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Abstract In recent years, the advancement in editing technologies, especially multimedia, has increased the use of image
and video modification. However, object-based video tampering, such as including or excluding objects in the video frames,
poses a significant challenge for video authentication. Video forgery detection is critical to maintaining media integrity since
multimedia content is commonly used across numerous fields. Regarding different types of manipulations in the domain
of videos, copy-move forgery is typical and complex at the same time. This study introduces a relatively efficient DCNN
model to detect forged copy-move videos. The proposed method can be described as follows: first, the video is divided into
frames, then a convolutional neural network model is employed to traverse each frame to establish its features. We then use
the described features to train a new CNN model, making it possible for us to determine whether a particular frame is real
or fake. Also, the structure incorporates batch normalization to enable easy layer weight initialization, ease in training at a
higher learning rate, high accuracy, non-overfitting, and process stability. We also conducted extensive practical experiments
on a massive video dataset, including original and manipulated content. We use specific performance metrics like accuracy,
precision, recall, F1-score, and the Matthews Correlation Coefficient to assess the performance of the suggested model. The
recommended method demonstrated superior performance compared to all previously proposed methods on the GRIP, VTD,
and SULFA datasets. The model’s accuracy was 95.60%, 96.70%, and 100%, with the shortest time of 25.10 sec, 27.35 sec,
and 20.22 sec, respectively.
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1. Introduction

Recently, more video material has been sent over the Internet. One reason is that the technology for editing videos is
getting better. We can quickly and accurately edit complicated and advanced videos using commercially available
software tools and open-source libraries. You do not need to be a professional to edit videos. Because these video
editing tools and devices are so standard, changing video content to hide things, events, or surveillance footage
is getting easier without leaving any proof. Because of this, it is happening more often that videos that have been
changed are passed off as real. Copy-move is a popular but difficult method for creating manufactured videos. This
method involves copying and pasting video segments into other areas, resulting in fabricated or misleading content.
These developments make it difficult to determine if video content is accurate and honest upon viewing. For that,
acquiring trustworthy detection techniques and technologies is crucial for proving the reliability and authenticity
of video content [1, 2].

D’Amiano et al. [3] described a dense-field method with a patch match for video copy-moves detection. Using
the Patch Match algorithm, it splits the video frames into overlapping patches and then discovers patches that
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are similar to the input patch. It also provides a dense field that states the motion of each patch between frames.
Therefore, the dense fields of the different frames can help check and identify copy-move forgeries in the video with
the help of this algorithm. The paper’s authors also noted that for several benchmark real datasets, the proposed
approach correctly identifies the faults and locates them with very high accuracy compared to similar approaches.
The suggested approach in the study shows that the newly developed framework performs well in detecting and
pinpointing areas of copy-move forgeries for various video applications.

In light of the challenging issues that may hamper video copy-move forgery detection, Zhong et al. [4] proposed
a technique called VCMFD. Applying the most effective SIFT (Scale-Invariant Feature Transform) framework,
they extract the necessary information in all cases of video copy-move modification. Besides, they give a practical
approach – the keypoint-label matching (FKLM), based on the label and keypoint clustering for high-dimensional
data that increases matching accuracy. The experimental findings show that the suggested method’s detection
accuracy is very high, the false positive rates are minimal, and the F1 scores are significantly enhanced. The GRIP
2.0 dataset and a combination of the SULFA 2.0 and REWIND datasets demonstrated improvements of at least
16% and between 0-8%, respectively, compared to the alternatives. In addition, it is faster than existing methods,
thus making it efficient for use in the analytical process.

Several motion residual and object-tracking approaches have been used by researchers to come up with cases of
altered video motion. In the case of individual frames, Oliaei and Azghani [5] described a technique for detecting
motion. This method follows the movement of objects within the sequence of frames in the video through the mean-
shift technique once it filters out the regions with motion residuals through the analysis of comparable things. Once
it focuses on detecting objects and following them across frames, it recognizes temporal and spatial changes within
sequences. These techniques match motion sequences depending on object similarity, using simulations on datasets
like SULFA and GRIP.

Mohiuddin et al. [6] conducted a recent research study to develop an comprehensive framework to detect
copy-move forgery in video. The suggested method suggests that patches from video frames can be efficiently
learned using the sliding window technique, and many CNN models were trained with these patches employing
various hyperparameters to extract diverse features. Concerning the incorporation of a patch into the videos, models
determine the outcome through a weighted voting process. They also present an additional dataset called Vision for
Visibility Dataset (VIVID), which contains several videos featuring copy-move forgeries. In the same year, Jasim,
and Atia [7] presents an evolutionary learning algorithm for designing convolutional neural networks for deepfake
detection. The algorithm uses residual and dense networks, generating different CNN structures. The method works
on different datasets without preprocessing and outperforms state-of-the-art models by 1% in accuracy, indicating
intuitive design as a new direction for better generalization.

Kim et al. [8] synthesized a novel object-based frame identification network consisting of reciprocally
overlapping motion residuals for higher accuracy in video frame identification. This method uses a deep neural
network to improve temporal variations and overlapping windows. Additionally, the process employs a non-
symmetric network topology to test and train a single primary convolutional neural network efficiently. This
involves optimizing learning by using two networks with identical architectures during training. They recommend
and assess two testing strategies for two- and three-class frame identifications compared to existing techniques. The
analysis of the experimental results supports the usage of the proposed solution in terms of providing consistent
identification outcomes in both cases.

