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Pain Intensity Recognition from Facial Expression Using Deep Learning
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Abstract Pain weaves its way into daily life, turning ordinary tasks into challenges and testing our strength in unexpected
ways. Pain can be observed in a human’s face and can be understood as pain intensity from patients’ verbal acquisition.
However, for non-verbal patients—such as those in the ICU, individuals with mental challenges, or even Al—detecting and
interpreting pain remains a complex challenge. To extend this, many researchers have done remarkable research and are still
trying to find a solution with acceptable accuracy. This research paper presents a hybrid parallel model to detect the intensity
of pain from facial expressions. Following the Prkachin and Solomon Pain Intensity (PSPI) metric, we considered 16 pain
levels, which were divided into four subranges. We call these sub ranges as ” No Pain”, ”Mild Pain”, ’Moderate Pain”, and
”Severe Pain”. Our parallel feature fusion model consists of a fully connected network with inputs from two deep CNN
models, one being VGG19, and the other model can be ResNet50, DenseNet121, or InceptionV3. Thus, we have 3 parallel
feature fusion models (PFFM), respectively, PFFM-1, PFFM-2 and PFFM-3. Besides, we trained and evaluated our models
using the McMaster Shoulder Pain dataset, where PFFM-2 emerged as the top performer, achieving an 82.54% accuracy in
assessing pain intensity from facial expressions. By outperforming existing pain detection systems, this breakthrough bridges
the gap between human perception and Al, enabling more precise and reliable pain interpretation.
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1. Introduction

The pain is widely recognized as one of the most distressing sensations experienced by humans, often necessitating
medical attention. Broadly, it can be categorized into two major types encountered in daily life: acute pain and
chronic pain. Acute pain typically arises from injuries or illnesses and tends to subside with appropriate treatment.
In contrast, chronic pain results from severe or untreated injuries, infections, or ongoing conditions such as cancer.
Unlike acute pain, chronic pain is persistent and may linger for months or even years, despite ongoing medical
interventions aimed at minimizing discomfort [ 1]. Moreover, pain exerts a profound impact not only on the affected
individual but also on their family members. It can cause restlessness, alter personality traits, impair memory,
disrupt attention, and diminish intellectual performance. The influence of pain extends to sleep quality, often
leading to insomnia and, over time, contributing to depression [1]. Consequently, both the intensity and duration
of pain are strongly linked to a decline in an individual’s Quality of Life (QOL). The ability to adapt to pain
plays a vital role in maintaining a satisfactory QOL, underscoring the importance of accurately measuring pain
intensity. Such assessments are critical for identifying the root cause of pain and prescribing the most effective
treatment strategies [2]. In this context, facial expressions emerge as a primary medium for conveying emotions,
especially in social settings. According to American psychologist Paul Ekman (1993), there are seven basic human
emotions—happiness, sadness, fear, disgust, anger, contempt, and surprise—which can be interpreted based on
subtle facial muscle movements, eye gestures, and head positions. These emotions were systematically analyzed
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through his Facial Action Coding System (FACS) [3]”. Notably, facial expressions can serve as valuable indicators
of a person’s pain experience in real-life situations, providing non-verbal yet informative cues [4]. While humans
can often intuitively interpret facial expressions, the task poses significant challenges for even the most advanced
Artificial Intelligence (AI) systems [5]. Despite these challenges, the role of Al in healthcare is expanding rapidly.
Various organizations are partnering with researchers and medical professionals to develop technologies aimed at
enhancing pain recognition and management. These efforts are grounded in the shared belief that relieving pain is
not only a medical necessity but also a fundamental human right [6]. In line with this vision, our research proposes
a novel, integrated approach for identifying pain intensity through facial expression analysis. This automated pain
detection system presents an intelligent solution that supports patients and caregivers in effectively monitoring and
managing chronic pain. By combining emotional recognition with Al-driven assessment, this system contributes
to the broader goal of improving patient care and overall quality of life [7]. Building upon the significance of
accurately identifying pain through facial expressions, it is essential to consider the existing pain assessment
methods typically employed in medical settings. Among these, self-reporting and clinical observation are the most
common. Notably, self-reporting—utilizing either verbal responses or visual analog scales—is widely recognized
as the most reliable method. However, this approach becomes impractical or unreliable for specific populations,
such as patients in intensive care units, young children, infants, individuals with paralysis, or those with cognitive or
neurological impairments, including dementia and autism [8],[6],[9]. Furthermore, individuals living with chronic
pain often experience fluctuating pain levels due to coexisting medical conditions. As a result, they may overlook
new symptoms, perceiving them as part of their usual discomfort. In such cases, any unexpected change in pain
intensity could serve as an early warning sign of an underlying disease, which, if detected promptly, could lead
to timely intervention and improved treatment outcomes [10]. In addition, research has demonstrated that patient
outcomes in intensive care units improve significantly when pain is monitored on a regular basis [11]. Nevertheless,
current observation-based systems are inherently subjective, as they rely on the perceptions and judgments of
healthcare professionals, who may be influenced by personal biases. Moreover, these systems require specialized
training, and in overcrowded or understaffed hospitals, it is often not feasible for caregivers to monitor patients
continuously for signs of distress or emergency situations [8],[6]. Given these limitations, there is a clear and
urgent need for an automated pain assessment system that operates reliably and consistently. Such a solution could
not only support healthcare workers in clinical environments but also play a crucial role in elderly care, especially
in home-based settings where continuous professional supervision is not always possible[8],[12],[ 13].

