‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, September 2025, pp 1440-1457.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

Advanced Strategies for Predicting and Managing Auto Insurance Claims
Using Machine Learning Models

Chadia Bekkaye '*®, Hassan Oukhouya %1*®, Tarek Zari 1©®, Raby Guerbaz !®, Hicham El
Bouanani'

1 Laboratory MAEGE, Department of Statistics and Applied Mathematics, FSJES Ain Sebad,
Hassan 11 University of Casablanca, Morocco
2LaMSD, MSASE, Department of Economics, FSJES, University Mohammed First of Oujda, Morocco

Abstract The high severity of automobile claims, which continues to rise, necessitates developing novel approaches for
effectively handling claims. Machine Learning (ML) represents an essential solution to this issue of concern. As improving
customer service remains the primary goal of auto insurers, the companies in question have naturally begun to adopt and
use ML to better comprehend and evaluate their dataset more efficiently. This paper contributes scientifically to the pricing
of car insurance, in particular, it focuses on the modeling of the total claims amount by ML models such as Support Vector
Regression (SVR), Extreme Gradient Boosting (XGBoost) and Multi-Layer Perceptron (MLP). Further, a comparative
analysis will help in this case by opting for statistical metrics ( e.g. Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE),...) as well as stochastic ones ( e.g. Difference Score, Weight Difference Score,...) in
both train and test data sets. The result shows that the SVR algorithm, originally tuned by Randomized Search CV, achieves
excellent precision and surpasses other models tested, as seen in the Taylor diagram. This model, by contrast, shows less
efficient visual distribution of predictions than XGBoost and MLP algorithms. The ultimate value of this study resides in the
profound analysis of the data set, which can offer insurers adequate comprehension to manage these losses effectively.
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1. Introduction

The increasing number and severity of car claims force us to find new methods for managing them efficiently.
Estimating auto claim costs is a crucial but complex job for insurance companies. A fast, precise prediction is the
key to providing insureds with accurate cost estimations. However, current methods exhibit a range of obstacles,
not least manual procedures and imprecision when estimating the total cost of claims incurred. Machine Learning
(ML) is one component of the solution. From that perspective, this paper aims to explore the use of ML algorithms
by actuaries to evaluate risk and forecast auto insurance losses effectively. Numerous articles in the literature have
addressed the problem of employing ML models for prediction in the insurance field. Smith et al. [1], for example,
test several ML algorithms, such as Neural Networks (NN) and Decision Trees (DT), for identifying whether the
insured made the claim or not, and examine the impact of this study on insurance results.
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In life insurance, Devi et al. [2] adopt several ML methods to predict medical insurance costs. Their findings
show that the Polynomial Regression achieves an 88% of R-squared score (R?), closely followed by Random Forest
(RF) with a score of 86% before and after scaling. Other actuaries opt for ML algorithms to assess the risk of life
insurance pricing. In particular, Azzone et al. [3] propose an RF Algorithm to analyze policyholders’ lapses of
life insurance contracts. Further, Kaushik et al. [4] compare the Artificial Neural Network model (ANN) with the
Linear Regression Model, and then decide on the ANN algorithm to predict health insurance premiums efficiently.

In the non-life insurance, ML methods are employed by various authors to tackle diverse issues within this
segment, in particular. For instance, Fatima Manlaikhaf [5] uses the ML models to predict whether a customer can
renew their contract or not. Additionally, Zuhermaan et al. [6] propose Support Vector Machine (SVM) to classify
policyholders satisfactorily in car insurance. In another study, Huang et al. [7] mainly investigate the adoption of a
wide range of driving behavior characteristics to forecast the likelihood of risks and the frequency of claims for cars
currently insured with ML techniques; four classifiers were eXtreme Gradient Boosting (XGBoost), RF, SVM and
ANN algorithms. The findings indicate that the XGBoost model outperforms the remaining techniques. Hanafy et
al. [8] create an ML algorithm that accurately predicts car insurance claims. The analysis of the results suggests that
RF performs more efficiently than alternative models. A new model was created by Liu et al. [9], namely Multi-
class AdaBoost, which combines DT and adaptive boosting. The results show that the adaptive predictor is more
comparable in terms of both prediction ability and interpretability. In another way, Pérez et al. [10] implemented
ML techniques in an alternative claims context; it focuses on identifying fraudulent claims in insurance policies by
accurately analyzing suspicious auto claims. Pesantez-Narvaez et al. [11] introduce telematic data to predict motor
insurance claims. After comparing XGBoost and Logistic Regression (LR), the results show that XGBoost has a
generally higher forecast accuracy.

