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A Two-stage Design for Superior Efficiency in Estimating Sensitive
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Abstract Examining sensitive characteristics or data that individuals are hesitant to disclose in surveys poses a challenge
due to the ethical duty to protect respondent privacy. Warner’s randomized response (RR) technique, while enabling
confidential estimation of such attributes’ prevalence in populations, suffers from increased variance as the likelihood of
directly probing sensitive questions rises. To address this limitation, we propose an innovative two-stage RR framework
designed to enhance practicality and statistical efficiency compared to Mangat’s model, while improving credibility in real-
world applications. Privacy protection metrics were computed for the proposed models, with efficiency analyses consistently
showing that the new model surpasses Mangat’s model in efficiency.
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1. Introduction

Researchers commonly rely on surveys as a primary method to evaluate attitudes and behaviors across diverse
scenarios and fields. However, challenges emerge when survey inquiries touch upon sensitive or uncomfortable
topics such as drug usage, mental health conditions, dishonest behavior, insurance fraud, and more. Ethical
responsibilities concerning respondent privacy often complicate research endeavors in such cases. Additionally,
non-sampling errors like response bias, manifested through refusal to answer or dishonest responses, pose
significant concerns. Before the advent of the randomized response technique (RRT), resolving these issues
remained largely unaddressed.

The randomized response (RR) method is employed in surveys to mitigate response errors when investigating
illegal activities or personal matters of a sensitive nature. This approach involves using a random mechanism
where respondents select a question from multiple options, at least one of which pertains to sensitive content. The
chosen question remains undisclosed to the interviewer. By ensuring uniform response types for each question, no
respondent or response can definitively link back to the sensitive attribute. Therefore, RR inherently assumes that
participant responses are truthful and sufficiently reliable for deriving accurate statistical estimates.

The inception of randomized response can be traced back to Warner in 1965 [24]. Warner’s methodology hinges
on the notion that respondents are more likely to cooperate if questions allow for less revealing answers to the
interviewer. By relying on a random device that prompts respondents to provide information based on probabilities,
Warner’s technique facilitates the collection of data on sensitive topics while upholding confidentiality. However,
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the estimation of proportion of a sensitive topic incurs additional variance owing to the randomization process.

Following Warner’s pioneering work, various authors have expanded the randomized response technique in
different directions, aiming to reduce estimate variance and enhance model efficiency. These efforts have involved
parameter selection strategies, alternative estimation methods, and modifications to the original Warner model to
improve performance [1, 2, 3,4, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26].

Mangat [19] proposed a model where respondents directly answer “yes” if they possess the sensitive trait (.5);
others use Warner’s device. Building on this, our study introduces a novel RR model that adopts the randomization
mechanism from Mangat and Singh’s earlier framework rather than Warner’s. This redesigned approach enhances
efficiency compared to Mangat’s original model, demonstrating superior statistical performance while maintaining
respondent trust.

2. Materials and methods

2.1. Warner’s model

Warner’s original method [24] focuses on estimating the proportion 7 of individuals with a sensitive attribute S.
Respondents use a randomized device to select one of two statements with probabilities p; and 1 — p; :

(a) “I belong to the sensitive group S
(b) “I do not belong to the sensitive group 5
Respondents answer “yes” or “no”, without revealing the chosen statement. The MLE for = is:

n'/n—1+p
Ty = ———————, 0.5 1
w 2p1 F1 p1 7é ( )
where n’ is the number of ’yes’ responses. Under truthful reporting, this estimator is unbiased and its variance
is:

(1—m) p1(1—p1)

V(i) = : n n(2p; + 1)2 @
2.2. Mangat and Singh’s model
Mangat & Singh [20] introduced a two-stage design. Each respondent first uses device R1, which presents:
(a) I belong to group S with a probability pa, or
(b) ”Use device R2” with a probability 1 — pa.
If directed to R2, the respondent uses a Warner-type device with statements:
(a) "I belong group S” with a probability of p;
(b) I do not belong to group S” with a probability of 1 — p;.
The MLE for 7 is:
I )

2p1 — 14 2p2(1 —p1)

with variance:
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r(l-m)  (=p)d=p) 1= (1= p2)(1 =)l

V(imes) = “4)
n n(2py — 1+ 2pa(1 —py))?
Mangat and Singh [20] showed this model outperforms Warner’s when
1-2
P> )
I-m

2.3. Mangat’s model

Mangat [19] introduced a design where respondents answer “yes” if they possess S. Otherwise, they use a Warner
device. The MLE for 7 is:

Fm = w (6)
D1

where ¢ is the observed “yes” proportion. The variance is:
m(l—m 1—7)(1—

n npi

This framework demonstrates greater efficiency than Mangat & Singh’s approach when:

pi(l—p2)[1— (1 —p1)(1 —p2)

T>1-— 5
[2p1 — 14 2p2(1 — p1)]

®)

and outperforms Warner’s if

p?