Rodriguez-Ortega et al. [9] addressed a fast-growing threat in which high-quality fake photographs are spread
through social networks and media. They briefed about the criticality and necessity of a better mechanism
underlying the recognition system that can easily identify such fake news. The copy-move technique, a common
technique in picture and video editing, emphasizes the duplication of specific sections of an image to alter its
content. Conventional image processing methods rely on hand pattern recognition to find duplications, therefore
restricting their capacity to scale for extensive classification applications. Deep learning techniques, on the other
hand, have shown improved outcomes and possibilities to overcome these difficulties. Still, they often deal with
generalizing difficulties that mostly rely on the volume and diversity of training data as well as the choice of
appropriate hyperparameters. Together with their training and inference times, the evaluation compares these
models using several criteria.
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Singh and Singh, k. [10] conducted a systematic review of the identification of copy-move forgery in digital
videos with an emphasis on the passive approach. Given that people are employing digital videos to capture life’s
occurrences and sharing those occurrences on social media, the security of such videos is an essential issue. This
paper starts by explaining copy-move forgery and its categories and goes further to provide a view of the existing
passive strategies. Last, it overviews these techniques in terms of features, datasets, parameters, forgery types, and
the limitations in the table format. The survey also defines the parameters of the evaluation, the datasets, and the
detection tools before going over future trends in the field and the issues arising from the use of deep learning for
automatic detection.

Ulutas et al. [11] proposed another video forgery detection system where Local Difference Binary (LDB) features
have been used with the help of deep learning models. Initially, the approach selects LDB features to extract local
texture details from the video frames; subsequently, it constructs a binary code for each block. The substance of
the real and fake video frames is then translated to binary numbers and, next, classified with the CNN deep neural
network. Their approach strengthens the system by applying data augmentation methods and getting more training
samples. The suggested method performs well and yields a satisfactory detection accuracy percentage. The offered
research is a promising contribution to identifying videos forged using deep learning and adequate LDB features,
which would be valuable in various fields.

Further, Kumar et al. [12] proposed a robotic forgery detection system to detect the frame-insertion forgery
in videos. Ranging their approach using deep features identifies any extreme shift that may lead to forgery. This
method computes correlation coefficient distance across frames and identifies important features with the parallel
convolution neural network. This method computes correlation coefficient distance across frames and identifies
important features with the parallel convolution neural network. This calculation helps to detect disassociation
between frames, which is the primary indicator of video tampering. Common databases such as VIFFD and SULFA
confirm the applicability of this approach. On the VIFFD dataset, the method is 86.5% accurate; on the SULFA
dataset, it is 92% accurate; it additionally detects inserted frames that can recreate original videos.

El-Shafaiet et al. [13] made a detailed examination of the extent of jeopardy that advanced online processing
software has brought in the area of video’ authenticity. It has developed a new kind of video tempering software
that is capable of twisting the truth and sharing fake messages, especially on a platform that specializes in uploading
and sharing videos and images like YouTube, Facebook, WhatsApp, Twitter, Instagram, and many others. When
it comes to the distinction between works, it is necessary to indicate that genuine and manipulated videos have
a significant impact on the field of journalism, law enforcement activity, surveillance, and medical imaging, but
various methods have been developed to mislead them. Further, using deep learning, the study provided advanced
theories of development involving the use of perceptual analysis recurrent, deep convolutional, adaptive analysis,
as well as the use of adaptive detectors, all integrated for development.

Recently, many authors have been using convolutional neural networks (CNNs) in various applications due to
their outstanding ability in pattern recognition and classification. Among these applications are disease detection
[14-16], emotion detection [17, 18], and others.

In this study, we propose an innovative approach employing deep learning to identify object-based forged content
in video frames. Thus, developing detection algorithms and related technologies is important, as they constitute the
foundation for creating trust and validity in video content across diverse applications.

Hence, our work aims to ensure the authenticity of objects that appear within the frames of a video. Given a
pre-trained CNN, the most important features from each frame are extracted, then modelled, and the learned model
is then used to predict whether a given frame is real or manipulated. After each convolutional layer, we add batch
normalization and pass the data through the max-pooling layer. The two regularisation techniques provided, L1
and L2, assist the model in enhancing the steadiness and profitability resulting from batch normalizing during
the training as well as eliminating overfitting [19, 20]. The objective of this work is to design and implement a
new CNN model with batch normalization in the described framework in order to enhance the capabilities of the
model to learn discriminative features for copy-move forgery detection. We also conducted extensive practical
experiments on a massive dataset of videos, which included both original and manipulated content. We use specific
performance metrics like precision, recall, accuracy, F1-score, and the Matthews Correlation Coefficient to assess
the performance of the suggested model. Overall, the proposed model better detects copy-move video forgery
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than the previous methods. The utilization of this model remains broad, and some applications include crime
investigations and the verification of multimedia content, enhancing the credibility of multimedia content in today’s
world. This study presents the primary contributions as follows:

• Deep convolutional neural network (DCNN) technique is proposed for identifying copy-move object-based
forgeries in videos.

• This approach significantly outperforms the previous CNN models by applying a method known as batch
normalization, thus improving the efficiency even further. L1 and L2 regularization were applied to further improve
performance and prevent overfitting.

• Batch normalization contributes to input data standardization throughout the training process, minimizing
internal covariate shift. This uniformity can result in better and more accurate learning, as well as training and
accuracy in validation data. Batch normalization manages to make the rate of convergence of the training process
significantly faster in order to reach the peak of efficiency.

• We employed three datasets to ensure the accuracy of our research: SULFA, Video Tampering Dataset VTD,
and GRIP are the most widely used of these, as reported [21–24].

• We experimented with the three benchmark datasets described above and did a comparative to examine the
efficiency difference of the suggested model to the previously established models [3], [5], [12], [25-27], [34], [37]
and [38]. Consequently, the comparison identified the fact that the suggested technique had a better performance
than the other models under consideration.

• Our proposed model is quite accurate and requires minimal parameters as compared to the recently published
techniques.

The other parts of this study have been organized as follows: Section 2 provides the description of the traditional
CNN model, a batch normalization concept, and a detailed explanation of the proposed method. Section 3 presents
an exhaustive analysis of the results, a comparison with other related studies using the aforementioned criteria, and
a final discussion in Section 4. Section 5 includes an overview of the outcomes and conclusions of the research.