In the regression field, Selvakumar et al. [12] perform various categories of vehicle claim amounts using ML
approaches and decide that ANN is a better predictive model in their work. On the same topic, Guelman [13]
describes and applies the Gradient Boosting theory to model auto insurance costs. A separate study [14] has
introduced the differences of Generalized Linear Modeling (GLM) with ML approaches to predict loss expenses in
vehicle insurance. In another context, Ahaggach et al. [15] propose an innovative method that blends odontological
reasoning with regression models to increase the accuracy of expense estimates for auto damage repair. Results
show that the RF algorithm, particularly coupled with odontological reasoning, outperforms all methods regarding
R?, Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). In a
comparative conducted by Lozano-Murcia et al. [16], various ML algorithms, including RF, Bagging, ANN,
DT, Boosting Trees and Linear Regression, were assessed for their performance, measuring the MAE and R?
metrics for regression problems. A significant study was conducted by Poufinas et al. [17] to forecast the mean
motor insurance costs using ML approaches, as well as SVM, DT, RF and Boosting. The results demonstrate
that RF outperform the alternative models, followed by XGBoost algorithms. Although previous studies have
contributed significantly to understanding auto claims, many focus narrowly on classification tasks (e.g., fraud
detection, insured classification or risk evaluation) rather than direct cost estimation. ML approaches such as
XGBoost, SVR, and MLP have gained importance in insurance analysis due to their capacity to handle complex,
non-linear models effectively. Traditionally, actuarial models, especially GLMs, remain standard in a variety of
fields. GLMs are simple to interpret and rely on well-recognized statistical principles, well suited to regulatory and
pricing insurance [18]. However, GLMs presume linear relationships between both predictors and target variable,
potentially restricting their predictive accuracy in the face with real, high-dimensional insurance data sets. A
comparative study by Wiithrich [19] revealed that tree-based ML models perform persistently well compared to
traditional preserving techniques, such as Chain-Ladder and GLMs, for prediction individual claims , notably with
complex interactions and nonlinearities. Recent advancements in insurance ML include deep learning methods,
Recurrent Neural Networks (RNNs) to multivariate reserving tasks [20], and Long Short-Term Memory (LSTM)
for micro-level reserving [21], are used for analyzing time-series claims data. Such models can detect dynamic
relationships that static models risk ignoring. Furthermore, federated learning appears as a privacy-protective
option that permits collaborative model learning among insurers without shared customer-sensitive data [22]. These
developments emphasize the expanding role of ML in insurance while underlining the necessity for balancing
between performance, interpretability, and data privacy. In addition, several works lack rigorous interpretability
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frameworks or fail to address challenges such as feature selection, hyperparameter tuning or comprehensive
model evaluation using both statistical and stochastic metrics. This paper addresses these limits by applying a
complete workflow that involves robust preprocessing, modeling with XGBoost, Support Vector Regression (SVR)
and Multi-Layer Perceptron (MLP), detailed evaluation metrics including the Tailor Diagram and SHAP-based
interpretability for cost predictions in auto insurance. These specific models offer strong regression capabilities for
modeling nonlinear relationships and improving generalization performance. Furthermore, the study is designed to
improve model transparency and accuracy while promoting more efficient management of auto insurance claims
from an economic perspective, which is crucial for real-world adoption by insurance companies. The rest of
the paper is arranged as follows: Section 2 presents the empirical data set of car insurance along with the data
preprocessing techniques executed. The theoretical framework for modeling ML approaches and the description of
performance criteria are also mentioned in this study. Section 3 of this work extensively analyzes and evaluates of
the various ML models, including XGBoost, SVR and MLP. The finding and their practical effects are completely
clarified. Lastly, Section 4 ends the article with a summary of the outcomes alongside suggestions for additional
study.

2. Research Methodology

2.1. Data set

In this study, the collected data set was sourced from Kaggle'. There are 1000 rows and 40 columns in total.
After dropping irrelevant features and any empty columns, the new data set contains 1000 rows with 13 variables,
including numerical and categorical types. The "months as customer” variable is of a numerical type, such as

" non non non non non

age", "policy premium", "total claim amount", "injury claim", "property claim", "vehicle claim" and the last "auto

year" variable. Furthermore, variables such as "insured sex", "incident type", "fraud reported", "incident severity",
and "auto make" represent the categorical type. As shown in Table 1

Table 1. Description of the Data set

Variable Name Data Type Description

total claim_amount Numerical Total amount claimed
months_as_customer Numerical Duration of customer membership (months)
age Numerical Age of the insured individual
policy_annual_premium  Numerical Annual premium for the insurance policy
insured_sex Categorical Gender of the insured person
incident_type Categorical Type of reported incident
incident_severity Categorical Severity level of the incident
injury_claim Numerical Claim amount for injuries
property_claim Numerical Claim amount for property damages
vehicle_claim Numerical Claim amount for vehicle damages
auto_make Categorical Brand of the insured car

auto_year Numerical Year of the vehicle model
fraud_reported Categorical Whether fraud was reported (Y/N)

