ((a _ 1)F(w)> « 0 i=1 nt Ex’b € =1 (21)

by logarithmic transformation, Equation (21) changes to

w—1 oo
l—l(@)_mlog<(a)\_(11;)ga> 1ogazzfe*m Aay)" + (w— 1) Zlong—)\zbm. 22)

n=0 i=1

When we take partial derivatives of the log-likelihood (22) in relation to the parameters and set the results to
zero, we get

o _my m _ m 1 wzli 2 an L Z (23a)
da  « aloga a—1 -

n=0i=1
% = mlog A — ma(w) — ?fwo)‘ {Z;N (Az) ™" flog (Az;) — w(w)}} + Zlog (1) =0, (23b)
gi——loga{zz (Axy) niili AT (1_)\7?-)_2 Amb} Z%—O 230)
=1 n=1 i=1

where 9 (w) = 1;((;”)).

By solving the system of (23a)-(23c), we can then determine the maximum likelihood estimates (MLEs) for each
parameter.

As shown in the aforementioned equations, the MLEs of the parameters do not admit closed-form solutions.
This is a common feature among generalized or transformed distributions, especially those involving incomplete
gamma functions or quantile-based expressions. In practice, we use numerical optimization methods, such as
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the Newton-Raphson or BFGS algorithm, to compute the MLEs. Despite the lack of closed-form solutions,
the estimators remain consistent and asymptotically normal, as confirmed through simulation studies. Hence, a
numerical procedure is required to obtain MLEs. Based on the log-likelihood function and its partial derivatives
with respect to the parameters, we apply an iterative root-finding algorithm to obtain the MLEs. The following
algorithm outlines the computational steps used for parameter estimation.

Algorithm 1: Numerical Estimation of MLEs for APEr Distribution

Input: Observed data 1, xs, ..., %,

Output: MLE estimates of parameters &, 5\, k

Step 1. Define the log-likelihood function ¢(«, A, k) based on Equation (21).

Step 2. Compute the partial derivatives %, %, and % as in Equations (23a—c).

Step 3. Choose reasonable initial guesses ((?), A\(0), (),

Step 4. Use a numerical root-finding method (e.g., Newton-Raphson or BFGS) to solve the system of
equations:

o o or
oo " " w s
Step 5. Update the parameter vector iteratively until convergence is achieved (e.g., when the change in

parameters is below a predefined threshold e).
Step 6. Return the final estimates (&, A, k) as the MLEs.

0

We apply this algorithm in the numerical study to estimate the parameters of APEr.

4. Numerical Experiments

In this section, we study the performance of the APEr from the viewpoints of the consistency and unbiasedness
of ML estimates of the parameters using simulated data, and its goodness of fit in comparison to alpha power
exponential (APE), exponential and Erlang distributions using two real datasets.

4.1. Simulation Study

We divided simulation sutdy into two main parts. First we consider a simulated experiment to check if the ML
estimators of a,, A and w are consistent or not. Then, we organized a comparison study based on different values of
a, A, w, and sample size n to obtain a general view about the distribution and the effects of changing n.

4.1.1. Study of Consistency To evaluate the consistency of the MLEs for the APEr distribution, we consider the
definition of consistency: as n increases, the estimator tends to the true parameter value, and as n — oo, this
difference converges to zero. In other words, for a consistent estimator, we expect the mean squared error (MSE)
to decrease and approach zero as n increases.

To verify this property for the APEr distribution, we simulate datasets using the parameters o = 2, A = 1, w = 5,
and n = 10,000. We generate 25 replicates of these datasets and compute the sequence of MSE values for
increasing n. If the MSE values exhibit a decreasing trend and approach zero with increasing sample size, it
confirms the consistency of the MLEs for the parameters of the APEr distribution.

Figure 2 shows the MSE curves of ML estimators for the parameters of APEr («, A and w) as the sample size n
increases. As observed, the MSE values for the MLEs of all three parameters of the APEr distribution decrease
toward zero as n increases, with this convergence occurring around n = 5000. Additionally, the MSE values for
the estimators of A and w are significantly smaller compared to «.. For «, a larger sample size is essential to achieve
convergence of the MSE toward zero.
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Figure 2. MSE curves of the ML estimators for the parameters of APEr through increasing the sample size n.

