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Abstract Genetic algorithms (GAs) are population-based metaheuristics widely employed to solve complex real-world
problems such as networking and resource allocation. These algorithms evolve a population of candidate solutions through
iterative processes of selection, crossover, and mutation. The composition of the next generation is determined by either
a general approach, where only offspring are retained, or an elitist approach, which selects fit solutions from the current
generation. While elitism enhances solution quality, it is susceptible to premature convergence.

This article presents a comparative study between the parenting fitness mechanism and the crowding distance approach
used in the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for solving the Vehicle Routing Problem with Drones
(VRPD). Experimental evaluations demonstrate that the proposed parenting fitness method yields consistent improvements
in solution quality. Relative improvements range from 27.30% to 43.83% for small problem instances, 6.36% to 11.41%
for medium instances, and 0.54% to 1.90% for large instances, with performance variations influenced by the population
size. These results validate the effectiveness of parenting fitness as a diversity-preservation strategy in mono-objective
optimization.
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1. Introduction

Genetic Algorithms (GAs) are a class of population-based metaheuristics introduced for the first time by [2].
The core mechanics of a Genetic Algorithm involve an iterative process of selection, crossover, mutation and
evolution strategy. The algorithm maintains a population of individuals, also called solutions. The encodage of the
solutions depends on the problem at hand. These encodings can vary, such as binary strings for discrete problems
or real-encoded for continuous problems. Each individual in the population is evaluated by a fitness function. This
function, also known as the objective function, measures the quality of the solution it represents. To create a new
generation, two individuals are chosen from the current population with a selection mechanism. Common selection
mechanisms include roulette wheel selection, tournament selection, or rank-based selection. The genetic material
of both selected parents is mixed using a crossover operation to produce new individuals (or offspring). Following
crossover, offspring may undergo mutation, where random alterations are made to the genes of the individuals.
Choosing the population that will be part of the next generation is governed by the replacement strategy. There are
two primary strategies:

* Generational Replacement: The entire parent population is replaced by the offspring population in each
iteration.
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« Elitist Strategy: Only fit individuals from the current generation, are being kept into the next generation.

The pseudo-code of the elitist genetic algorithm, which is an extension of the simple genetic algorithm (SGA)
[3, 4] is illustrated by the algorithm 1.

Algorithm 1 Elitist Genetic Algorithm

Require: Variables initialization : Population size N, maximum generations G .y, Crossover rate c¢,, mutation

rate m,.

Ensure: Best solution found

1: t <0

2: Initialize population P(t)

3: Evaluate fitness of each individual in P(t)

4: while t < Gp.x do

5: Create an empty set Pey

6: while | Ppew| < N do

7: Select two parent individuals p;, po from P(t) using a selection method

8: Generate a uniform random number r € [0, 1]

9: if r < ¢, then

10: Apply crossover to p; and p, to produce offspring ¢y, co
11: end if

12: for all offspring ¢ € {c1,c2} do

13: for all gene position ¢ in chromosome of ¢ do

14: Generate a uniform random number m € [0, 1]
15: if m < m,. then

16: Apply mutation to the gene at position ¢ in ¢
17: end if

18: end for

19: Evaluate fitness of ¢

20: Add cto Pyew

21: end for

22: end while

23: Combine P and Py, in P,y

24: Sort Py,

25: Select best first N from P, into Ppyest

26: P — P best

27: t—t+1
28: end while
29: return individual with highest fitness in P(t)

The elitism used in genetic algorithm can lead to better outcomes. However, elitist Genetic Algorithms are prone
to premature convergence, which can result in the loss of valuable genetic diversity (alleles) during the search
process. Our aim is to investigate whether the biologically-inspired concept of parenting fitness [1] can offer a
competitive alternative for diversity management in mono-objective optimization.