2p1 —1)°

which holds for p; > % In the following section, we introduce a novel model that is more effective than the
previously discussed randomized response models.

m>1- ©)

3. The proposed RR model

To estimate the proportion 7 of individuals with a sensitive attribute S, respondents in the selected sample are
instructed to answer “yes” if they belong to S; otherwise, they use the Mangat & Singh two-stage procedure with
devices R1 and R2. The probability of “Yes” answer is:

a=m+(1-m)(1—p1)(1—p2) (10)

The proposed estimator for 7 is:

a—(1-p)(1—p2)

= an
1—(1=pi)(1—p2)
where & is the observed “yes” proportion.
3.1. Theoretical properties
Theorem 1. The variance of 7 is:
1-— 1-— 1-— 1-—

n n[l—(1—-p)1-p2)]

Stat., Optim. Inf. Comput. Vol. 14, December 2025



ABOALKHAIR, A. M. 3069

Proof. From n& ~ Bin(n, a)

V(a)=—"—= (13)

Substituting into

. V(&)
V(#) = 2
(1= (1=p1)(1 = p2)]

and expanding a(1 — «) using Eq. (10) yields Eq. (12).
Theorem 2. An unbiased variance estimator is:

A a(l—a)

V(#) = 2

(n—=1)[1—=(1=p1)1 - p2)]

Proof: By calculating the expected value of Eq. (14), unbiasedness is confirmed.

(14)

3.2. Efficiency

This section provides a numerical assessment of the proposed model’s efficiency through analyzing the variance (as
defined in Eq. (12)) across different parameter combinations: a sample size of n = 100, population proportions of
individuals with the sensitive attribute = = 0.01, 0.05, 0.10, 0.20 and randomization probabilities 0.6 < p1,py <
0.9.

n=0.01 n=0.05

0.0005 0.0010 0.0015 0.0010 0.0015 0.0020

0.0010 0.0015 0.0020 0.0025 0.0018 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030

Figure 1.The variance V(#) as a function of p; and p2 (0.6 < pi,p2 <0.9) for some selected values of 7 €
{0.01, 0.05, 0.10, 0.20}.
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The results, shown in Figure 1, reveal distinct trends. First, for fixed p; and ps, the variance decreases as
decreases, reaching its minimum at 7 = 0.01. Second, higher values of p; and p, consistently reduce variance
for any fixed . For instance, when = = 0.01, increasing p; and ps from 0.6 to 0.9 lowers the variance from
0.001985 to 0.000199. These findings highlight two critical conclusions: (1) the model performs most efficiently
for rare sensitive attributes (e.g., 7 = 0.01), making it particularly suitable for highly stigmatized topics, and (2)
maximizing p; and p, enhances precision, though excessively high values risk undermining respondent trust. Thus,
practitioners should prioritize higher p; and p; within a range that avoids raising suspicion, ensuring both accuracy
and participant cooperation.

3.3. Efficiency comparison

The proposed model demonstrates greater efficiency than Mangat’s model when

V(r) < V(itm)
By applying Eqs. (12) and (7), this efficiency condition simplifies algebraically to

p2 >0

Since py is inherently positive in all practical implementations, the model guarantees superior efficiency
compared to Mangat’s framework without requiring additional constraints.

To empirically validate this theoretical finding, Figure 2 presents a numerical comparison between the suggested
estimator and Mangat’s estimator. The analysis uses a sample size of n = 100, randomization probabilities 0.6 <
p1,p2 < 0.9, and population proportions m = 0.01, 0.05, 0.10, 0.20. Relative efficiency is computed as the ratio of
the Mangat’s variance to that of the suggested model, where values exceeding 1 indicate superior performance of
the latter.

Key findings include:

1. The proposed estimator outperforms Mangat’s across all parameter combinations, with relative efficiency
values ranging from 1.2874 (lowest) to 13.0968 (highest). For instance, at # = 0.01, p; = 0.6, and ps = 0.9
the proposed estimator is 13.09 times more efficient than Mangat’s.

2. Efficiency gains increase as m decreases (e.g., from 7 = 0.20 to = = 0.01), highlighting the model’s
advantage for highly sensitive, rare attributes.

3. Higher p; improves efficiency (e.g., at # = 0.01, increasing p; from 0.6 to 0.9 boosts efficiency from 3.3753
to 6.0251 for ps = 0.9).

4. Lower py enhances efficiency (e.g., at 7 = 0.01, reducing p, from 0.9 to 0.6 increases efficiency from 6.0251
to 13.0968 for p; = 0.6).

4. Measure of privacy

Randomized response (RR) models are inherently crafted to protect respondent confidentiality in surveys.
Numerous methodologies have been proposed to quantify and enhance privacy in such models [8, 17, 18, 26].
Following the framework of [26], the design probabilities are:

P(yes|S) =1 and P(yes|S) = (1—p1) (1 —p2)

P(nolS)=0 and P (no}g) =1—-(1-=p1) (1 —p2)

and
T

P (Slyes) = 7+ (1 — ) P(yes|S)/P(yes|S)
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n=0.01 n=0.05

Figure 2. The relative efficiency (RE) of Mangat’s model compared to the proposed model as a function of p; and po
(0.6 < p1,p2 < 0.9) for some selected values of 7 € {0.01, 0.05, 0.10, 0.20}.