2. Research Method

2.1. The Structure of CNN Model

The conventional CNN can be divided into two main components, as depicted in Figure 2 below. The layers of
convolution and pooling are used in the first part for feature extraction. The next part is the classifier part, and in
most of the deep models, it may involve a fully connected layer, which a linear layer can replace. These layers
use the features derived from other earlier convolutional and pooling layers to sort the input image into various
classes. However, a new trend in CNN architecture is replacing fully connected layers with several global average
pooling layers. In this approach, the features obtained from the last convolutional layer are subjected to a worldwide
average pooling step instead of flattening them and passing them through one or more fully connected layers. This
process produces one value for each feature map by summing all the features in the last convolutional layer [28,
29, 37]. Generally, CNN models usually consist of a sequence of layers, each performing special tasks in the
overall feature extraction and classification process. The basic framework of a CNN model can be characterized,
per [11, 28, 29] as follows: Input layer: is the first layer of the network, which simply sends the image or data that
has been inputted to the successive layers. Convolutional layers: A sequence of convolutional layers that contain
learnable filters moving over the input image and performing convolution on it. The number of filters within the
layers may rise with the network’s depth, thus allowing the model to learn more complex characteristics. This
lets the model identify ever more complicated features. Activation function: An activation function is applied after
each convolutional layer, introducing non-linearity and allowing the network to perform linear transformations.
Examples include sigmoid, tanh, ReLU, leaky ReLU, and softmax. Each function is different and can be used for
different problems and designs. Standard functions like ReLU and sigmoid provide probabilities for events on a
scale from 0 to 1, with ReLU returning 1 for positive values and 0 for negative values, as shown in Figure 1.

• ReLU function: is a simple piecewise function. It gives a result of 1 if the input value is positive and 0 if the
value is not positive. This can be seen in equation (1):

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 AN EFFICIENT APPROACH TO DETECT A COPY-MOVE FORGERY IN VIDEOS

ReLU(x) = Max(0, 1) (1)

• Sigmoid function: A mathematical function known as the sigmoid function provides a value between 0 and 1.
Equation (2) suggests that this number represents your likelihood of belonging to a specific group:

Sigmoid(x) =
1

1 + e−x
(2)

Figure 1. The sigmoid and ReLU activation functions.

• Pooling layers: These layers keep essential characteristics while reducing the dimensionality of feature maps.
These layers result in fewer parameters to learn and a reduction in network computation. One frequent method is
max pooling, which uses each window’s maximum value.

• Fully connected layers: After the convolution and pooling layers extract and reduce the features, a few
fully connected layers process this information to produce the final outputs, like the likelihood of each class in
classification tasks. As previously noted, every fully connected layer will be followed by a nonlinear function such
as ReLU.

• Output layer: Responsible for producing the final model output, this layer generates a probability distribution
over the potential output classes.

Figure 2. The structure of CNNs model

2.2. The Concept of Batch Normalization

Deep learning uses batch normalization to ensure the normalization of each layer’s inputs. Its goal is to stabilize
the network’s distribution and speed up training by reducing the internal covariate shift [19].

2.2.1. The mechanism of batch normalization process:
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• Firstly, the mean (average) and standard deviation of all feature activations in each mini-batch will be
computing during training.

• The normalization step arranging data in a database to remove redundancy and enhance efficiency. Procedure:
Normalize the activations by dividing them by the mean and standard deviation computed in step 1.

• Scaling and Shifting: Introduce trainable parameters (beta and gamma) for each feature that allow the
network to select the most suitable scaling and shifting for normalized activations.

• Learning: Back propagation modifies the other network parameters and the learnable parameters (beta and
gamma) during the training process. The mathematical representation of the batch normalization formula is
below:

x̂(k) =
x(k) − µ(k)√
σ2(k) + ε

(3)

where the input to the layer is represented byx(k), with µ(k) representing the mean of activations, σ2(k) as the
variance, ε for numerical stability and prevent division by zero, x̂(k) is the normalized input, and k represents
the layer. After normalization, we scale and shift the normalized input to obtain the batch normalization
output.

y(k) = γ(k)x̂(k) + β(k) (4)

where γ(k) and β(k) represent the scale and shift learnable parameters for each feature in the layer.

2.2.2. The The Advantages of Batch Normalization: Batch normalization improves the training process’s stability
by reducing the influence of internal covariate shifts. This leads to more steep gradients and less oscillations which
in turn leads to a faster convergence, thus a faster training. This makes it possible to reduce the usage of other
regularization methods like the dropout. This makes it possible to employ high learning rates, which keeps the
network from straying and becoming unstable. The generalization performance is enhanced because inputs of
every layer are standardized.

2.3. The Proposed Model

Along the lines of the deep convolutional neural networks, the proposed model aims to identify copy-move video
frauds. The suggested model applies batch normalizing to all the layers, which include a convolutional layer, a
batch normalization layer, and a dropout layer, followed by a max pooling layer. It has three main components,
including pre-processing, convolutional, and classification, as depicted in Figure 3 below. The model is compiled
using the Adam optimizer, and the default learning rate 0.001 is typically used, a batch size of 32 is used in the
training process, and the convolution layers in the model use a kernel size of (3, 3) with valid padding and a stride
of (1, 1), which reduces the spatial dimensions with each convolution. We can summarize the model’s architecture
as follows:

1. Pre-processing: In this Step, the video input is acquired and divided into frames, which are then used as input
for the subsequent steps as images.