The remainder of this paper is structured as follows: Section II gives a literature review of existing elitist
mechanisms. Section III gives an overview of the elitist genetic algorithm with parenting fitness. Section IV
presents and discusses the experiments and the computational results, and the last section concludes with future
research directions.
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2 PARENTING FITNESS IN GENETIC ALGORITHMS

2. Literature Review

Algorithms selecting only fit individuals are called elitist algorithms. Each algorithm has a different approach
in the way to deal with fit individuals and how they will evolve through generations. In the work of [5], an
elitist nondominated sorting genetic algorithm (NSGA II) was presented, which is an evolution of the original
NSGA. Each individual of the population had an assigned fitness equal to its nondomination level, from 1 to k,
where 1 is the best level, and it decreased until the k level. The algorithm uses the crowding distance which is
a diversity preservation mechanism used to maintain a well-distributed set of solutions along the Pareto front.
The crowding distance of a solution is computed as the normalized difference between the objective values of
its adjacent neighbors. In the work of [6], authors proposed an adaptive EGA which use a greedy algorithm to
generate the first population. The elitism in their algorithm is guaranteed by selecting the best p chromosomes of
the current population to be part in the next loop. The worst p chromosomes of the current population are deleted
to keep the size of the population constant. The modified version of NSGA II called Improved INSGA-II was
presented in the article of [7]. The algorithm is quite similar to the NSGA II, with the difference parent seletion,
crossover, and mutation strategies. The elitism strategy is performed by selecting the best N individuals from the
combined population (parents and offspring). In the work of [8], an elitist genetic algorithm called preservation
genetic algorithm (EGA) which preserves the best-found individuals during the execution of the algorithm. these
individuals will be replaced by the offspring if they are more fit. The algorithm continues until it reaches a pre-set
fitness value or the maximum execution number. In the work of [9], the elitism consists on transferring directly a
certain ratio of the best individuals in the current population to the next population. In the work of [10], elitism
is applied to preserve the non-redundant previous population, and merge offspring in the population. In the article
of [11], 8% of best individuals are copied to the next population without performing crossover and mutation. In
the article of [12], authors proposed a Self-Adaptive Simulated Binary Crossover with elitism, that replaces worst
individuals by most fit ones. Another incorporation of elitism in the genetic algorithm was presented in the work of
[13], that consist on ensuring that new individuals in the current population are fit than the previous iterations. In
the work of [14], the best individuals are being selected to be part of the next population even before participating
in the crossover and mutation. The table 1 presents a summarization of the studied articles.

Table 1. Literature review summary.

Work Elitism mechanism

[5] Non-dominated, and Crowding distance sorting

[6] Keeping best n individuals

[7] Keeping best n individuals from the combined population (parents and offspring)

[8] Preserves the best-found individuals along the execution

[9] Tranferring a ratio r of the best individuals

[10] Preserving elitist solutions

[11] Copying best individuals to the next population without performing crossover and mutation
[12] Replacing worst individuals by most fit ones

[13] Ensuring superiority of the current population over the past one

[14] Copying best individuals to the next population without performing crossover and mutation

These approaches, even if they have different names, use almost the same philosophy by retaining a percentage
of best individuals using only the fitness of these solutions. While research is focused exclusively on selecting best
individuals according to their fitness, the approach used in this article focuses also on keeping individuals with high
generational capacity, using a parameter called parenting fitness which was introduced for the first time in [1]. The
primary goal of this study is to provide a proof-of-concept for the parenting fitness mechanism. The NSGA seems
to be the most interesting algorithm that uses a particular elitist strategy called crowding distance. NSGA-II is used
not as a direct competitor, but as a well-established benchmark whose crowding distance represents a sophisticated,
state-of-the-art method for maintaining population diversity.
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3. Elitist Genetic Algorithm with Parenting Fitness (eGAwWPF)

The parenting fitness parameter introduced for the first time in the work of [1], is a technique that can be
implemented into a genetic algorithm to improve the quality of final solutions. Parenting fitness evaluates an
individual’s ability to produce high-quality offspring, independently to its own fitness score.

3.1. Theoretical Motivation

The strategy of the parenting fitness takes its strength from the theoretical concept of the building blocks [3]. A
chromosome can be seen as a composition of building blocks, which are small segments with specific quality.
Combining these segments with other segments may lead the algorithm toward optimal solutions by permitting to
produce better individual. A good individual is a collection of good segments [3].