On the other hand, many great contributors have placed significant contributions in pain intensity recognition
from the facial expression leveraging the deep learning approaches. Rathee N. & Ganotra D.[14], used McMaster
Shoulder Pain Database in 2016 to identify pain intensity. They used four pain levels: PSPI 0, 1, 2-3, and > 4.
First, they had detected pain then pain intensity. For this purpose, they applied SVM, achieving an accuracy of
89.59% for detecting pain and 75% for estimating pain intensity. Similarly, Werner et al.[15], utilized SVM for
both pain detection and intensity evaluation. They conducted their study on both datasets UNBC McMaster and
BioVid. Their model obtained an accuracy of 51.6%. In 2017, Lopez-Martinez et al. [16], utilized the BioVid heat-
stimulated Pain dataset to measure pain intensity using a multi-task learning framework with neural networks. Since
the original dataset contained raw signals, feature extraction was performed prior to feeding the data into the model.
They employed binary classification for estimating pain intensity and evaluated their approach using 10-fold cross-
validation, achieving an accuracy of 66.68%. Sourav Dey Roy et al. [4], utilized Principal Component Analysis
(PCA) to reduce the dimensionality of feature vectors and implemented an SVM model to distinguish between pain
and no-pain categories. They further classified pain into four levels: "No Pain”, "Tolerable Pain”, ”Weak Pain”,
and ”Strong Pain”. Their study, conducted on the UNBC McMaster Shoulder Pain Archive Database, achieved an
accuracy of 87.23% for pain detection and 82.43% for pain level classification. UNBC McMaster Shoulder Pain
Archive Database is also used by Ghazal Bargshady et al [17], to classify four pain levels: ”No Pain”, "Weak Pain”,
”Mild Pain”, and ”Strong Pain”. They used 224 x 224 pixels of image. Instead of using PCA, they have used ZCA
(Zero-phase Component Analysis). They used a combined VGG Face model and RNN, from which they received
an average accuracy of 75.2%.