TData set source, available link: https://www.kaggle.com/datasets

Stat., Optim. Inf. Comput. Vol. 14, September 2025


https://www.kaggle.com/datasets/aashishjhamtani/automobile-insurance/data

C. BEKKAYE, H. OUKHOUYA, T. ZARI, R. GUERBAZ, AND H. EL BOUANANI 1443

2.2. Preprocessing Data set

Before training the model, we first process the data set to verify that all inputs are correctly scaled and structured.
The data set comprises 12 input variables, each corresponding to distinct features that can influence the output.
These input variables are described as follows:

X ={x®W x®  x02} (1)

Each X refers to a unique independent variable in the data set, e.g. insured’s details, vehicle characteristics,
claims history and other relevant variables. The target variable, which the algorithm was created to forecast, is the
total claim amount (y;), representing the cost of losses incurred for each observation .

2.2.1. Data set Splitting and Normalization

The data set was separated into 80% training and 20% testing sets for reliable model learning and evaluation. The
training data set aims to learn models from the data, while the testing set evaluates the model’s ability by applying
it to new cases. As the input variables vary in range and unit, we apply Min-Max normalization to standardize them
within a fixed range of [0,1]. The aim is to prevent variables with larger values from dominating the model learning
process. Normalization is performed using the following formula:

(0 XO - X0,
normalized — W7 (2)

where, X (@) is the normalized value of the i-th variable, Xﬁg’;x is the maximum value of the ¢-th feature in

normalized
the data set, X I(Tfl)n is the minimum value of the i-th feature in the data set. By using the same range for all feature
scaling, Min-Max normalization ensures that no single variable dominates the learning process, thus improving
model performance and stability. This preprocessing step is crucial to ensure the model can identify significant

patterns while preserving numerical stability.

2.3. Machine Learning Algorithms

Based on historical auto insurance data sets, we have applied XGBoost, SVR and MLP algorithms. We then
predicted the total claim amount and compared it with several parameters such as R2, MSE, RMSE, MAE, along
with Normalized Mean Squared Error (NMSE), Difference Score (DS) and Weighted Difference Score (WDS).
The following section presents a description of modeling techniques.

2.3.1. XGBoost model

The XGBoost model, initiated by Chen and Guestrin [23], is a high-performance, scalable ML algorithm for
gradient optimization adapted to structured data and large-scale ML tasks. It sequentially creates a set of decision
trees, where every tree is designed to minimize the errors of the current iteration focusing on the residuals. The
model is then used to optimize a regularized objective function that balances the trade-off between model fit and
complexity:

N K
Objective = Y~ L(y;, §:) + Y ATx), 3)
i=1 k=1

where, £(y;, ;) is the loss function measuring the error between the actual value y; and the prediction ¢;, Q(7}%)
is a regularization term to control tree complexity, defined as :

1
QTx) :7T+§)\wa-, 4)
J

where, T is the number of the tree’s leaves, w; is the weight of a leaf, v and A are regularization hyperparameters.
The principal innovations of XGBoost involve advanced tree pruning, weighted quantile sketching for optimal
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split search, and support for parallel computing, providing efficient processing for both missing and large data sets
(e.g., by learning the optimal direction of imputation during training). Overall, XGBoost has shown exceptional
performance in various fields, notably fraud detection, recommendation systems, and predictive analysis, making
it a reference algorithm for data science and ML challenges [24].

2.3.2. SVR model

The SVR model is a regression adaptation of the Support Vector Machine (SVM) approach, invented initially
by Vladimir Vapnik [25]. Its principles include linear and non-linear correspondence to predict continuous
output variables. The SVR algorithm aims to find a hyperplane in high-dimensional feature space that minimizes
prediction errors while balancing model complexity and generalization. A significant characteristic of SVR is the
loss function insensitive to e, which tolerates errors to a margin ¢, enabling the model to ignore minor deviations
and concentrate on significant models. The objective function is as follows:

1 N
min o w]® + C Y (& +€), 5)

i=1

with constraints :

yi — (w,xi) —b < e+ &,
(w,z;) +b—y; <e+&,
&6 >0 Vi=1,...,N.

where, w is the vector of weights defining the hyperplane, b is the bias, C' > 0 is a hyperparameters controlling
the compromise between training error and regularization, ;,&; are the slack variables for errors outside the €
margin and ¢ is the sensitivity level, which ignores minor errors. By integrating kernel methods, the SVR algorithm
provides predictive analysis performance. It allows nonlinear relationships to be efficiently modeled, thus ensuring
its suitability for applications requiring accurate predictions, such as time-series forecasting, modeling of energy
demand and financial analysis [26].