Let consider o a set of potential building blocks ¢ (o = {¢0, ¢1, ..t }) needed to produce the fit individual by the
genetic algorithm. The quality ¢ of an individual ¢ is the number of ¢ in its genotype is as follows:

n

Qizz:[,j,LEU (1)

=0

Since the building blocks are naturally small [3], the length of each building block ¢ should be in the interval
[1, 7] where 7 < L, where L is the size of an individual. The high value of p; for the individual i should increase
the parenting fitness \(p); at generation ¢. An important point is that in the vehicle routing problem or similar
optimization problems, the order of these building blocks is also crucial. Even with good building blocks, wrong
ordering may weaken the individual. However, with problems where the ordering is not an issue, they benefit from
this high value of p;.

3.2. Evolution phase in the parenting fitness context

In the context of the genetic algorithm with the parenting fitness, a chromosome with less fit fitness but with a high
parenting fitness will be kept alive as long as it is a potential good offspring generator. Using the parenting fitness
needs that the algorithm is revisited to consider the parenting fitness parameter in the evolution phase, where the
individuals that will be part of the next generation are chosen. The algorithm 2 presents the overall structure of the
eGAWPF, and the figure 1 illustrates the philosophy of the parenting fitness integration in the algorithm.

Ordering parents by parenting fitness >‘ >
Parents

c
.0
&
S
Q.
. — 3
Ordering =
. PRr) Q)
individuals Z

by fitness

Offspring function

Figure 1. Preparing the next population in the elitist Genetic Algorithm with Parenting Fitness
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4 PARENTING FITNESS IN GENETIC ALGORITHMS

Algorithm 2 Elitist GA with Parenting Fitness

1: Initialization;

2: while generation < Gy,,x do

3 Evolve the population (selection, crossover, mutation)

4: Update parenting fitness of parents

5 Prepare next population considering the parenting fitness
6: end while

3.3. Chromosome Structure

Each offspring keeps track of its parents’ indices to facilitate the updates. This tracking is possible by using the
parent indices (e.g. id; and ids). Also, when implementing the parenting fitness we must add another field (or
gene) to the chromosome called pf that will contain the parenting fitness value of the individual. One can use
independant array to store the indices and the parenting fitness value. Hopefuly, this addition do not require much
memory since the three fields are numerical, hence, does not create memory issues. An integer in python occupes
4 bytes, hence, 3 fields should use 12 bytes multiplies by the number of individuals. Even with a large number of
individuals (e.g. 2000), the maximum use of memory is only 24KBs.

3.4. Parenting fitness update

The parenting fitness is used at the last stages of the algorithm’s loop, hence, the algorithm’s standard operations as
the selection, crossover and mutation are not affected by its integration. This ability gives the programmer liberty to
choose any approach for these operations. For each offspring created so far, the algorithm calculates the parenting
fitness A(p); of both parents. In the previous article [1], the value of the parenting fitness was relative to the high
fitness value in the whole offspring. However, with this approach, no negative value was assigned to the less fit
parents. For this reason, we use in this article the mean value of the offspring population in each loop. With this
approach, less fit parents will get a negative notation. The parenting fitness of individuals is calculated by the
equation (2).

A(p)e = Z(at = f(t)op) 2

where 0, is the mean fitness of offspring population of the current generation ¢, and f(t),,, is the fitness function
of the offspring o of the selected parent p.

fo2) .

of(03)

L] 5

f.(oM;m

Figure 2. Parenting fitness function representation graph

The figure 2 illustrates visually the calculation function 2. The cumulative excess of the parent’s offspring to the
mean value defines the strength of the generational ability of the parent.
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The parenting fitness of parents is initialized with a predefined value ¢ as follows:

f(n)op =¢,(Vn,e € N) 3)

The € allow to define the begining state of parents, either consider them good offspring generators (¢ > 0) or less
fit ones (¢ < 0).