Zakia Hammal et al.[18], researched the UNBC McMaster Shoulder Pain Archive Database, where the image
pixel was 96 x 96. They used the SVM model for classification and PSPI pain labels. Four levels were identified:

Stat., Optim. Inf. Comput. Vol. 14, November 2025



2592 PAIN INTENSITY RECOGNITION FROM FACIAL EXPRESSION USING DEEP LEARNING

”PSPI = 0 for No Pain”, ”PSPI = 1 for Pain Trace”, ”PSPI = 2 for Weak Pain”, and "PSPI > 3 for Strong Pain”. For
each pain level, the respective accuracies were 97%, 96%, 96%, and 98%. In 2020, Tavakolian et al.[19], conducted
a study using two datasets: the UNBC McMaster Shoulder Pain Database and the BioVid Database. They applied
a Convolutional Neural Network (CNN) to train their model. For pain intensity estimation, they categorized the
UNBC McMaster dataset into 16 pain levels and the BioVid dataset into 5 levels. After training, they tested their
model on a different dataset. In 2021, Othman et al.[20] classified four levels of pain: ”No pain”, ”Low pain”,
”Medium Pain”, and ”Severe Pain” from the X-ITE Pain database. They used two CNNs with sample weighting
and received an accuracy of 51.7%.

In 2022, Barua et al.[21], categorized 16 levels of PSPI into 4 levels like PSPI 0, 1, 2-3, and > 4. They have
conducted their research on the UNBC McMaster database. They trained their model with K-Nearest Neighbor and
received an accuracy of 95%. In 2023, Wu et al.[22], introduced a convolutional neural network framework called
GLA-CNN, incorporating both global and local attention mechanisms through GANet and LANet. This model
was created to accurately assess pain intensity at four distinct levels by analyzing facial expression images from
the UNBC McMaster Shoulder Pain Dataset. The GLACNN model reached an accuracy of 56.45%. Sharafi et al.
[23] conducted their study using videos from the UNBC-McMaster database. They employed Source-Free Domain
Adaptation (SFDA), utilizing neutral images for adaptation, while both neutral and pain images were used during
testing. The authors introduced six pain levels: O (neutral), 1 (PSPI = 1), 2 (PSPI =2), 3 (PSPI = 3), 4 (PSPI =4-5),
and 5 (PSPI = 6-15) and achieved accuracy 79.56%.

From the above discussion, it is evident that no existing research has successfully achieved accurate detection of
pain intensity or effectively categorized intensity levels according to the PSPI scale. Nearly all studies classify
severe pain within a broad range—from values above 3 up to 15, which creates an imbalanced distribution,
especially when compared to lower pain levels that have more image data. Moreover, methods such as SVM,
K-means nearest neighbor, or RNN may not be the most suitable approaches for enabling machines to recognize
facial expressions, as they often result in low accuracy.

To address these challenges, the primary objective of this research is to develop an intelligent system capable of
detecting pain intensity through the analysis of human facial expressions using image processing techniques. The
proposed system focuses on several key goals, outlined as follows:

» To design a robust classification method that utilizes the Facial Action Coding System (FACS) and the
Prkachin and Solomon Pain Intensity (PSPI) scale, enabling a four-level categorization of pain intensity,
including a ’no pain’ category.

* To construct predictive models by applying both traditional statistical techniques and deep learning-based
feature extraction to classify facial expressions into defined pain levels: no pain, low pain, mild pain, and
severe pain.

* Finally validate the performance of these models using test datasets, analyze their training and testing
accuracy and loss, and examine additional metrics to assess their effectiveness.

This manuscript is partitioned into four sections. Section two illustrates the materials and methods of this
manuscript. Section three provides the results of the proposed methodology and model. Finally, Section four
represents the conclusion of this manuscript with the existing drawbacks and future scopes.