In other words, the MSE sequence for A and w consistently tends to zero over a narrow range as the sample size
grows, even maintaining low values for smaller n. However, for «a, the convergence to zero occurs more gradually,
requiring a larger sample size for noticeable improvement. Overall, we can conclude that ML estimators for the
parameters of APEr are consistent based on the resutls of our simulation study.

4.1.2. Comparison Study In the comparison study, we examine the precision of maximum likelihood estimators
for APEr parameters. The mean of square error (M SE), the mean of the obtained M LE and the bias of ML
estimates for each parameter as comparison tools. We follow the following steps:

1. Consider 4 sample size n = 100, 200, 400, 1000 for « = 2,4, A = 0.5,0.75,1,1.5, and w = 5, 10
2. Repeat the above step NV = 1000 times
3. Calculate the M SFE, mean of M LFE and bias of each parameter over the 1000 iterations.

The different values of n and the parameters make 64 different possible situation to generate data and will have
1000 iterations from each situation. The results of generating random sample and calculating the M SE, the mean
of the obtained M LE and the bias values are prepared in Table 1.

As can obtain from the observations in the table, increasing n across all 64 possible situations leads to a reduction
in both MSE and bias, while the MLE values for the parameters approach their true values. For w and ), similar to
the consistency analysis, it is observed that even at smaller values of n, the bias and MSE are significantly lower
compared to «. Regarding «, although its performance improves as n increases, it still exhibits higher bias and
MSE relative to the other two parameters. This observation aligns with the results of the consistency simulation
study, where the MSE of the estimator for a converges to zero more slowly compared to the estimators for w and
A
It is also worth remarking that the simulation results indirectly demonstrate the robustness of the proposed MLE
procedure. As sample size increases, the bias consistently decreases and the MSE stabilizes across different
parameter settings, indicating that the estimation method remains reliable even under varying model specifications.
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Table 1. Mean of M SE, M LE and bias of each parameter of APEr over the 1000 iterations.

WA n | Mean(@) Mean(\) Mean(@) MSE(aQ) MSE()) MSE(®) Bias(@) Bias(\) Bias(®)
5 05 100 | 1997 0.513 5.151 0.226 0.005 0.602 0464 0057  0.603
200 | 1.998 0.506 5.071 0.215 0.002 0.293 0448 0039 0429
400 | 2.021 0.503 5.032 0.208 0.001 0.150 0436 0028 0307
1000 | 2.003 0.501 5.024 0.185 0.001 0.068 0403 0018  0.203
075 100 | 1997 0.770 5.151 0.226 0.012 0.602 0464 0086  0.603
200 | 1.998 0.758 5.071 0.215 0.006 0.293 0448 0058 0429
400 | 2.021 0.754 5.032 0.208 0.003 0.150 0436 0042 0307
1000 | 2.003 0.751 5.024 0.185 0.001 0.068 0404 0027 0203

T 100 | 1997 1.026 5.151 0.226 0.022 0.602 0464  0.115  0.603
200 | 1.998 1.011 5.071 0.215 0.010 0.293 0448 0078 0429
400 | 2.021 1.005 5.032 0.208 0.005 0.150 0436 0056 0307
1000 | 2.003 1.001 5.024 0.185 0.002 0.068 0404 0035 0203

15 100 | 1997 1.539 5.151 0.226 0.049 0.602 0464  0.172  0.603
200 | 1.997 1.517 5.071 0.215 0.022 0.294 0448  0.117 0429

400 | 2.021 1.508 5.032 0.208 0.011 0.150 0436 0084 0307
1000 | 2.003 1.502 5.024 0.185 0.005 0.068 0404 0053 0203