2.3.3. MLP model

The MLP model, developed by Frank Rosenblatt [27], is a fundamental algorithm for ANN, conceived explicitly
for tasks involving nonlinear correspondences between input features and output targets. The network’s neuron
executes a weighted sum of inputs, then implements a non-linear activation function. Mathematically, the output
of the neuron is as follows:

ni—1

A0 = 3 DD 4 40, ©®
i=1
al = o(=\"), 7

where, z](vl) is the linear output (before activation) of the j-th neuron in layer [, a;
neuron in layer [, wj(ll) is the weight between the i-th neuron in the layer [ — 1 and the j-th neuron in the layer [, b§-l)
is the bias associated with the j-th neuron of layer [, ¢ is the activation function and n;_1 is the number of neurons

in the previous layer (I — 1). MLP training minimizes a loss function, typically expressed as:

(1) i the active output of the j-th

L(0) = %Zf(y@@i), 8)

i=1

where, (y;, §;) is the loss function, y; is the target value ¢; is the prediction and 6 includes all model parameters
(w and b). The main innovations of this model include the implementation of the backpropagation algorithm that has
become an essential part of MLP training, enabling efficient calculation of gradients and weight updates in multi-
layer networks [28]. Further, the model provides a practical application for solving complex tasks and reignited
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interest in neural networks after a period of decline [29]. However, that decline was largely due to the limitations
of single-layer perceptrons, which struggled to solve nonlinear problems.

Although the previous section describes the mathematical formulation for each model, it is also important to
highlight their hypotheses and interpretative capabilities. The SVR depends strongly on the selection of kernel
function (such as the radial basis function), impacting its potential to handle nonlinear models. In addition, it
employs the e-insensitive loss function that ignores minor prediction errors inside a margin. This renders the
SVR robust on noise but significantly less sensitive to extreme values of demands. XGBoost, as a tree-based
ensemble model, is sensitive to hyperparameters like learning rate, maximum depth, and number of estimators.
These parameters monitor the complexity of the model and directly affect the risk of over-fitting or under-fitting.
MLPs offer powerful function approximators but need detailed design choices such as the number of hidden layers,
neurons, and activation functions. Their performance is also dependent on weight initialization and optimization
methods. A clear picture of these hypotheses helps to adapt each model to the features of the claim prediction
problem and to select an appropriate model choice.

2.4. Performance Criteria

R? measures the portion of variance in the dependent variable derived from the independent variables. High R2
values indicate a better correlation (closer to 1). The formula is expressed as [30]:

N
> (i — 9:)°

RZ=1— 12;7. 9)
> (yi —)?

where y; represents the actual values, ¢; denotes the predicted values,  is the mean of the actual values, and N
as the total number of observations in evaluated data set (train or test).

MSE measures the mean of the squared differences between actual and predicted values. Smaller values indicate
better performance. The expression is defined as follows [31]:

N

1 )
MSE = ﬁ;(yi — )2 (10

RMSE represents the square root of the MSE, providing a measure of error in the same units as the data set. The
equation is defined as [32]:

N

1 i
RMSE = Nzl(yi — )2 (11

MAE refers to the mean of the absolute differences between actual and predicted values. The formula is expressed
as [33]:

N
1 N
MAE = i Eﬂ lyi — G- (12)

NMSE quantifies the mean squared error relative to the variance of the target variable. The expression is defined
as follows [34]:

> (i — 4:)°
NMSE< =L (13)

(yi —9)?

M= ™M=

©
Il
-
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DS measures the relative difference between predicted and actual values as a fraction of the mean of the actual
values. The equation is defined as [35]:

o8

lyi — Uil
_ =1
DS = — (14)
Z Yi
i=1

WDS provides a weighted measure of prediction error, where weights refer to the importance or size of the actual
target values. The formula is expressed as [36]:

N
Z wi|yi —yi\

=1
WDS == (15)

Z W;iyYi
i=1

where the weight w; represents the actual claim amount for the i" observation, i.e., w; = ;.

All experiments were performed in Python 3.10 on a Lenovo Ideapad 330 laptop with an Intel Core i5
processor and 8 GB RAM. The analysis employed the scikit-learn library (v1.6.1) for data preprocessing
and model evaluation, XGBoost (v2.1.4) for gradient boosting, and TensorFlow (v2.18) for MLP model
training. Hyperparameters optimization was performed with Scikit learn’s RandomizedSearchCV function. These
specifications aim to maintain transparency and facilitate reproducibility of findings.