2. Convolutional Part: The convolution part of the process is the algorithm responsible for the feature extraction
of the input frames. It has 13 convolutional layers with filter sizes of 16, 32, 64, 128, and 256 in augment as the
number of convolutional layers gets deeper. For the purpose of improving the stability and the speed of the training
and also affecting activation ReLU functions, we made use of batch normalization across each of the layers. Here
is an outline of the model:

• First Block (Layers 1-2): This first block of the model takes an input frame or image with the size of (224,
224, 3) and feeds it through a series of steps. This block represents the initial block of the given model.
The first Conv2D layer convolves the input with a kernel of 3 x 3 and produces 16 feature maps. The batch
normalization technique then normalizes these feature maps to increase stability and be faster when training.
Next, one more Conv2D layer is added for feature extraction to enable the model to learn better features.
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Finally, we rescale the feature maps by using the MaxPooling2D layer, which has a pool size of (2, 2),
decreasing the size of the feature maps by half but retaining only the most significant features. This layer
takes an input of size (220, 220, 16) from the previous layer and yields an output of size (110, 110, 16).

• Second Block (Layers 3-4): is similarly has the same pattern as the previous block. The input shapes (110,
110, 16) are taken from the previous. The first Conve2D layer applies 64 filters of size 3 x 3 to the input
images, using the ReLU activation function to extract the important features. The batch normalization
technique then normalizes these feature maps. After that, we applied the second Conv2D layer to extract
features further. In the end, we downsample the feature maps by employing a MaxPooling2D layer, which
has a pool size of (2, 2); this layer takes an input of size (106, 106, 32) from the previous layer and produces
an output of size (53, 53, 32).

• Third Block (Layers 5-7): is consists of 3 convolutional layers, which are encompassed with 2 batch
normalization layers of the same size and a single Maxpooling2D layer at the final stage. This block processes
an input frame or image with dimensions (53, 53, 32) by putting it through a series of procedures. The first
Conv2D layer applies a 3x3 kernel to the input, generating 64 feature maps to extract the important features.
The batch normalization technique then normalizes these feature maps. Then, the second Conv2D layer
applies a 3x3 kernel to the input, generating 64 feature maps to extract the important features. The batch
normalization technique then normalizes these feature maps. After that, we applied the third Conv2D layer
to extract features further. In the end, we downsample the feature maps by employing a MaxPooling2D
layer, which has a pool size of (2, 2); this layer takes an input of size (46, 46, 64) from the previous layer and
produces an output of size (23, 23, 64).

• Fourth Block (Layers 8-10): It is similar to the pattern of the third block with the input shapes (23, 23,
64). The first Conve2D layer, second Conve2D layer, and third Conve2D layer are applied with 128 feature
maps with dimension size 2x2. The batch normalization layer is performed only after the first and second
convolutional layers. In the end, a MaxPooling2D layer with a pool size of (2, 2) reduces the feature maps,
takes the input shape size (16, 16, 128), and produces an output shape (8, 8, 128).

• Fifth Block (Layers 11-13): It similarly has the same pattern as the fourth block with the input shapes (8, 8,
128). The first Conve2D layer, second Conve2D layer, and third Conve2D layer are applied with 256 feature
maps with dimension size 2x2. The batch normalization layer is performed only after the first and second
convolutional layers. In the end, a MaxPooling2D layer with a pool size of (2, 2) reduces the feature maps,
takes the input shape size (2, 2, 256), and produces an output shape (1, 1, 256).

3. Classification Part: After incorporating convolutional groups, a flattening layer converts 3D feature maps to
1D. The flattening technique has to be applied in order to prepare the data to be fed into the remaining fully
connected layers of the network. Then, a dense module with 256 nodes and a ReLU activation function is used to
develop a deep layer to enhance and transform features extracted/selected from the input matrix. In order to avoid
overfitting, L1 and L2 are used as a form of regularization of the Inside of this dense layer. Finally, in a bid to
reduce cases of overfitting, we incorporate a dropout layer, which we set at 0. 5, which zeros out at random half
of the input units during training. We then follow with a discriminator-like dense layer with 128 units and ReLU
activation, which will aid in the extraction of even more features. Last is the output layer, which has two nodes that
use the sigmoid activation function to enable binary classification; this is the method used to decide if input data is
in one class.
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Figure 3. The structure of proposed model

For clarity, the pseudocode given in Algorithm 1 shows the sequential processes of the suggested model.
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Algorithm 1: Algorithm of Copy-Move Forgery Detection System
INPUT : DatasetD = {(xi, yi)}ni=1 wherexi ∈ RH×W×C , yi ∈ {0, 1}
OUTPUT : TrainedmodelM,Performancemetricsϕ = {Prec,Rec, F1, Acc}

1: Procedure COPY MOVE DETECTION
2: // Data Preprocessing Phase
3 : D′ ← ∅
4 : foreach(x, y) ∈ Ddo
5 : x′ ← RESIZE(x, 224× 224× 3)
6 : x′ ← NORMALIZE (x′, 1/255)
7 : ifx ∈ Dtrainthen
8 : x′ ← AUGMENT (x′ , {shear, zoom, flip))
9: end if
10 : D′ ← D′ ∪ {(x′, y)}
11: end for
12: //Model Architecture Construction
13 : M← SEQUENTIALMODEL()
14 : for i = 1 to 5 do
15 : M← M+ CONV 2DO +BATCHNORMO + CONV 2DO +MAXPOOLO
16 : if i ≥ 3then
17 : M← M+DROPOUT (0.5)
18: end if
19: end for
20 : M← M+ FLATTEN()
21 : M← M+DENSE (256, L1 L2 REG) + DROPOUT(0.5)
22 : M← M+DENSE(128) + DROPOUT(0.5)
23 : M← M+DENSE(2, SIGMOID)
24: // Model Compilation and Training
25 : COMPILE (M , lossBCE, optimizer = ADAM

(
r = 10−3, β1 = 0.9, β2 = 0.999

))
26 : M← TRAIN(M,D′train,D′val, epochs = 30, batchsize = 32)
27 : //ModelEvalution
28 : ŷ← PREDICT (M,D′test)
29 : Φ← EVALUATE−METRICS(ytest,ŷ)
30: return M, Φ
31: end procedure
32 : procedureEV ALUATE METRICS(ytrue, ypred)
33 : CM ← CONFUSION−METRIX(ytrue, ypred)
34: Prec← Tp/(Tp + Fp)
35: Rec← Tp/(Tp + FN )
36 : F1← 2× (Prec×Rec)/(Prec+Rec)
37: Acc← (Tp + TN )/(Tp + TN + Fp + TN )
38 : returnPrec,Rec, F1, Acc
39: end procedure

3. Experiments and Results

This section provides the results of our tampered video detection model, emphasizing its performance across
multiple measures. The individual frames of video were analyzed to ensure comprehensive detection of alterations.
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The assessment measures employed, along with detailed comparisons to other models, are explained below to
demonstrate the effectiveness of our technique.