7+ (1 — ) P(no|S)/P(no|S)

Consequently, the privacy protection measure can be expressed as:

P (S|no) =

Mp(R) =|1- % {r(yes) + T(no)}
Thus

Mp(R)=1-[2(1—p1)(1 —p2)] " (15)

According to Zhimin and Zaizai [26], lower values of Mp(R) indicate stronger privacy protection. As Mp(R)
approaches zero, respondents’ confidentiality is better preserved, ensuring minimal linkage between their responses
and sensitive attributes.

5. Guidelines for real-world application
To effectively apply the proposed Randomized Response (RR) model for estimating the proportion 7 of individuals
with the sensitive attribute S, the following comprehensive guidelines should be followed. These are crafted to

ensure a balance between statistical accuracy, protection of respondent privacy, and practical implementation.
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1. Setup & probabilities: The survey administrator defines two probabilities: p; (probability of selecting the
sensitive statement in the second stage) and p» (probability of selecting the sensitive statement in the first
stage).

2. Sampling: A random sample of size n is selected.

3. Pre-experiment preparation: Several days before the experiment, participants were informed about and agreed
to the location, date, and time.

4. Informed consent: Written informed consent should be obtained from every participant.

5. Initial briefing: At the start of the session, participants received a short presentation explaining the entire
procedure and emphasizing how the design robustly protects their privacy.

6. Materials: The experiment utilized an empty box, separate sets of ’yes’ and 'no’ cards, and two spinner
devices.

7. Participant procedure: Each respondent is instructed to select a yes” card and drop it in the box if he/she has
a sensitive attribute S. If not, he/she is directed to use the two-stage random devices. The first random device
set to show one of two options:

(a) I have a sensitive attribute S” with a probability ps, or

(b) ”Use device R2” with a probability 1 — pa.

So, if the first option appears, the experiment ends, and the interviewee places a ‘yes’ or a ‘no’ card into the
container. If the second option appears and the second random device is used, the respondent answers one of
the following two questions:

(a) T have a sensitive attribute S with a probability of p;

(b) I do not have a sensitive attribute S” with a probability of 1 — p;.

8. Privacy assurance: Participants complete the procedure individually behind a partition, ensuring no one else
can observe their actions, before leaving the room.

9. Estimation: Using the collected sample data, estimate the proportion 7 of individuals possessing the sensitive
attribute S and its variance, applying Egs. (11) and (12).

By carefully adhering to these refined guidelines, researchers can successfully apply this tailored RRT model,
increasing the likelihood of generating accurate and reliable estimates of sensitive trait prevalence, while
maintaining high ethical standards and preserving respondent trust.

6. Ethical considerations

The randomized response (RR) technique requires a thoughtful ethical approach to balance the collection of
sensitive information with the protection of participants’ rights. Key elements include ensuring that participants
clearly understand the purpose of the method, voluntarily agree to take part, and are free to withdraw at any
time. Researchers must emphasize transparency in how data is collected, used, and stored, while also considering
the possible emotional effects of sensitive questions. Protective measures—such as anonymization and access to
support resources—should be in place. Approval from ethics committees or Institutional Review Boards is essential
to confirm adherence to ethical guidelines. Above all, strict privacy measures must be enforced to ensure that
individual responses remain untraceable. Properly addressing these considerations allows for ethically sound and
credible collection of sensitive data.
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7. Discussion

Efficiency analyses demonstrate that the proposed model substantially outperforms Mangat’s framework [19],
particularly for rare or stigmatized traits and when utilizing higher values of p; paired with lower p,. This positions
the model as a reliable solution for surveys demanding high accuracy in sensitive contexts.

In randomized response techniques (RRT), perceived privacy plays a crucial role in shaping both response
accuracy and participant willingness. When respondents feel that their privacy is strongly protected—meaning that
their individual answers cannot be traced or inferred—they are more likely to provide truthful responses, especially
when asked about stigmatized or sensitive behaviors. This increased trust enhances data quality and reduces
evasive answering, thus improving the accuracy of the resulting estimates. Conversely, if the randomization
process is too complex or poorly explained, respondents may not fully understand the mechanism or may doubt the
promised confidentiality, leading to increased suspicion, reduced participation, or dishonest responses. This creates
a practical trade-off: maximizing statistical efficiency often involves more complex designs or tighter parameter
tuning, which may inadvertently reduce perceived privacy and deter honest participation. Therefore, striking a
balance between privacy protection and efficiency is essential. Models that are both statistically efficient and easy
to understand tend to perform better in real-world settings because they foster trust, encourage cooperation, and
yield more reliable data.

Optimizing the probabilities p; and p. involves striking a balance between statistical precision and privacy
safeguards. By minimizing the privacy protection measure outlined in Equation (15), researchers can enhance
respondent willingness to participate while retaining data integrity. This adjustment mitigates distrust among
participants, ensuring reliable data collection on sensitive topics while safeguarding respondent anonymity.
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