=
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Data ‘ g 5
p . < =
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SHAP Values Test 20% Best hyperparameters T 8% XGBoost
XGBoost - XGBoost
Evaluation St .
. ep 2:
SHAP Values Test 20% Best hyperparameters Train 80% ML - i
models Py e SVR models Modeling

SHAP Values Test 20% Best hyperparameters Train 80%
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Figure 1. Work process of this research
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3. Results and Discussion

The present section discusses the exploratory analysis of the data set for better understanding and interpretation
of the results. Then we move on to modeling by implementing the relevant algorithms to derive the best parameters
using the Randomized Search CV option. An analysis of residuals will help to reduce risks, and enable accurate
prediction of the amount of claims, ensuring that the result is more closely related to actual costs, for efficient
management of automobile claims.

The work process contains three key steps, as shown in Figure 1. First, the "Step 1: Data Preprocessing"
represents the efficient treatment and analysis of the dataset to ensure high-quality predictions. Followed by "Step
2: Modeling", which consists of implementing ML models by setting hyperparameters and selecting features that
enhance model performance. Ending with "Step 3: Predictions & Managing auto insurance claims", where the
model is applied to predict new or unseen data. Statistical and stochastic metrics (computing approach) evaluate
the model performance. The economic angle suggests pertinent strategies to manage auto claims effectively.

3.1. Explanatory Data Analysis (EDA)

Successful completion of the EDA ensures a complete understanding of the data set, allowing us to conduct a
univariate analysis according to the "auto_make" and "fraud_reported" variables, as shown in Figures 2 and 3.

Saab Volkswagen

Honda

Mercedes 5:5%

500 1
Jeep

N
S
3

Dodge

Frequency
w
]
S

Chevrolet
Suburu

N
o
3

Accura Ford

Toyota
Audi Fraud Reported

Nissan

Figure 2. Different Types of Vehicle Models Figure 3. Fraud Distribution Histogram

The Figure 2 shows that each segment has a percentage, which indicates the contribution of that model to the
total count of vehicles. For instance, the Saab segment represents 8% of the data set, meaning 8% of the vehicles
listed are Saab models. However, the Figure 3 illustrates the chart that visualizes the number of claims reported
as fraud or not. The majority of claims in the data set are non-fraudulent, and the fraudulent claims make up
a smaller percentage of the total claims. Unlike univariate analysis, studying interactions between variables is
relevant to improve data interpretation and support predictive modeling. That is illustrated in Figure 4, which
discusses interaction analysis between variables to investigate how total claim amount is affected by two numeric
variables (e.g., "age" and "policy annual premium"). Another comparative example will focus on the interaction
between total claim amount and vehicle and property claim (see Figure 5), as well as the case of total claim amount
compared with two categorical variables, e.g., "incident type" and "fraud reported" in Figure 6.
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The histogram shows that high average claim amounts in all age groups, tend to be associated with high annual
premiums. The analysis reflects a correlation of insurance premiums paid with total claim amounts, illustrated in
Figure 4. In addition, the split violins illustrate how the vehicle claim and property claim distributions differ. If
one side of the split is larger (e.g., vehicle claim), more claims of this type dominate in that bin. A balanced width
between the two sides suggests more equal contributions from both claims (see Figure 5). The last graph reveals that
the "Single Vehicle Collision" type may have a higher claim amount mean compared to "Vehicle Theft" or "Parked
Car", particularly in the "Fraud Reported" category. Certain types of incidents may exhibit similar patterns in the
fraudulent and non-fraudulent categories, possibly suggesting that the incident’s severity may not significantly
impact the occurrence of fraud in that category, illustrated in Figure 6. An additional analysis is presented which
compares the total claim amount with “sex” and “incident severity”, respectively (as shown in Figure 7).

Insured Sex: MALE Insured Sex: FEMALE

incident_severity
== Major Damage
ms Minor Damage
we Total Loss
Trivial Damage

80000 100000

Frequency

0 20000

-.-I
40000 0000

6
Total Claim Amount

Figure 7. Total Claim Amount by Sex and Incident Severity

This plot offers an overview of the total incurred losses distribution by gender (male and female), representing
different severity levels. Minor damage dominates the lower claim amounts (close to zero) for both males and
females. Significant damage covers a larger range, with constant frequencies for medium to high claim amounts
(see Figure 7). Correlation analysis is a crucial step in the process, used to determine the direction and degree of
association between two variables, which ranges from -1 to 1.
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Figure 8. Correlation Plot of Numerical & Figure 9. P-value Correlation Plot of Numerical
Categorical Variables & Categorical Variables

The correlation graph illustrates a strong correlation (close to 1) between the following variables: total claim
amount with claims-related variables, age with months as a customer. However, there is a weak negative correlation
between incident severity and fraud reported, incident severity with total claim amount and claims-related variables
shown in Figure 8. In addition, p-value < 0.05 suggests a substantial connection between the factors in question.
Thus, the correlation between total claim amount and claims-related variables (injury, property, vehicle), while
higher p-values indicate no significant correlation, e.g. property and injury claims with policy annual premium,
insured sex with injury claims, auto year with property claims, ...etc which is illustrated in Figure 9.