3.1. Experimental setup

In this study, we used the Google Colab environment to train a DCNN model to identify video frame forgeries. We
used forged and authentic video frames that had been preprocessed to enhance performance and train the suggested
model. Table 1 describes the model setup, dataset configuration, and training environment.

Table 1. Experimental Setup of The Proposed Model

Components Configuration
Input Size All frames resized to (224,224,3)
Platform Google Colab with free GPU access (Limited)
Hardware GPU: NVIDIA Tesla T4 (16 GB VRAM)

CPU: 2-core Intel Xeon @ 2.30GHz
RAM: 12 GB

Software Python 3.10 and TensorFlow 2.13
Keras (via tf.keras)
NumPy, Scikit-learn, Matplotlib, Seaborn, PyWavelets

Used Dataset Divided into train 50%, Validation 25%, and Testing 25%

Data Augmentation Zoom (0.2), horizontal flipping, shear (0.2), and rescaling
(Applied to the training set in the model)

Model Conv2D (×13,16→256 filters)
Batch Normalization (×8), Max-pooling2D (×5)
Dense (256, 128), Dropout (0.5), Output (sigmoid, 2)
Regularization (L1=0.01 and L2=0.01)

Training Up to 35 epochs only, Batch size of 32
Adam Optimizer (LR=0.001, b1=0.9, b2=0.999)
Callbacks (EarlyStopping, ModelCheckpoint, CSVLogger)

3.2. Datasets

We tested our study’s accuracy using three different benchmark datasets: the Video Tampering Dataset (VTD), the
GRIP Forged Videos Dataset, and the Surrey University Library for Forensic Analysis (SULFA) Dataset, which
are publicly available [5]–[8], [37], [39]–[41].

• VTD Dataset: The VTD is made up of 52 videos, which are synthesized with the purpose of containing copy-
move forgery artifacts that are to be detected. It holds the related original videos (26) and the manipulated
videos (26) on it also were shown. Thus, the provided dataset enables the assessment of forgery detection
algorithms with special attention to the identification of videos with tampered frames and the localization of
forged videos in relation to their authentic copies.

• GRIP Dataset: A large number of videos are available in the GRIP dataset containing ninety videos, which
makes it really beneficial for video copy move forgery detection research. It includes 45 tampered videos, 45
corresponding original videos they used in the experiments besides. Forgery detection can be assessed with
the help of the GRIP dataset, which allows to estimate how accurately manipulated videos are distinguished
from the originals when using the corresponding systems.

• SULFA Dataset: In order to assess the classification performance, the University of Surrey has provided its
realistic dataset termed as SULFA where some of the videos are genuine while others have been forged. The
provided collection of 150 videos from three cameras is located in the link and is freely available on the
website of the university. The videos are low quality, 320X240 pixels, 10 seconds in duration and they are at
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a frame rate of 30 frames/second. Survey 1 comprises of 80 videos, and among these are manipulated videos
and normal videos. It is important for assessing and comparing forgery detection algorithms notably in cases
where fake videos have to be detected in respect to their real forms.

These datasets consist of a set of videos that includes a lot of variants of forgeries. It is seen from the figure that
the frames that are used in datasets are similar to the ones presented in Figure 4. The website related to each data
set contains more and related information. The most crucial characteristics of these datasets are described in Table
2.

Table 2. The VTD, GRIP, and SULFA dataset details

Datasets No. of Frames
Videos Training Validation Testing

VTD Tampered Original Tamp. Orig. Tamp. Orig. Tamp. Orig.
26 26 190 176 95 88 95 87

GRIP Tampered Original Tamp. Orig. Tamp. Orig. Tamp. Orig.
45 45 166 152 84 76 83 76

SULFA Tampered Original Tamp. Orig. Tamp. Orig. Tamp. Orig.
40 40 140 150 70 75 70 74

Figure 4. Samples of Some Frames of Used Datasets (VTD, GRIP, and SULFA)

3.3. Performance Metrics

Performance metrics are significant for evaluating the effectiveness and accuracy of deep learning algorithms and
other machine learning models. They provide numerical measures that are useful in assessing how well a model
applies its predictions to the resolve of a particular problem. According to [30-33], [37] metrics for performance
are determined based on the problem’s characteristics, the data’s type, and the expected outcome.

• Accuracy: The accuracy metric checks how accurate the model is by finding the percentage of correct
predictions, both positive (TP) and negative (TN), out of all the predictions. The formula for this is given in
terms of %, which can be found in Eq. (5).

Accuracy =
TP +TN

TP + FP +TN + FN
× 100% (5)

• Matthews Correlation Coefficient (MCC): In binary classification problems, the MCC is a quantitative metric
that ranges from -1 to 1, evaluating true positives, true negatives, false positives, and false negatives, with
1 indicating perfect predictions, 0 indicating randomness, and -1 indicating full mismatch, represented as a
percentage in Eq. (6).

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MAHMOUD ATEF, MOHAMED S. FARAG, MOHAMMED ABDEL RAZEK, GABER HASSAN 11

MCC =
TP × TN − FP × FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
× 100% (6)

• Precision: Precision is the percentage of model predictions that are correct, calculated using Eq. (7) in terms
of %, focusing on true positives compared to total positive predictions [28].