4. Experiments and Computational results

4.1. Vehicle Routing Problem

The Vehicle Routing Problem, was introduced by Dantzig and Ramser in 1959 [15]. We consider a Vehicle Routing
Problem with Drones (VRPD) scenario in which the drone fleet is homogeneous, characterized by identical flight
ranges and capacities. Furthermore, the energy consumption per unit distance is considered to be a constant,
therefore, this parameter is ignored. The complete mathematical formulation of the VRPD is well detailed in the
work of [21]. The objective function in our experiments model is to minimize the maximum distance of all routes
L performed by the drone d. The objective function is as follows:

obj = min Z(Ld) 4)

The following objective and constraints are considered:

» All points in the dataset must be visited;

* Respect the drone’s maximum flight distance: Ld; < f4;
» Each point must be visited once;

* A central departure point is considered Ny;

* A central arrival point is considered;

* All route begins from Ny and ends at N.

4.2. Crossover

The crossover operator governs the diversification mechanism, enabling the exploration of a broader region within
the search space. For the problems as the vehicle routing problems, the Order Crossover (OX) operator [16] is
employed in both algorithms. The procedural steps of the OX operator are detailed in Algorithm 3, and a schematic
representation is provided in figure 3.

Algorithm 3 Order Crossover (OX) Procedure

1: Randomly select two distinct cut points, ¢ and j (where ¢ < j, and ¢ > 0), on both parent chromosomes Pl(t)
and P2(t) from generation ¢.

2: Generate offspring 01 and o2 by exchanging the genetic segments between positions ¢ and j from the parents.

3: Remove genes that appear more than once in each offspring.

4: Insert the genes missing in each offspring.

4.3. Mutation

The swap mutation (SM) operator represents one of the natural mutation mechanism for combinatorial problems
such as the vehicle routing problem. This operator functions by randomly selecting two genes within a chromosome
and exchanging their positions. The procedural steps of the swap mutation operation are formally described in
Algorithm 4, with the process further illustrated in Figures 4, 5, and 6.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Step 3 : Cleaning offspring Step 4 : Adding missing genes

Figure 3. Order Crossover (OX) explanation

Algorithm 4 Swap Mutation Operator

1: Randomly select two distinct positions, p and g, from the chromosome.

2: Swap the alleles at positions p and q.
(3
(D
()
®

Figure 4. Initial state of a route.

Figure 5. Selecting two positions to swap.
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Figure 6. Final result of swap mutation.

4.4. Fitness function

To ensure an equitable comparison between the proposed approach and the established NSGA-II algorithm, an
identical fitness function was employed for both. For the VRPD, the fitness function, detailed in Algorithm
5, involves decomposing the chromosome’s encoded “’big tour” into operationally feasible routes. The DEAP
framework [17, 18, 19] was utilized to execute the NSGA-II benchmark, since it is already implemented in the
framework and ready to use.

4.5. Dataset description

The algorithms were evaluated using multiple benchmark datasets publicly available at [20]. These specific problem
instances were originally introduced and described in the work of [22].

An instance file is designated by the label N.M.T, where N denotes the number of nodes in the dataset, M
represents the spatial dimension of the grid, and T is the identifier for the scenario. The file’s first line specifies
the total nodes in the dataset. Subsequent lines each detail the X-coordinate, Y-coordinate, and demand value for
a each node. A separate file contains the depot’s coordinates and the specifications of the drone employed. The
structure of the dataset file and its corresponding depot file is illustrated in Figure 7.