3.2. Hyperparameters with modeling

3.2.1. Models Randomized Search Cross Validation results

Randomized Search CV represents a machine learning technique explicitly designed to identify the ideal
hyperparameters for a model by randomly selecting combinations of parameters and evaluating them with cross-
validation. We evaluated model performance using R2, MSE, RMSE, and MAE, along with NMSE, DS and WDS
to assess multi-step prediction accuracy. The Randomized Search enables the obtaining of the best parameters for
the XGBoost, SVR and MLP models, summarized in Table 2.

3.2.2. Hyperparameters Summary

Random searches were conducted to find hyperparameters using a 5-fold blocked cross-validation technique to
achieve optimal performance for each model. A 5-fold cross-validation procedure was followed to provide robust
model evaluation and hyperparameters tuning. The data set was split into five folds with random mixing to minimize
bias and retain reproducibility. Table 2 shows the hyperparameters adjusted for the algorithms in this paper. The
hyperparameters adjusting on the models in the current research, where subsample is the data fraction per boosting
round, reg-alpha is L1 regularization term for feature selection, reg-lambda is L2 regularization term to reduce
overfitting, n-estimators is the number of trees, max-depth is the tree depth limit, learning-rate is the model update
step size, colsample-bytree is the features per tree, kernel is the function type, gamma is influence range of points,
epsilon is the margin of tolerance, c is the regularization strength, solver is the optimization algorithm, max-iter is
the training iterations, hidden-layer-sizes is the hidden layers setup, alpha is the L2 regularization, and activation
is the neuron activation function.

3.2.3. SHAP Values Summary

SHAP values analyzes the effect of features on model prediction. This shows the influence of each input on the
output, thus guaranteeing a correct and coherent understanding of the model’s individual and global behavior. In
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Table 2. The hyperparameters adjusting on the models in this study.

Model Parameters Range Best Parameters
Subsample [0.6, 0.8, 1.0] 1.0
reg-lambda [1.0, 1.5,2.0] 1.5
reg-alpha [0, 0.1, 0.5, 1.0] 1.0
XGBoost n-estimators [100, 200, 300, 400] 400
max-depth [3,5,7,10] 5
learning-rate [0.01, 0.05, 0.1, 0.2] 0.05
colsample-bytree [0.6, 0.8, 1.0] 0.6
Kernel [’rbf’, *poly’, ’sigmoid’] rbf
SVR gamma [’scale’, ’auto’, 0.01, 0.1, 1] auto
epsilon [0.01, 0.1, 0.2, 0.5] 0.01
C [0.1, 1, 10, 100] 10
Solver [adam’, ’sgd’] adam
max-iter [’adaptive’, ’constant’] adaptive
MLP hidden-layer-sizes [(50,), (100,), (50,50), (100,50)] (100,50)
alpha [0.0001, 0.001, 0.01, 0.1] 0.1
activation [relu’, ’tanh’, ’logistic’] tanh

Figure 10, we illustrate the influence of each factor on the output by XGBoost model, as well as the effect on the
SVR model output (as shown in Figure 11) and the influence on the MLP model outcome (see Figure 12).
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Figure 10. SHAP Values Summary for Figure 11. SHAP Values Summary for Figure 12. SHAP Values Summary for
XGBoost model SVR model MLP model

Since the target variable is the total claim amount, the SHAP summary graph offers a clear view of the impact
of each characteristic on the predicted claim amount. After analyzing the three models, we conclude that the
variables “vehicle claim”, “injury claim” and “property claim” have the most decisive influence on the prediction
of the total claim amount; e.g. as expected, higher claims for each category increase the total claim amount (yellow
dots on the right). This is followed by severity/incident type, which also plays a role in XGBoost (see Figure
10) and SVR as illustrated in Figure 11, but less dominantly. By contrast, the insured’s demographics and policy
details have minimal impact. XGBoost and SVR exhibit a slightly larger importance of variables. At the same
time, MLP offers a slightly broader range of SHAP values and an important range of variables, i.e. months as

a customer and age (as shown in Figure 12). Overall, claim-related characteristics consistently dominate model
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predictions, reinforcing their influence on identifying total claim amounts. To improve the interpretability of the
model’s prediction of total_claim_amount, we carried out a SHAP analysis stratified by incident_severity variable.
This subgroup approach allows the feature contributions across each severity level of incident, uncovering how
input variables impact predictions variously across severity contexts. This analysis quantifies the significance
of individual variables by severity level, in line with the objective to interpret total_claim_amount with finer
granularity.