•

Precision =
TP

TP + FP
× 100% (7)

• Recall: Recall, sometimes referred to as sensitivity or true positive rate, evaluates the proportion of accurate
predictions obtained among all the actual positive samples. It estimates the model’s ability to accurately
detect any relevant instances. In terms of percentage, Eq. (8) expresses the recall equation:

•

Recall =
TP

TP + FN
× 100% (8)

• F1-score: The F-score, or F-measure, is a predictive performance measure derived from the test’s precision
and recall. The F1-score can be calculated using either Eq. (9) or Eq. (10) expressed as a percentage.

F1 score =
2× ( Precision × Recall )

Precision + Recall
(9)

F1 score =
2× TP

2× TP + FP + FN
× 100% (10)

In that context, the number of true positives is noted by TP , where the number of true negatives is TN while, FP

stands for the number of false positives and the number of false negatives is written as FN . Measures of efficiency
are crucial components to any models of machine learning as they determine the strengths and weaknesses of the
generated predictive algorithms. They assist in model selection and the enhancement and optimization to obtain
superior results in real-life situations. To read the situation, it is necessary that the right measures are chosen
depending on the requirements and nature of the context [28].

3.4. Empirical Results over the GRIP, VTD, and SULFA Datasets

As discussed above, we evaluated the suggested approach on three benchmark datasets: the GRIP, VTD, and
SULFA datasets. As mentioned earlier, the confusion matrices shown in Figure 5 can be used to examine the
performance evaluation results. Table 3 summarizes the results obtained from the confusion matrices for the
generated data resources, namely the GRIP dataset, the VTD dataset, and the SULFA dataset.

From the results highlighted in Table 4 below, the proposed technique provided better results on the GRIP, VTD,
and SULFA. The accuracy was impressive and, in some cases, even reached 100%, though in other cases, it was
still high at 95%. The way it differentiates between modified and original videos can easily be understood with the
help of the presented model. The MCC also remained in the 91 to 100 percent range, which exhibited the usefulness
of the model’s classification. Moreover, on the SULFA dataset, the defined model obtained an accuracy level of
up to 100, which shows potential for achieving targeted manipulation. The recall scores varied between 0.95 and
1, which proves that the model worked exceptionally well and indicated manipulative conduct with high levels of
accuracy.

Moreover, it set up high F1 scores varying from 95.81% to 100%, demonstrating that the algorithm can detect
object-based manipulation more effectively. The model’s efficiency is illustrated by the consumption analysis of
a model of approximately 20.22-25.56 seconds. Therefore, the published results demonstrate the ability of the
suggested approach to detect object-based tampering within movies, which can potentially be useful in several
fields, ranging from video analysis to security.
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Figure 5. The Confusion Matrix Output for GRIP, VTD, and SULFA Datasets

Table 3. Confusion Matrices of the Proposed Model Concerning GRIP, VTD, and SULFA

Dataset Classes + - Total
GRIP + 80 3 83

- 4 72 76
Total 84 75 159

VTD + 93 2 95
- 4 83 87

Total 97 85 182
SULFA + 70 0 70

- 0 74 74
Total 70 74 144

Table 4. Results of the proposed model concerning GRIP, VTD, and SULFA datasets.

Metrics GRIP VTD SULFA
Accuracy (%) 95.60 96.70 100

MCC (%) 91.18 93.41 100
Precision (%) 96.39 97.89 100

Recall (%) 95.24 95.88 100
F1 Score (%) 95.81 96.88 100

Time (seconds) 25.10 27.35 20.22
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Thus, to compare our results, we have computed MCC, recall, precision, and F1-Score for our proposed model
while comparing with other previously released models with respect to the GRIP dataset, as stated in Table 5.
In particular, for the GRIP dataset, the proposed approach appeared to be significantly better, with F1-score,
MCC, precision, and recall equal to 95.81%, 91.18%, 96.39%, and 95.24%, respectively. It produced a higher
result than [3, 4, 25, 26, 27, 34] by 74.60%, 85%, 7.60%, 12.50%, 85%, and 44.20% in terms of F1-Score,
respectively. Recently, Eltoukhy et al. [37], and Oliaei & Azghani [5] got slightly better F1 scores by 8737%,
and 89%, respectively, compared to the approach of others mentioned above, while H. Alfraihi et al. [36] portrayed
a superior F1 score value of 95.26%. Additionally, when looking at the MCC evaluation, our results were better
than the previous studies in [3, 25, 26, 34, 36, 37], which had scores of 72.60%, 2.20%, 15.70%, 37.10%, and
72.90% respectively, while we achieved a score of 91.18%.

Table 5. A Comparative Analysis of Recall, Precision, F1-score, and MCC on the GRIP dataset.

Methods Recall % Precision % F1-score % MCC %
Li, H., et al. [25] - - 7.60 2.50
Bappy, J. H., et al. [26] - - 12.50 15.70
Jin, X., et al. [34] - - 44.20 37.10
D’Amiano, L., et al. [3] - - 74.60 72.60
Zhong, J. L. et al. [4] - - 85 -
Zhong, et al. [27] - - 85 -
Eltoukhy, M.M., et al. [37] - - 87.7 72.9
Oliaei and Azghani [5] - - 89 -
H. Alfraihi, et al. [36] 95.26 95.17 95.13 90.43
Proposed Method (GRIP dataset) 95.24 96.39 95.81 91.18

In Table 6, using the VTD dataset, it can be observed that the proposed method used in the detection of copy-
move forgery realized a high F1-score of 96.88%, with an MCC of 93.41%, while the recall noted was at 95.88%.
The previous approaches [3, 25, 26, 34] have proved to be worse in performance. These methods give F1-score
values of 1.20% to 26.90% and MCC values of 1.70% to 26.90%. More recently, Eltoukhy et al. [37] obtained
significantly better F1 and MCC scores of 83.4% and 63.8%, respectively, compared to the above-mentioned
approaches. H. Alfraihi et al. [36] attained the highest F1-score, achieving a score of 92.83%, and the highest
MCC, achieving a score of 86.16%, in contrast to the others. Thus, the specified data may confirm the applicability
and effectiveness of the proposed technique. If applied to the VTD dataset, algorithms of that kind provide a
significantly improved method for forgery detection compared to prior methods, as they allow for excellent balance
between precision and recall.