10 05 100 | 1.997 0.513 10.296 0.226 0.005 2.386 0464  0.057 1.199
200 | 1.998 0.506 10.137 0.216 0.002 1.142 0448 0039  0.846
400 | 2.020 0.503 10.061 0.209 0.001 0.580 0438 0028  0.602
1000 | 2.003 0.501 10.042 0.187 0.001 0.253 0406 0018 0391
075 100 | 1.997 0.770 10.296 0.226 0.012 2.386 0464  0.086 1.199
200 | 1.998 0.758 10.137 0.216 0.006 1.142 0448 0059  0.846
400 | 2.020 0.754 10.061 0.209 0.003 0.580 0438 0042  0.602
1000 | 2.003 0.751 10.042 0.187 0.001 0.253 0406 0026 0391

T 100 | 1997 1.026 10.296 0.226 0.022 2.386 0464  0.115 1.199
200 | 1.998 1.011 10.137 0.216 0.010 1.142 0448 0078  0.846
400 | 2.020 1.005 10.061 0.209 0.005 0.580 0438 0056  0.602
1000 | 2.003 1.002 10.042 0.187 0.002 0.253 0406 0035 0391

15 100 | 1997 1.539 10.296 0.226 0.049 2.386 0464  0.172 1.199
200 | 1.998 1.517 10.137 0.216 0.022 1.142 0448  0.117  0.846
400 | 2.020 1.508 10.061 0.209 0.011 0.580 0438 0084  0.602
1000 | 0.013 0.007 0.049 0.001 0.000 0.001 0.002 0000  0.002

5 05 100 | 3711 0.516 5252 1.437 0.006 0.793 1144 0059  0.689
200 | 3.784 0.508 5.146 1.354 0.003 0.396 1099  0.040 0494
400 | 3.831 0.504 5.098 1257 0.001 0.217 1.053 0029 0370
1000 | 3.848 0.502 5.078 1.113 0.001 0.118 0969 0018 0274

075 100 | 3.711 0.774 5252 1.437 0.013 0.793 1144 0088  0.689
200 | 3.784 0.762 5.146 1.354 0.006 0.396 1.099 0060  0.494
400 | 3.831 0.757 5.098 1257 0.003 0217 1.053 0043 0370
1000 | 3.848 0.754 5.078 1.113 0.001 0.118 0969 0028 0274

T 100 | 3711 1.032 5252 1.437 0.023 0.793 1144 0118 0.689
200 | 3.784 1.016 5.146 1.354 0.011 0.396 1.099  0.081 0.494
400 | 3.831 1.009 5.098 1.257 0.005 0.217 1.053 0058 0370
1000 | 3.848 1.005 5.078 1.113 0.002 0.118 0969 0037 0274

15 100 | 3711 1.548 5252 1.437 0.052 0.793 1144 0177  0.689
200 | 3.784 1.524 5.146 1.354 0.024 0.396 1.099  0.121 0.494
400 | 3.831 1.513 5.098 1.257 0.012 0.217 1.053 0086 0370
1000 | 3.848 1.507 5.078 1.113 0.005 0.118 0969 0055 0274

10 05 100 | 3711 0.517 10.473 1.439 0.006 3.023 1145 0.059 1343
200 | 3.782 0.508 10.270 1.359 0.003 1.483 1102 0.041 0.954
400 | 3.829 0.505 10.179 1.268 0.001 0.797 1.059 0029 0707
1000 | 3.844 0.503 10.138 1.125 0.001 0.416 0977 0019 0512
075 100 | 3.711 0.775 10.473 1.439 0.013 3.023 1145  0.089 1343
200 | 3.782 0.763 10.270 1.359 0.006 1.483 1102 0.061 0.954
400 | 3.829 0.757 10.179 1.268 0.003 0.797 1.059 0044 0707
1000 | 3.844 0.754 10.138 1.125 0.001 0.416 0977 0028 0512

T 100 | 3711 1.034 10.473 1.439 0.024 3.023 1145 0.119 1343
200 | 3.782 1.017 10.270 1.359 0.011 1.483 1102 0082 0954
400 | 3.829 1.010 10.179 1.268 0.006 0.797 1.059 0058 0707
1000 | 3.844 1.006 10.138 1.125 0.002 0.416 0977 0038 0512