2. Materials and Method

This section outlines the structure and operational flow of the proposed model, presented in two main segments:
the dataset description and the core processing pipeline. Initially, this section begins with a comprehensive
overview of the system’s operational framework, highlighting the fundamental technologies that underpin its
development—namely, image processing, transfer learning, and artificial neural networks. The overall architecture
of the proposed system is illustrated in Fig. 1. Specifically, the dataset comprises images organized into two separate
folders, each annotated with a distinct labeling scheme: Facial Action Coding System (FACS) and Prkachin and
Solomon Pain Intensity (PSPI). For this study, only the PSPI labels were utilized. During the image processing
phase, each image was labeled according to its corresponding PSPI value, and images classified as 'no pain’
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Figure 1. Pain intensity detection model

were selectively reduced to balance the dataset. Following this, the pre-processed images were introduced into
the transfer learning pipeline. In this stage, various modified convolutional neural network (CNN) architectures
were employed. CNNs, a type of feed-forward neural network, are widely recognized for their effectiveness in
image recognition tasks. They encode input data into multidimensional arrays and perform particularly well when
trained on large volumes of labeled image data. Moreover, two distinct CNN models were used in the transfer
learning process. Their outputs were combined and subsequently passed into an artificial neural network for further
classification. To train and evaluate the model, 80% of the data was allocated for training, while the remaining 20%
was used for testing. Finally, the performance of the proposed system was assessed using the test set, with accuracy
measured on a scale from 0 to 100 percent.

2.1. Dataset

Table-1 presents the datasets utilized by researchers for pain detection. In this study, we used the UNBC-McMaster
Shoulder Pain Expression Archive Dataset, a unique collection of data from 25 real patients experiencing shoulder
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Table 1. Datasets for Detecting Pain Intensity [24]

Datasets Year of Patient Condition Size of Sample
Creation
UNBC McMaster shoulder 2011 Shoulder pain Total Frames: 48,398 and pain
pain dataset frames: 8,369
BioVid Heat Pain Dataset 2013 Healthy Total: 8700 videos and pain
videos: 6960
DISFA Dataset 2013 Healthy Video Frames: 4845
EmoPain Dataset 2015 Chronic lower back pain ~ Total Frames: 585,487 and pain
/ Healthy frames: 50,071
X-ITE Pain Dataset 2019 Healthy -

pain. A total of 48,398 frames were extracted from the video sequences and annotated with Action Units (AUs) by
certified FACS coders [25],[26].

Action Units (AUs) are the fundamental actions of certain feelings of expression, such as lips parting, nose
wrinkling, and blinking. "There are 44 AUs by which changes of expression can be described, which was first
developed by two scientists in the 1970s (Ekman and Friesen, 1978) [3]”. AUs are encoded using the FACS. Facial
Action Coding System (FACS) assigns every AU a unique code like AU number 7 corresponds to lid tightening,
AU number 23 corresponds to lip tightening, AU number 27 corresponds to mouth stretching [27].

AU 4: Brow Lowering
AU 7: Tightening of Eyelids

AU 43: Closing Eyes
AU 9: Wrinkling of Nose

AU 6: Cheek Raising

AU 23: Lip Tighteni
AU 17: Chin Raising Lk

Figure 2. Pain expressive face with action units

In 1992, the Prkachin and Solomon Pain Intensity Scale (PSPI) was developed by Prkachin and Solomon [28].
They discovered that out of 44 AU, only 4 actions are responsible for pain expression and defined one formula
[291,[30]:

Pain = AU4 + (AU6 V AUT) + (AU9 v AU10) + AU43

Here, AU4 = brow lowering, AU6 = cheek raising, AU7 = eyelid tightening, AU9 = Nose wrinkling, AU10 = Upper
lip raising, AU43 = eye closure [29]. AU4 and AU43 always present in pain expression, one of AU6 and AU7 and
one of AU9 and AU10 also be present [29],[17],[31]. In the case of AU6, AU7, and AU9, AU10, if both are present
then the highest intensity would be selected [32], [33],[30].
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Each AU intensity is scored in the range of 0-5, where 0 is AU absent and 5 represents the highest intensity in
“a-f” scale. Only AU 43 belongs to binary intensity: O or 1. If a frame is coded as:

FACS = AU4a + AU6d + AU7d + AU12d + AU43 (1)
Then the PSPI score would be:

PSPI =1 + max (4,4) + 1 = 6 [15]

2.2. Core pipeline of the proposed model

In recent years, transfer learning has emerged as a powerful technique for image classification, owing to its ability
to utilize prior knowledge derived from related tasks [34], [35], [36]. Among the most widely adopted pre-trained
convolutional neural network (CNN) models in transfer learning are VGG16, VGG19, ResNet50, DenseNet121,
and InceptionV3 [37]. Each of these models has demonstrated exceptional performance across various benchmark
datasets and continues to be instrumental in deep learning-based image classification research.