Table 6. A Comparative Analysis of Recall, Precision, F1-score, and MCC over the VTD Dataset.

Methods Recall % Precision % F1-score % MCC %
Bappy, J. H., et al. [26] - - 1.20 3.00
Li, H., et al. [25] - - 2.50 26.90
D’Amiano, L., et al. [3] - - 2.90 1.70
Jin, X., et al. [34] - - 1.90 2.00
Eltoukhy, M.M., et al. [37] - - 83.4 63.8
H. Alfraihi, et al. [36] 92.67 93.50 92.83 86.16
Proposed Method (VTD dataset) 95.88 97.89 96.88 93.41
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Table 7. A comparative Analysis of Recall, Precision, F1-score, and MCC over the SULFA Dataset.

Methods Recall % Precision % F1-score % MCC %
D’Amiano, L., et al. [3] - - 2.50 3.70
Bappy, J. H., et al. [26] - - 3.50 3.50
Li, H., et al. [25] - - 5.40 3.10
Jin, X., et al. [34] - - 8.80 4.50
Zhong, J. L. et al. [4] - - 84 -
Zhong et al. [27] - - 85 -
Oliaei and Azghani [5] - - 89 -
Eltoukhy, M.M., et al. [37] - - 86.9 74
Proposed Method (SULFA dataset) 100 100 100 100

Table 7 provides a head-to-head comparison of the methods discussed in this work for copy-move forgery
detection on the SULFA dataset. Comparing all the methods, it is evident that there are major differences in the
performance indicators. The proposed method is also noteworthy because all the estimated indicators of recall,
precision, F1-score, and MCC are equal to 100%, which means that the method works without errors and does
not produce false positives. On the other hand, other methods proposed by [9, 10, 11] yield significantly lesser F1
scores, which have an average value of 2. 50% to 5%. Based on these outcomes, it can be noted that these strategies
do not possess satisfaction in terms of identifying forged cases effectively and efficiently. Jin et al. [34] proved to
show improvement with the F1-score increased to 8.80% and MCC of 4.50% of them did not even achieve the level
of the suggested approach. In the extraction, the two- works of Zhong et al. [4, 27] reported more accurate results
with high F1 scores, around 85 and 84%, respectively. At the same time, Oliaei and Azghani [5] recently obtained
a higher F1 score of about 89% than other approaches. Additionally, Eltoukhy et al. [37] obtained significantly
better F1 and MCC scores of 86.9% and 74%, respectively. Thus, based on the result derived in the proposed work
presented here to detect counterfeit products in the SULFA dataset, it is evident that the suggested method provides
better accuracy and reliability than the existing method, establishing a new benchmark in this field.

To evaluate the acquired results in combination with other methods of estimating time and accuracy. The results
of our suggested technique are compared to those of recent works [3, 4, 25, 26, 27, 34, 36, 37] in Tables 8, 9,
and 10. It is observed that our method outperforms the others in terms of both accuracy and computational time.
Table 8 shows that the proposed model performs exceptionally well on the GRIP dataset. With a processing time
of 25.10 seconds, it achieves an accuracy of 95.60%, outperforming [3, 26, 34], which reported accuracies of
73.60%, 43.20%, and 29.40%, respectively, with processing times of 21.30, 45.80, and 42.40 seconds. Meanwhile,
the [25] model achieved an acceptable accuracy with a score of 74.90% but with a higher processing time of 69.60
seconds. In contrast, [4] achieved a superior accuracy of 83.33% without reporting the processing time required. In
comparison to the others, H. Alfraihi et al. [36] and Eltoukhy et al. [37] achieved the highest accuracy, with scores
of 95.26% and 86.16%, respectively. Additionally, Eltoukhy et al. [37] achieved the lowest processing time of 9.60
seconds in the testing phase.

In addition, the results of our proposed method and other related methods [3, 4, 25, 26, 27, 34, 36, 37] for the
second dataset, the VTD dataset, are shown in Table 9. The proposed model achieved outstanding accuracy, with
an accuracy of 96.70% and a processing time of only 27.35 seconds. On the other hand, [3] and [26] demonstrated
abysmal accuracy levels, specifically 19.00% and 15.60%, respectively, along with higher processing times of 75.80
seconds and 68.70 seconds. The accuracy of [34] increases to 64.30% with a processing time of 46.60 seconds,
while [25] obtains an accuracy of 29.00% with a maximum processing time of 91.30 seconds. Performance metrics
are not reported in Zhong et al. [4]. In contrast, Alfraihi et al. [36] and Eltoukhy et al. [37] achieved the highest
accuracy, recording 92.67% and 81.87%, respectively. In contrast, Alfraihi et al. [36] and Eltoukhy et al. [37]
achieved the highest accuracy, recording 92.67% and 81.87%, respectively. Eltoukhy et al. [37] also achieved the
lowest processing time, 13.7 seconds, in the testing phase.

Finally, to compare the proposed model with previous works on the SULFA dataset and evaluate its performance
using commonly used metrics, Table 10 shows that the proposed model outperforms all the previous methods
aimed at the dataset in achieving ideal values that are equal to 100% for all the metrics demonstrated in the table,
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which implies that the proposed method is capable of detecting all objects in the dataset and does not result in any
false detection. At the same time, the accuracy scores of [3, 25, 26] collapsed to just 24.20%, 52.60%, and 33.70%,
respectively, with different processing times. On the other hand, [38], [34], [37], [4], and [12] achieved superior
performance with an accuracy of approximately 89.70%, 83.30%, 85.42%, 88.90%, and 92%, respectively, and
[37] achieved the lowest processing time of 9.60 seconds in the testing phase. Moreover, the SULFA dataset’s
excellent performance of the suggested method demonstrates its higher accuracy and reliability compared to prior
methods. The accuracy results shown in Tables 7, 8, and 9 are illustrated schematically in Figure 6 below.