15 100 | 3711 1.551 10.473 1.439 0.053 3.023 1145 0178 1343
200 | 3.782 1.525 10.270 1.359 0.025 1.483 1102 0123 0954
400 | 3.829 1.515 10.179 1.268 0.012 0.797 1.059 0088 0707

1000 | 3.875 1.506 10.107 1.088 0.005 0.396 0956 0058 0509
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4.2. Real Data Analysis

In this subsection, we apply the APEr distribution on two real datasets to demonstrate its importance and flexibility.
First, we analyze a dataset containing remission times for 128 cancer patients. These remission times are part of a

dataset from a bladder cancer study. Second dataset is Covid-19 mortality rates data in the United Kingdom used
by [13].

4.2.1. Remission Times Dataset Detailed information about this dataset can be found on page 230 and Table 9.3,

of [15]. In continue, we refer to this dataset as the remission times dataset for summarization. Table 2 shows
descriptive statistics of the remission times dataset.

Table 2. Descriptive values of remission times dataset

Min 1st.Qu Median Mean 3rd.Qu Max  Skewness Kurtosis

0.080 3348 6395 9367 11.838 79.050 3.287 18.483

Table 3 shows the M LEs of parameters of the models (distributions) fitted to remission times dataset. In
continue, we first test the goodness of fit for the fitted models on data and check which ones are rejected based the
statistical tests. Indeed, we examine the goodness of fit for the fitted models over the remission times dataset. we

Table 3. MLE values of the model parameters for fitted distributions on remission times dataset data.

Distribution « A w
APEr 0.0561 0.1301 2
APE 0.0001 0.0130 -

Er - 0.2135
E - 0.1068

[\

consider and compute the Kolmogorov—Smirnov (X — —5), and Anderson—Darling (A D*) statistics for testing the
goodness of fit. The smaller values of K — S and AD* indicate the better fitting of the model. [7] provided detailed
information about Anderson—Darling test.

Table 4 presents the values of AD*, and K — —S statistics. Moreover, it provides p — values of
Anderson—Darling and K — —S tests. According to the Table 4, the Erlang distribution is not accepted as a good fit
over the data. The results accept the fitting of APEr, APE and E. Also, based on the K — S statistic AP Er has the
best performance and according to AD* statistic Exponential distribution (E) is the best fit.

Table 4. Goodness-of-fit tests for remission times dataset.

Distribution | AD* p—walue | K —S p—value
APEr 1.912 0.103 0.079 0.407
APE 1.594 0.156 0.103 0.129

Er 5.359 0.002 0.141 0.012
E 1.174 0.278 0.085 0.318

Now, we analyze the performance of accepted models by the goodness-of-fit tests to reach the best conclusion
about the best fitted model on remission times dataset. For more comparison and reaching better decision about
the best model fitted over the remission times dataset, we apply likelihood ratio (L R) test. We should calculate the
maximum amounts of log-likelihoods of null and alternative hypothesis to obtain the LR statistics. In LR test, if
© be the parameter space of problem, we divide the parameter space as © = (O, ©1). Oy is the parameter space

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. ALIABADI, A.H. GHATARI, E. KHORRAM 15

of model under null hypothesis (Hy) and ©, is the parameter space of model under alternative hypothesis (H1).
For example, if we want to asses the AP Er model against E, © is the parameter space under the assumption of
APZEr distribution and O, is the parameter space when we consider E for data. O and ©, be M LE under H, and
H,, the LR statistic for this problem is calculated as:

L (%)

L (o)
Table 5 shows the information about LR test for APEr against APE and E. Note that Erlang distribution is not
considered here (because of rejection based on goodness-of-fit tests). For the aforementioned example about testing

APEr versus E, p — value = 0.024 and we have another evidence to obtain AP Er as the best model fitted over
the remission times dataset.

Table 5. Likelihood ratio test results for remission times dataset.