To begin with, the VGG16 model—developed by the Visual Geometry Group (VGG) at the University of
Oxford—comprises 13 convolutional layers followed by 3 fully connected layers [38], [39]. Its architecture
is characterized by a sequence of stacked convolutional layers interspersed with max-pooling layers, with an
increasing depth across layers to facilitate the extraction of hierarchical features. Notably, VGGI16 achieved
significant success in the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), ranking highly
in both object detection (across 200 categories) and image classification (across 1000 categories) [18].

ConV 128 x128x 64
ConV 64x64x128
ConV 32x32x256
ConV 16x16x512
ConV 8x8x512

Figure 3. VGG16 in transfer learning process
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) (0,0,0,1) HIGHPAIN

261801 N3ILIVId

Rather than having 19 layers consisting of 16 convolutional layers and 3 fully connected layers, VGG-19 follows
the same basic structure as the VGG-16 model and was developed by the Visual Geometry Group. It includes 5
max-pooling layers and uses 3 x 3 convolutional filters (similar to the VGG-16 model) throughout its convolutional
layers, employing max-pooling layers for downsampling spatial dimensions [40]. The additional layers in VGG-19
are designed to capture more complex patterns in images, allowing it to learn richer representations.

In contrast, ResNet-50—proposed by Microsoft Research Asia—introduced the concept of residual learning,
which enables the training of very deep networks by addressing the vanishing gradient problem. The ResNet-50
architecture consists of 50 layers organized into four main components: a convolutional layer, identity blocks,
convolutional blocks, and fully connected layers. One of its key innovations is the shortcut connection, wherein
the input to a layer is added to the output of a convolutional block, allowing gradients to flow more effectively
during backpropagation [37]. ResNet-50 secured first place in the 2015 ILSVRC for classification, detection, and
localization tasks.
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DenseNet121, short for “Densely Connected Convolutional Networks,” presents another innovative architecture.
It connects each layer to every other layer in a feedforward fashion, promoting efficient feature reuse and mitigating
the vanishing gradient issue. Introduced in 2016, DenseNet121 consists of 121 layers and has achieved state-of-
the-art performance in various image classification tasks.

Similarly, InceptionV3, developed by Google researchers, belongs to the Inception family that originated with
GoogLeNet. It builds upon its predecessors by employing factorized convolutions, auxiliary classifiers, and label
smoothing techniques. Notably, InceptionV3 achieved top-tier performance in the ILSVRC and is recognized for
its efficiency and accuracy in large-scale image recognition.

Leveraging the strengths of these individual models, this study explores hybrid configurations that combine the
complementary features of multiple architectures. For instance, integrating VGG19’s consistent and deep feature
extraction with DenseNet121’s dense connectivity enhances the model’s representational richness and gradient
flow, ultimately leading to improved classification performance [41]. VGG19’s uniform convolutional structure
ensures fine-grained feature learning, while DenseNet121’s layered interconnections allow for deeper network
training without degradation [34].

To further evaluate the effectiveness of feature fusion models, three parallel feature fusion models (PFFM-1,
PFFM-2, and PFFM-3) were developed. Specifically, PFFM-1 integrates VGG19, ResNet50, and an artificial neural
network (ANN), whereas PFFM-2 and PFFM-3 comprise VGG19 with DenseNet121 and ANN, and VGG19 with
InceptionV3 and ANN, respectively. Both models independently extract features from the same input image, and
their outputs are then combined. Here’s a detailed explanation of why this setup is considered a feature fusion
parallel configuration:

* Input Shape: The input shape is defined as (128, 128, 3), which is a common input size for both VGG19 and
DenseNet121 models.