High vehicle_claim o emee el LRI, vehicle_claim

auto_make - T S property_claim o it property_claim
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Figure 13. SHAP Value Summary Plots for the Ma jor Damage Subgroup Across Different Models.

The corresponding SHAP graphs for the Ma jor Damage subgroup across three regression models (XGBoost,

SVR, and MLP) are illustrated in Figure 13. In all models, the more influential variables remain relatively
consistent, with vehicle_claim, property_claim, and injury_claim dominating the predictive variance explanation
for total_claim_amount. The XGBoost model also emphasizes the significance of the auto_make variable, whereas
the MLP model shows a more varied range of influential features, notably age and months_as_customer.
For brevity, detailed analysis of the SHAP values representing the other severity levels such as Minor Damage,
Total Loss, and Trivial Damage, are provided in the Appendix (see Figure 19, Figure 20, and Figure
21, respectively). These visualizations complete the analysis of the subgroup of Major Damage and enable a
comprehensive comparison of the feature contributions across various levels of incident_severity.

3.3. Residual Analysis
3.3.1. Performance comparison of XGBoost, SVR and MLP

This section presents the performance evaluation of the XGBoost, SVR and MLP models using various
performance metrics, including R? score, MSE, RMSE, MAE, NMSE, DS and WDS. The findings are available in
Table 3.
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Table 3. Comparison of performance metrics for XGBoost, SVR, and MLP models on both training and test sets.

XGBoost SVR MLP
Models
Train Test Train Test Train Test

R? Score 0.9999 0.9918 0.9960 0.9950 0.9878 0.9864
MSE 0.0000 0.0004 0.00021 0.00026 0.0006 0.0007
RMSE 0.0011 0.0207 0.0147 0.0162 0.0259 0.0268
MAE 0.0008 0.0100 0.0055 0.0060 0.0183 0.0187
NMSE 0.0000 0.0081 0.0039 0.0049 0.0121 0.0135
DS 0.0017 0.0222 0.0117 0.0135 0.0388 0.0416
WDS 0.0008 0.0126 0.0060 0.0067 0.0196 0.0203

Referring to Table 3, the performance criteria suggest that SVR outperforms the other models on test sets, with
lower errors (MSE, RMSE, MAE) and the highest R? score. SVR shows consistent performance in the train and
test sets, indicating good generalization. Followed by XGBoost, which reflects a minor overfitting, resulting in
slight increases in test errors. MLP has the highest errors and lowest R-scores, making it the weakest model.
Regarding NMSE, DS and WDS, SVR remains stable in both phases. In contrast, XGBoost achieves the smallest
values for training but increases values for testing, thus suggesting some overfitting. MLP exhibits the highest
dispersion, indicating instability. For better graphical visualization of the results, we illustrate the evaluation
metrics in Figure 14.

3.3.2. Taylor Diagram

The Taylor diagram visually illustrates the performance of three models (XGBoost, SVR and MLP) based on
their correlation and standard deviation. The Figure 15 shows the comparison relative to the reference point (red
dot).

o © © © © o o
& & o & & &
& & « o & «

Figure 14.Histogram for comparison between performance
metrics on train and test sets

Figure 15. Taylor Diagram

Since the red dot represents the reference point (perfect model), the model closest to this point becomes the best
choice. Thus, we notice that SVR has a good combination of high correlation and low standard deviation, reflecting
that it performs well against the evaluation criteria (as illustrated in Figure 15).

While the Taylor Diagram validates SVR’s strong predictive ability_surpassing both XGBoost and MLP in the
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majority of numerical metrics_ its black-box nature introduces a limit in terms of interpretability. In light of the
transparency in insurance, especially in the General Data Protection Regulation (GDPR), further work is likely to
focus on integrating explicitness techniques for SVR, like rule extraction or interpretive substitution models, to
guarantee both regulatory conformance and confidence in the model’s decisions.

3.4. Prediction and managing auto insurance claims

3.4.1. Model’s predictions

This section represents the model prediction, described as the output after input data processing. Each model
must estimate the predicted values and compare them with the actual ones, as shown in Figure 16, which represents
the predictions retained by the XGBoost model, Figure 17 shows the predictions of the SVR model and Figure 18
those of the MLP algorithm, compared to current values.