O

O O O DNode
] Depot
@ p

O @)

Figure 7. Route Construction : Raw dataset and depot
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8 PARENTING FITNESS IN GENETIC ALGORITHMS

4.5.1. Route Construction function The figure § illustrate the process of constructing a tour that passes through all
nodes without considering the constraints linked to the drones, and the figure 9 illustrate the decomposition of the
big tour into sub-tours that respects the maximum distance flight of the drone, that is, the algorithm creates a new
route each time the constraint is exceeded. The algorithm 5 represents the pseudo-code of the decomposition of the
big tour into sub-tours. The fitness of an individual ¢ is the sum of all sub-tours done by the drone. The distance is
calculated using the euclidian equation :

(&)

Figure 8. Route Construction : Big tour construction

Algorithm 5 Feasible Route Construction for VRPD

1: function CONSTRUCTFEASIBLEROUTES(chromosome)

2 Initialize Maximum Route Length: mrl < 0

3 for all consecutive gene pairs (g;, g;+1) in chromosome do

4: increment the length of the route;

5: if The new route exceeds the drone maximum drone flight limit then
6 Create new route and add the distance to the total distance;
7 else

8 Add the distance to the total distance;

9 end if

10: end for

11: return Total distance

12: end function

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Figure 9. Route Construction : Sub-tours construction

4.5.2. Technical implementation Both genetic algorithms were implemented in Python and executed on an
identical hardware configuration: an Intel® i3 dual-core processor (2.20 GHz) with 4 GB of RAM. To ensure
a fair comparison, the experiments were conducted under identical stochastic conditions, without fixing a random
seed. To explore the wide parameter space, results are presented from a single execution per configuration. The
experimental results serve as a proof of concept, demonstrating that the parenting fitness mechanism can yield
significant improvements in solution quality in comparison with other techniques, such as crowding distance. This
choice prioritizes breadth of exploration over statistical depth.

The shared genetic parameters for the eGAWPF and NSGA-II algorithms, including population size and the
number of generations, are detailed in Table 2.

Table 2. Genetic parameters

Parameter Value
Parent selection 2-Tournament
Crossover operation  order crossover operator (OX)
Crossover rate C'. 0.75
Mutation M, 0.02

4.5.3. Sensitivity analysis Experiments were conducted with varying population sizes to examine the relationship
between the population size and algorithmic performance for both the eGAWPF and NSGA-II. Two configurations
were tested:

¢ Set 1 (Base configuration): Population size and generation count equal to the dataset size (V).
* Set 2 (Expanded configuration): Population size and generation count equal to twice the dataset size (2zN).

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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14 PARENTING FITNESS IN GENETIC ALGORITHMS

4.5.4. Parenting fitness variation To investigate the effect of parenting fitness persistence, two variants of the
algorithm improved with the parenting fitness parameter were implemented: one with continuous update of the
parenting fitness value of each survival parent, and the other where this value is reinitialized to . The continuous
update allow ancestors (individuals existing in generation from and before ¢ — 1) to exist in order to understand the
power of building blocks over generations.

Furthermore, the algorithm was executed with the parental selection rate configured to 2, 10%, and 20% of the
best parents in each population. We tested small (2%), moderate (10%), and large (20%) retention rates to explore
the spectrum from weak to strong elitism based on parenting fitness. The remainder of the subsequent generation
is populated by the best individuals selected from the combined pool of offspring and the current population. This
multi-rate analysis provides insights into the influence of the parental contribution proportion on the algorithm’s
performance and convergence characteristics. In the tables, values in bold indicate where the eGAWPF variant
found a better solution than the NSGA-II baseline for that specific instance.

The presented results are supplemented by the calculation of two performance gaps, using the following
formulas:

BV(N) — BV(E)

Gap(1) = BV(E)

(6)

BV(N) — BV*(E)

Gap(2) = BV*(E)

(7

where BV (E) denotes the best fitness value achieved by the eGAWPF, and BV (V) represents the corresponding
best fitness value obtained by the NSGA-II algorithm. The value BV*(FE) is defined as the optimal fitness
discovered by the eGAWPF across its three tested parental fitness percentages.

4.6. Execution analysis

The core genetic algorithm comprises four primary operators: parent selection, crossover, mutation, and fitness
evaluation, each exhibiting a computational complexity of O(n). As the algorithm executes for n generations, its
overall complexity is O(n?). The introduced parenting fitness function also operates in O(n) time, as it iterates over
the population to update the parental fitness values. Consequently, the enhanced algorithm (eGAWPF) demonstrates
a longer execution time compared to the standard NSGA-II. This performance difference is attributable to three
additional computational steps required in each generation:

 Parenting Fitness Update: Needs an O(n) computational step per generation.
* Dual Sorting Operations: The evolutionary phase requires sorting the population twice: first by parenting
fitness, and by solution fitness.