Model LR statistic p-value
APEr vs APE 5.991 0.045
APEr vs E 5.743 0.024
Histogram and density of fitted models Survival Function Plot
e
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Q]
o
8 |
o
©
> o
2 <
o O -
0O o
<
o
S 4
o N
o
8 Sl o=~ = o |
o o
T T T T 1 \ T T T T
0 20 40 60 80 0 20 40 60 80
Remission Time Remission Time

Figure 3. The right plot depicts the Kaplan-Meier survival function estimate for the remission times dataset alongside the
survival functions of the fitted distributions (APEr, APE, E, and Er). The left plot illustrates the histogram and Kernel density
estimate of the remission times dataset along with the density functions of the fitted distributions.

Figure 3 compares the performance of the fitted distributions using survival and density function. The right plot
shows the Kaplan-Meier estimate of the survival function for the actual data used, along with the survival functions
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of the fitted distributionsAPEr (blue), APE (red), E (green), Er (light blue). As observed from the plot, APEr
provides a closer fit to the Kaplan-Meier estimate of the survival function compared to other fitted distributions.

The left plot presents the histogram and the probability density estimate of the data using the Kernel method (a
non-parametric method) alongside the density functions of the fitted distributions with their estimated parameters.
The peak height of the Kernel estimate is close to that of APEr. For Er, it can also be noted that it bears more
resemblance to APEr compared to other distributions. In contrast, the modes estimated by E and APE for the data
are significantly distant from the observed mode, indicating the poor fit of these distributions to the data.

4.2.2. UK Covid-19 Dataset Table 6 shows descriptive statistics of Covid-19 mortality rates data in the United
Kingdom (UK Covid-19 Dataset).

Table 6. Descriptive values of UK Covid-19 dataset

Min 1st.Qu Median Mean 3rd.Qu Max Skewness Kurtosis

0.242  0.638 1.117  1.322  1.834 3.385 0.911 2.939

Table 7 shows the M L E's of parameters of the models (distributions) fitted to UK Covid-19 dataset. Now, we test
the goodness of fit for the fitted models on data and check which ones are rejected based the statistical tests. Similar

Table 7. MLE values of the model parameters for fitted distributions on UK Covid-19 dataset data.

Distribution « A w
APEr 0.4239  1.8545 3
APE 69.9921 1.5735 -

Er - 3 1.9848
E - 0.7565 -

to first dataset, we consider and compute the Kolmogorov—Smirnov (K — —S), and Anderson-Darling (AD*)
statistics for testing the goodness of fit. Table 8 presents the values of AD*, and K — —S statistics. Moreover, it
provides p — values of Anderson—Darling and K — —S tests. According to the Table 8, the Exponential distribution
is not accepted as a good fit over the data. The results accept the fitting of APEr, APE and Er. Based on the AD* and
K — S statistics, AP Er has the best performance. It is worth noting that although the estimated shape parameter
w = 2 in the APEr model corresponds to a two-stage Erlang structure, the Erlang distribution was rejected by
Goodness-of-fit tests. Thus, despite the numerical resemblance, the additional shape flexibility provided by the «
parameter contributes to a better overall fit. This highlights the importance of balancing parsimony and modeling
power when analyzing real-world lifetime data. Now, for reaching better decision about the best model fitted over

Table 8. Goodness-of-fit tests for UK Covid-19 dataset.

Distribution | AD* p—walue | K —S p—wvalue
APEr 0.425 0.824 0.065 0.897
APE 0.708 0.552 0.082 0.682

Er 0.502 0.745 0.075 0.789
E 5.021 0.003 0.209 0.003

the UK Covid-19 dataset, we apply likelihood ratio (LR) test. Table 9 shows the information about LR test for
APEr against APE and Er. Note that Exponential distribution is not considered here (because of rejection based on
goodness-of-fit tests). For the aforementioned example about testing AP Er versus Er, p — value = 0.034 and we
have another evidence to obtain AP Er as the best model fitted over the UK Covid-19 dataset.
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Table 9. Likelihood ratio test results for the UK Covid-19 dataset.