* Loading Models: Both the VGG19 and DenseNet121 models are initialized with pre-trained weights from
ImageNet, with the exception of their top classification layers. As a result, they are utilized primarily as
feature extractors.

* Parallel Feature Extraction: The models will process the input images in parallel, each extracting its own set
of features independently.

In this setup:

* Parallel Processing: Both VGG19 and DenseNet121 process the same input image in parallel.

» Feature Combination: The features extracted by each model are flattened and concatenated.

¢ Fully Connected Layers (ANN): The concatenated features are routed through fully connected layers for the
final classification process.

This architecture allows us to combine the strengths of both models, leveraging VGG19’s fine-grained feature
extraction and DenseNet121’s deep-learning capabilities to improve overall performance.

3. Result and Discussion

This section is structured into three cohesive segments. The first segment elaborates on the sequential
steps undertaken during the image processing phase. The second provides a comprehensive overview of the
implementation methodology, supported by detailed discussion. The final segment presents a comparative
evaluation table to validate the research contribution and demonstrate the effectiveness of the proposed approach.
All experiments for pain intensity recognition from facial expressions were conducted using Google Colab Pro
Plus, a cloud-based platform offering high-performance GPUs like NVIDIA Tesla P100 and A100. With up to
52GB of RAM and extended runtime limits, it enabled efficient processing of large image datasets and training
of feature fusion-based CNN models without local hardware limitations. Moreover, its seamless integration
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with Python libraries such as TensorFlow, Keras, OpenCV, and scikit-learn streamlined both development and
evaluation. This setup was particularly beneficial for managing the computational demands of the entire model
development process.

Table 2. Pain Intensity Levels and Image Count for Various Categories

Pain Intensity level Number of images Number of images for Number of images for
according to PSPI scale for 16 levels 4 levels with 20% no pain images 4 levels with 10% no pain images
0 40029 8471 4017
1 2909
2 2351 6672 6672
3 1412
4 802 1044 1044
5 242
6 270
7 53
8 79
9 32
10 67
11 76 653 653
12 48
13 22
14 1
15 5

3.1. Image Processing

Most of the 48,398 color frames in the UNBC-McMaster shoulder pain dataset have an average resolution of 320
x 240 pixels. The dataset is significantly imbalanced, with 82.71% (40,029 frames) categorized as “’no pain,” while
the remaining 17.29% (8,369 frames) correspond to various pain levels [8].

Using the entire dataset can lead to biased classification and increased computational costs. As a result, many
researchers opt to use a subset of the UNBC-McMaster dataset [8]. In this study, we randomly reduced the number
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Table 3. Pain Intensity Levels and Corresponding Pain Classes

Pain Intensity Levels Pain Classes
0=0 No Pain
1=(<0to >=3) Mild Pain

2 =(<3t0 >=5) Moderate Pain
3=(<5t015) Severe Pain

Distribution of Pain Labels in Training Data

65000 1

5000

4000 A

Count

3000 1

2000 1

1000 1

Labels

Figure 5. Image counts with 10 percent ”No pain” Images

Distribution of Pain Labels in Training Data

Labels

Figure 6. Image counts with 20 percent ”No pain” Images

of ”no pain” images from our dataset to evaluate the accuracy of our model. We have redefined the 16 PSPI pain
levels into four clear categories: 0, 1, 2, and 3, which correspond to “No Pain,” “Mild Pain,” “Moderate Pain,”
and “Severe Pain,” respectively. The ”’Severe Pain” category includes PSPI values above 5 up to 15. However, due
to the limited number of images available starting from level 10, it becomes difficult to train and test the model
effectively. To address this, we have expanded the ”Severe Pain” category to include all levels above 5, ensuring a
sufficient number of images for robust model training and evaluation [42].