Figure 16. XGBoost: Actual vs Pre- Figure 17. SVR: Actual vs Predicted Figure 18. MLP : Actual vs Predicted
dicted Claims Claims Claims

The scatter plot shows the variation between the total amounts of actual and predicted claims. The points closely
follow the red line (y=x), reflecting a strong correspondence between the actual and predicted values. The colored
bar denotes the estimated claim cost, with colors varying from purple (minimum values) to yellow (maximum
values). We note a few outliers, but the XGBoost model generally performs well as shown in Figure 16. On the
last scatter plot (see Figure 18), the MLP model gives predictions aligned with the red diagonal (following the
actual values) with minor outliers as well. The SVR model demonstrated strong overall performance but struggled
to predict extreme claim amounts, especially in the tails of the distribution, as illustrated in Figure 17 . This is
attributable to the model’s sensitivity towards the kernel function and e-insensitive loss, which can restrict its
ability to treat efficiently large deviations.

3.4.2. Managing auto insurance claims

From an economic point of view, auto claims management usually aims to ensure a balance between cost-
efficiency and equitable compensation. Insurance companies opt for data-driven modeling to assess claims, predict
future risks, and ensure they are handled quickly and accurately. Key tasks include analyzing damage, specifying
responsibility and estimating repair costs. The algorithms will help insurance companies to detect fraud and
optimize the amounts paid out, thus minimizing unnecessary expenses. In addition, they study risk profiles to
adjust premiums, ensuring adequate coverage for the insured and healthy finances for the insurer. Efficiency in
claims management reflects reduced operational costs and the adoption of durable pricing strategies. Subrogation
procedures, operated by insurers to recover costs from third parties responsible for the accident, also reduce overall
expenditure. Insurance companies that balance between operational efficiency, accurate claim payments and cost
control strategies can maintain financial stability while delivering value to their clients. This approach is consistent
with the sector’s evolution towards data-driven management to ensure competitiveness in dynamic markets [37, 38].
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4. Conclusion

In this research, we evaluate the efficiency of various ML models for predicting total claim amounts in auto

insurance. Three models, namely XGBoost, SVR, and MLP, have been selected for their ability to handle complex
data and provide accurate predictions of claim payouts. Based on multiple evaluation metrics, the SVR model
demonstrated excellent predictive accuracy among the models evaluated. SVR is the best-performing model on
the test set, with the highest R? (0.9950) and lowest error values (MSE, RMSE, MAE, NMSE, DS, WDS),
suggesting better generalization. The XGBoost performs well in the training set, but shows signs of overfitting,
with a slight increase in test errors. In contrast, the MLP model has the lowest performance, with the highest errors
and the lowest R?, reflecting instability and weak generalization. Regarding scatter plot visualization, we note
the existence of a few outliers in SVR forecasts, which reflects that the model appears inadequate at extremes.
XGBoost, on the other hand, produces a better visual distribution of predictions, despite achieving slightly worse
metrics than SVR, reflecting its overall accuracy. These results demonstrate the trade-offs between evaluation
based on performance metrics and visual coherence. They also emphasize the importance of carefully choosing
models depending on the specific objectives of loss prediction. For efficient auto claim management, insurers
can also opt for hybrid approaches that maintain predictive accuracy and stability through techniques for detecting
and correcting outliers. In economic terms, they can also employ models to optimize reserve allocations and reduce
unnecessary payments. In addition, introducing telematic policies for safe driving and using automation to simplify
claims reduces operational costs and improves efficiency.
Since the models selected in this study are relatively complex, achieving predictions is challenging to grasp. To
improve interpretability and better understand the decision-making process of these complex models, techniques
such as SHAP are employed to explain feature contributions and individual predictions. Additionally, missing or
excluded features may influence the model’s efficiency. Although the SVR model presented a high performance in
most evaluation metrics, a detailed analysis of model predictions reveals limits in terms of precisely estimating
small and large loss components. This issue appears evident when visualizing predicted versus actual values,
exactly as the model seems to underfit the extremes. As a future work, hybrid modeling approaches (e.g., SVR
coupled with quantile regression), claim severity segmentation, or the use of other alternative loss functions,
such as quantile loss, could investigated to boost predictive accuracy for extreme loss values and improve
model generalization in asymmetrical data conditions. To enhance the hybrid solution, we also plan to introduce
methodological principles that address potential biases in the data set and reinforce model robustness. In particular,
strategies include bias-variance analysis, resampling methods (e.g., SMOTE) to mitigate imbalance, and synthetic
noise injection to assess robustness. Additionally, the inclusion of domain-specific characteristics transformation
(e.g., log-transformed premium or loss severity ratios) may further boost generalization and sensitivity to infrequent
high-loss claims, as well as addressing interpretability challenges discussed in Section 3.3.2.

Appendix A: SHAP Analysis by incident_severity Type

A.l. Case: Minor Damage

A.2. Case: Total Loss
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