Model LR statistic p-value
APEr vs APE 5.473 0.041
APEr vs Er 4977 0.034
Histogram and density of fitted models Survival Function Plot
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Figure 4. The right plot depicts the Kaplan-Meier survival function estimate for the UK Covid-19 dataset alongside the
survival functions of the fitted distributions (APEr, APE, E, and Er). The left plot illustrates the histogram and Kernel
density estimate of the UK Covid-19 dataset along with the density functions of the fitted distributions.

Figure 4 compares the performance of the fitted distributions using survival and density function. The right plot
shows the Kaplan-Meier estimate of the survival function for the actual data used, along with the survival functions
of the fitted distributionsAPEr (blue), APE (red), E (green), Er (light blue). As observed from the plot, APEr
provides a closer fit to the Kaplan-Meier estimate of the survival function compared to other fitted distributions.

The left plot presents the histogram and the probability density estimate of the data using the Kernel method (a
non-parametric method) alongside the density functions of the fitted distributions with their estimated parameters.
The peak height of the Kernel estimate is close to that of APEr. For Er, it can also be noted that it bears more
resemblance to APEr compared to other distributions. In contrast, the modes estimated by E and APE for the data
are significantly distant from the observed mode, indicating the poor fit of these distributions to the data.

As a final remark before, it is worth emphasizing that the APEr distribution is a theoretical generalization of the
Alpha Power Exponential (APE) distribution, one of the most foundational models in the alpha power family. Given
that APE has already been extensively compared with standard lifetime distributions such as Weibull, Exponential,
and Pareto in previous studies, our inclusion of APE in the comparative analysis naturally provides an indirect
benchmark against these distributions. Furthermore, while additional comparisons with other alpha power-based
models are conceivable, their structural motivations and hazard characteristics often differ significantly from the
APEr framework. For these reasons, we focused our comparisons on models that share a more direct lineage with
APEr.
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Conclusion

Considering lifetime distributions and introducing new models for analyzing such data has been the focus of
extensive research. The alpha power family of distributions, which generates a new class of distributions by adding
a parameter to the baseline distribution, has proven to be a valuable tool for modeling lifetime data. On the other
hand, the exponential distribution is one of the most well-known models for lifetime data. In problems involving
the sum of multiple exponential distributions, the Erlang distribution, as a special case of the gamma distribution,
is commonly used. In this paper, we introduced the alpha power Erlang (APEr) distribution as a special case of
the alpha power gamma distribution. While the exponential distribution has been extensively studied in previous
research, the direct exploration of the alpha power gamma distribution has remained largely untouched.

Along with introducing a new distribution designed for lifetime data, the APEr distribution has important
mathematical features. It offers simple closed-form formulas for its quantiles and moments. Using theorems
provided in this paper, we also found closed-form solutions for order statistics and entropy measures. Even
though the maximum likelihood estimators (MLEs) do not have closed-form solutions, simulation results showed
that the MLEs are consistent, meaning they become more accurate as the sample size increases, allowing for
reliable analysis with larger datasets. The performance of the APEr distribution was compared with other related
distributions in terms of goodness-of-fit on two real-world datasets. The results demonstrated that the APEr
distribution provides a better fit for the studied data.

For future studies, the censored version of APEr can be considered by applying the setting of truncated distributions
on the current APEr. Also, the direct exploration of the alpha power gamma distribution, without the constraint of
the scale parameter being an integer (as in the Erlang case), could offer broader applicability. Additionally, applying
probability rules to develop an alpha power distribution for mixtures of Erlang or exponential distributions with
heavy-tailed distributions may provide a more robust approach for handling outliers. Moreover, such extensions
may contribute to improving the generalizability of the proposed model across various lifetime data contexts. For
instance, mixture-based models allow for better adaptation to heterogeneous populations and can capture multi-
modal or skewed failure behaviors more effectively. While these extensions pose non-trivial theoretical challenges,
such as deriving closed-form expressions or ensuring identifiability, they offer valuable directions for broadening
the practical impact and scope of the alpha power family of distributions.
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