The tables show the total number of images used to train our model, including 20% and 10% labeled as “No
Pain,” along with the counts for the other categories.
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To manage the large dataset and the similarity between ’no pain” and pain expressions, we reduced the number
of ”no pain” images randomly. The figure shows samples from the UNBC McMaster Shoulder Pain Dataset [17].

Pain intensity was divided into four levels, and faces were detected using the Haarcascade Frontal Face Detector
[42]. Images were cropped to 128x128 for the CNN architecture, converted to grayscale for simplicity, and
normalized to a pixel range of [0, 1] [43]. Image normalization was used to improve training efficiency.

3.2. Implementation Details

Assessing a model’s performance is essential to determine its effectiveness in making predictions. Commonly
used evaluation metrics include Accuracy, Precision, Recall, and F1-Score. These metrics offer valuable insights,
particularly in cases of imbalanced data or when the costs of false positives and false negatives differ [44].

In deep learning, having a larger dataset helps models generalize better, improving their performance on unseen
data. Conversely, a smaller dataset may lead to overfitting, resulting in poor performance. To mitigate overfitting,
dropout techniques were applied. The testing phase of this research focused on evaluating the performance and
effectiveness of the developed pain intensity system. This section outlines the metrics (accuracy) obtained during
the testing process. In this study, we count accuracy, precision, recall, and F1-score, which are the percentage of
correctly classified instances among all instances [45].

Table 4. Performance metrics per pain category based on the confusion matrix of PFFM-2.

Pain Category Precision Recall F1-Score Accuracy

No Pain 0.8816  0.8805  0.8810 0.8789
Mild Pain 0.7957  0.8248  0.8100 0.8492
Moderate Pain 0.7237  0.5392  0.6180 0.9596
Severe Pain 0.5390  0.5630  0.5507 0.9632

Additionally, the model’s robustness was validated using random images. For training and testing, 80% of
the dataset was allocated for training, while 20% was reserved for testing [46],[45],[8].Furthermore, a 5-fold
cross-validation strategy was employed to ensure a robust and generalizable evaluation of the proposed network.
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Table 5. 5-Fold Cross-Validation Results for PFFM-2

Model Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Fold 1 82.54 73.50 70.18 71.48
Fold 2 82.54 73.50 70.18 71.48
PFFM-2  Fold 3 82.54 73.50 70.18 71.48
Fold 4 82.54 73.50 70.18 71.48
Fold 5 82.54 73.50 70.18 71.48
Average 82.54 73.50 70.18 71.48

Table 6. Performance of different models with varying percentages of no pain images

Models Accuracy | Precision ‘ Recall ‘ F1 Score
Models for 20% no pain images
VGGI16 76.63% 0.58 0.48 0.5
VGGI19 62.17% 0.42 042 0.42
ResNet50 45.25% 0.24 0.25 0.24
DenseNet121 | 44.00% 0.23 0.24 0.23
InceptionV3 44.39% 0.24 0.25 0.24
PHM-1 70.99% 0.5 0.41 0.41
PHM-2 82.54% 0.73 0.7 0.71
PHM-3 71.94% 0.53 0.45 0.47
Models for 10% no pain images
VGGI16 60.49% 0.41 0.37 0.37
VGGI19 58.31% 0.43 0.35 0.36

We have taken 100 epochs based on initial experimental runs, which indicated stable convergence without signs
of overfitting and set the batch size to 32 and ran the models. VGG16 had a training accuracy of 77.93% and a
validation accuracy of 73.54%. After obtaining these results, we fine-tuned our VGG16 model by unfreezing the
last five layers and applying regularization. Additionally, we increased the Dropout rate from 0.3 to 0.5, which
led to an improvement in accuracy of 76.63%. As a result, the precision improved by 8%. 62.1%, 45.25%, 44.0%
and 44.39% are accuracy of VGG19, ResNet50, DenseNet121 and InceptionV3 respectively. Furthermore, the
model was trained using the Adam optimizer, applying its default learning rate of 0.001 as commonly used in deep
learning tasks.