The last two steps depends on the programmation language sorting implementation.

4.7. Relative Improvement

Let N and E represent the mean result values obtained by NSGA-II and the eGAWPF, respectively, across the small,
medium, and large problem instances. The relative improvement is calculated using Equation (8), and it quantifies
the percentage reduction in fitness (distance) achieved by eGAwWPF compared to NSGA-II. The corresponding
results are presented in Tables 7, 8, 9, and 10.

A:N:EXIOO% ®)
N
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Table 7. Relative improvement (large population, continuous update of parenting fitness)
Instance | NSGA II EGAwWPF (20%) | EGAWPF (10%) | EGAWPF (2%)
mean 65,00 38,80 42,80 37,20
small instances median | 41,00 31,00 33,00 30,00
relative improvement (%) | 40,31 34,15 42,77
mean 1014,80 899,00 922,40 919,80
medium instances | median 1111,00 980,00 992,00 1018,00
relative improvement (%) | 11,41 9,11 9,36
mean 5051,60 4961,00 4958,40 4955,60
large instances median | 4620,00 4537,00 4507,00 4585,00
relative improvement (%) | 1,79 1,84 1,90

Table 8. Relative improvement (large population, with reinitialisation of parenting fitness)

Instance | NSGA II EGAWPF (20%) | EGAWPF (10%) | EGAWPF (2%)
mean 65,00 42,80 42,60 38,80
small instances median | 41,00 27,00 30,00 30,00
relative improvement (%) | 34,15 34,46 40,31
mean 1014,80 939,60 904,20 920,60
medium instances | median | 1111,00 1009,00 910,00 990,00
relative improvement (%) | 7,41 10,90 9,28
mean 5051,60 5010,60 5017,40 5067,60
large instances median | 4620,00 4557,00 4620,00 4654,00
relative improvement (%) | 0,81 0,68 -0,32

Table 9. Relative improvement (small population, continuous update of parenting fitness)

Instance | NSGA II EGAwWPF (20%) | EGAwWPF (10%) | EGAWPF (2%)
mean 76,20 52,00 47,40 42,80
small instances median | 43,00 36,00 33,00 32,00
relative improvement (%) | 31,76 37,80 43,83
mean 1075,40 1000,20 985,60 981,60
medium instances | median 1170,00 1095,00 1040,00 1003,00
relative improvement (%) | 6,99 8,35 8,72
mean 5171,20 5142,40 5075,60 5116,40
large instances median | 4794,00 4745,00 4662,00 4737,00
relative improvement (%) | 0,56 1,85 1,06

4.8. Execution Time analysis

Let 7 be the time penalty of the execution of the eGAWPF in comparison with NSGA-II. The used equation to
calculate the time penalty is defined by the equation (9), where TF and TN are the mean execution time for the
eGAWPF and NSGA respectively. Tables 11,12,13,14 represent the calculation of the time penalty.

x 100% ®
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Table 10. Relative improvement (small population, with reinitialisation of parenting fitness)

NSGA II EGAWPF (20%) | EGAWPF (10%) | EGAWPF (2%)
mean 76,20 53,20 55,40 50,40
small instances median | 43,00 40,00 37,00 39,00
relative improvement (%) | 30,18 27,30 33,86
mean 1075,40 1007,00 1001,60 1000,40
medium instances | median | 1170,00 1101,00 1061,00 1039,00
relative improvement (%) | 6,36 6,86 6,97
mean 5171,20 5142,80 5141,80 5143,20
large instances median | 4794,00 4719,00 4728,00 4735,00
relative improvement (%) | 0,55 0,57 0,54
Table 11. Time penalty (large population, continuous update of parenting fitness)
Instance | NSGA II | EGAWPF (20%) | EGAwWPF (10%) | EGAWPF (2%)
mean 1,15 1,97 1,91 1,96
small instances median 1,03 1,82 1,74 1,78
time penalty (%) 72,39 67,14 70,72
mean 29,52 66,70 65,95 65,71
medium instances | median | 29,90 65,11 67,40 65,81
time penalty (%) 125,97 123,43 122,63
mean 1855,54 | 4868,97 4850,31 4874,96
large instances median 1847,64 | 4876,22 4846,28 4871,41
time penalty (%) 162,40 161,40 162,72
Table 12. Time penalty (large population, with reinitialisation of parenting fitness)
Instance | NSGA II | EGAwWPF (20%) | EGAwWPF (10%) | EGAwWPF (2%)
mean 1,15 2,14 2,13 2,12
small instances median 1,03 2,06 1,96 1,98
time penalty (%) 86,91 85,91 85,15
mean 29,52 65,49 67,89 66,72
medium instances | median | 29,90 66,70 68,32 66,74
time penalty (%) 121,88 130,01 126,06
mean 1855,54 | 4875,90 4860,04 4624,78
large instances median 1847,64 | 4874,57 4873,32 4635,12
time penalty (%) 162,77 161,92 149,24
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Table 13. Time penalty (small population, continuous update of parenting fitness)
Instance | NSGA II | EGAwWPF (20%) | EGAwWPF (10%) | EGAWPF (2%)
mean 0,29 0,58 0,56 0,59
small instances median | 0,26 0,56 0,56 0,63
time penalty (%) 101,47 94,83 105,39
mean 7,78 16,56 16,37 16,28
medium instances | median | 7,64 16,40 16,21 16,15
time penalty (%) 112,81 110,26 109,18
mean 472,64 1231,02 1214,29 1225,45
large instances median | 467,44 1231,64 1211,46 1222,79
time penalty (%) 160,46 156,92 159,28
Table 14. Time penalty (small population, with reinitialisation of parenting fitness)
Instance | NSGA II | EGAwWPF (20%) | EGAWPF (10%) | EGAWPF (2%)
mean 0,29 0,53 0,60 0,55
small instances median | 0,26 0,50 0,63 0,59
time penalty (%) 86,09 109,77 91,89
mean 7,78 16,14 16,25 16,86
medium instances | median | 7,64 16,16 16,04 16,56
time penalty (%) 107,38 108,74 116,64
mean 472,64 1229,58 1214,04 1235,21
large instances median | 467,44 1234,39 1212,97 1241,00
time penalty (%) 160,15 156,86 161,34
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5. Discussion and Conclusions

Based on the experimental results, the genetic algorithm using the parenting fitness parameter finds better solutions
than the NSGA-II algorithm and its crowding distance across both experimental configurations. When utilizing a
small population size, the relative improvement ranges from 27.30% to 43.83% for small problem instances, 6.36%
to 8.72% for medium instances, and 0.54% to 1.85% for large instances. Employing a larger population yielded
further improvements, with relative gains of 34.15% to 42.77% for small instances, 7.41% to 11.41% for medium
instances, and 0.68% to 1.90% for large instances. For large instances, it may need additional execution loops,
since the search space can be significantly vast. Also, these results substantiate the hypothesis that the retention of
high-fitness parents across generations may significantly enhance algorithmic performance. This is visible when
comparing the results and the gap from experiments of both continuous and reinitialisation approach.

Limitations

It is important to note that while the eGAWPF excels in the mono-objective context of the VRPD, where the goal
is to minimize the maximum route length, it is not currently designed for multi-objective optimization, a domain
where NSGA-II is particularly robust. Additionally, the eGAWPF incurs a higher mean execution time compared
to NSGA-II. This computational overhead will be addressed in future work through the implementation of parallel
processing techniques.

Future research will focus on the following points:

* implementing a master-slave parallelization to delegate the parenting fitness update to the slave processes,
which may significantly reduce the execution time.

* adaptive parenting fitness rate will be considered to balance the pressure on choosing good parents over
generations.
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