Our feature fusion parallel models have shown comparatively better accuracy than individual models.70.99%,
82.54%,71.94% are some accuracy of PFFM-1, PFFM-2, and PFFM-3 respectively. The features of two deep CNN
models were concatenated here. PFFM-2 has the best accuracy result among the three parallel models from our
end.

PFFM-3 has comparatively lower accuracy than PFFM-2, but better accuracy than PFFM-1. We have also
checked our pain level with 10% no pain images, where VGG16 and VGGI19 has an accuracy of 60.49% and
58.31%.

3.3. Comparison Table

As shown in Table 7, the proposed Parallel Feature Fusion Models (PFFMs) are evaluated against five established
hybrid models to assess their effectiveness in classification tasks. The results indicate considerable variation in
the performance of existing hybrid methods. GLA-CNN, introduced by Jiang Wu et al. (2023), reported the
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Table 7. Comparison of Different hybrid Methods and Their Accuracy

Author / Year Method Used Accuracy
Bellantonio et al. 2017 [26] RNN and CNN 63.47%
Bargshady et al. 2019 [17] Vggl6 and RNN 75.20%
Tavakolian et al. 2020 [19] Statistical Spatiotemporal Distillation ~ 76.00%
Jiang Wu et al. 2023 [22] GLA-CNN 56.45%
Sharaf et al. 2025 [23] SFDA 79.56%

PFFM-1 70.99%
Our Parallel Feature Fusion PFFM-2 82.54%
models

PFFM-3 71.94%

lowest accuracy at 56.45%, suggesting limited capacity in capturing discriminative features. Bellantonio et al.
(2017) achieved a modest improvement with their RNN-CNN hybrid, reaching 63.47%. A more substantial gain
was observed in the Vggl6-RNN approach by Barshayoy et al. (2019), which attained an accuracy of 75.20%.
Likewise, Tavakolian et al. (2020) reported 76.00% using a statistical spatiotemporal distillation method. The
highest-performing among these was the SFDA model by Sharaf et al. (2025), achieving 79.56%. In contrast,
the PFFM architecture—while not a hybrid in the conventional architectural sense—can be understood as a hybrid
feature fusion strategy, as it integrates parallel streams of features extracted from different parts of the network. This
design proves highly effective: PFFM-2 outperforms all models in the comparison with an accuracy of 82.54%,
while PFFM-3 and PFFM-1 also yield strong results at 71.94% and 70.99%, respectively. These findings underscore
the advantage of parallel feature fusion in enhancing the richness of learned representations and improving overall
classification performance, positioning PFFM as a competitive alternative to more traditional hybrid modeling
techniques.

4. Conclusion

This research presents a novel approach to detecting pain intensity from facial expressions through a feature fusion
parallel model architecture. The models, combining features from deep CNNs and a fully connected network,
demonstrated improved performance compared to existing pre-trained models, with PFFM-2 achieving the highest
accuracy of 82.54%. This study highlights the potential of leveraging multiple deep learning frameworks in parallel
to enhance the precision of pain detection systems. The significance of our findings lies in the advancement of
Al-driven pain assessment tools, which could greatly benefit clinical environments by providing more accurate,
non-verbal assessments of patient discomfort. However, there is still room for further improvement in model
generalization and the exploration of additional datasets and architectures. Future research should refine these
models and validate their effectiveness across diverse populations and varied clinical settings to ensure reliability
and practical application.

Ethical Considerations

In this study, we employed the UNBC-McMaster Shoulder Pain Expression Archive Database, which is a publicly
available resource collected and distributed by the original researchers in accordance with established ethical
protocols. All data included in the dataset are fully anonymized, and informed consent was obtained by the
dataset creators prior to its release. As no new data were collected and there was no direct involvement of
human participants by the authors, additional ethical approval was not required for this work. Nevertheless, we
recognize the critical importance of ethical transparency in research involving human-related data. Therefore, we
have addressed potential sources of bias inherent in the dataset and discussed relevant limitations to promote
responsible and fair use of the model in any future applications.
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