Table 8. Performance Comparison of Various Methods on the GRIP Dataset.

Methods Accuracy % Time (second)
Bappy, J. H., et al. [26] 29.40 45.80
Jin, X., et al. [34] 43.20 42.40
D’Amiano, L., et al. [3] 73.60 21.30
Li, H., et al. [25] 74.90 69.60
Zhong, J. L. et al. [4] 83.33 -
H. Alfraihi, et al. [36] 95.26 13.15
Eltoukhy, M.M., et al. [37] 86.16 11.4
Proposed method (GRIP dataset) 95.60 25.10

Table 9. Performance Comparison of Various Methods on the VTD Dataset

Methods Accuracy % Time (second)
Bappy, J. H., et al. [26] 15.60 68.70
D’Amiano, L., et al. [3] 19.00 75.80
Li, H., et al. [25] 29.00 91.30
Jin, X., et al. [34] 64.30 46.60
Zhong, J. L. et al. [4] - -
H. Alfraihi, et al. [36] 92.67 10.2
Eltoukhy, M.M., et al. [37] 81.87 13.7
Proposed method (GRIP dataset) 96.70 27.35

Table 10. Performance Comparison of Various Methods on the SULFA Dataset

Methods Accuracy % Time (second)
D’Amiano, L., et al. [3] 24.20 44.20
Bappy, J. H., et al. [26] 33.70 62.20
Li, H., et al. [25] 52.60 75.10
Jin, X., et al. [34] 83.30 40.4
Zhong, J. L. et al. [4] 88.90 -
Kumar, V., et al. [12] 92.00 -
Eltoukhy, M.M., et al. [37] 85.42 9.6
Pandey, R, et al. [38] 89.7 -
Proposed method (SULFA dataset) 100 20.22

3.5. Cross Dataset Evaluation

The cross-dataset experiments’ results indicate that the proposed model has a generalization capability across
different datasets. When training on dataset SULFA and testing on GRIP, the accuracy reached 92.14%, which is
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Figure 6. Performance Comparison of Various Methods on the GRIP, VTD, and SULFA Datasets in terms of Accuracy

Table 11. Performance Evaluation on Cross-Dataset in Different Scenarios

Cross-Dataset 2*Recall % 2*Precision % 2*F1-score % 2*Accuracy %
Train Test

SULFA GRIP 94.89 90.54 92.67 92.14
SULFA VTD 92.46 100 96.46 95.76
GRIP SULFA 92.26 97.86 94.97 94.99

GRIP+VTD SULFA 94.79 97.50 96.13 96.20

slightly lower than GRIP’s original accuracy 95.6%. This decrease can be attributed to the distribution shift between
the datasets, such as differences in resolution, compression artifacts, and visual characteristics of the forgeries.
Also, training on SULFA and testing on VTD yielded an accuracy of 95.76%, while VTD’s original accuracy
was 96.7%. This decrease in accuracy is predicted, given the differences in scene content and manipulation traces
among datasets.

Likewise, the accuracy reached 95% while training on the dataset GRIP and testing on the dataset SULFA. This
study indicates that datasets GRIP and SULFA share more features than dataset VTD, which promotes enhanced
cross-dataset performance.

Additionally, with an accuracy of almost 96%, the best cross-dataset performance is obtained when testing
on SULFA and training on a combination of GRIP and VTD. This enhancement results from the training data’s
greater diversity, which reduces overfitting to dataset-specific patterns and enables the model to learn an additional
representation of forgery artifacts.

Table 11 presents a detailed summary of the results for Recall, Precision, and F1 score throughout the cross-
dataset, and Figure 7 illustrates the confusion matrices corresponding to each cross-dataset experiment detailed in
Table 11.
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Figure 7. Confusion Matrix for Cross-Dataset in Different Scenarios

4. Discussion

The proposed technique outperformed on SULFA, GRIP, and VTD, with impressive accuracy levels of up to 100%.
It differentiated between modified and original videos, with MCC ranging from 91 to 100%. The model achieved
up to 100% accuracy on the SULFA dataset, with recall scores ranging from 0.95 to 1. It also received high F1
scores, demonstrating its effectiveness in detecting object-based manipulation.

We have compared the proposed model for detecting counterfeit products in the SULFA dataset with other
models on the GRIP and VTD datasets. The results indicate that the proposed approach surpasses the previous
methods in terms of recall, precision, F1-Score, and MCC. Compared to the previous methods, the proposed
approach yielded superior results for the GRIP dataset by 95.81%, 91.18%, 96.39%, and 95.24%, respectively.
The VTD dataset had a high F1 score of 96.68%, an MCC of 93.41%, and a recall of 95.88%. The proposed
approach surpasses the previously mentioned methods in terms of computing time and accuracy. On the GRIP
dataset, the proposed model achieved an accuracy of 95.60%, surpassing the previous methods by 73.60%, 43.20%,
and 29.40%. In comparison to the VTD dataset, the proposed model was very accurate (96.7%) and only took 27.35
seconds to process. In comparison to previous works on the SULFA dataset, the proposed model outperforms all
the previous methods in achieving ideal values equal to 100% for all metrics demonstrated in Table 7. This implies
that the proposed method is capable of detecting all objects in the dataset without any false detection. However, the
accuracy scores of the previous methods collapsed with just a value of 24.20%, 52.60%, and 33.70%, respectively.

4.1. Ablation Study on Hyperparameters using SULFA Dataset

To justify the design choice of our deep CNN architecture, we conducted an ablation study by varying key
hyperparameters, including the number of convolutional layers, the learning rate, and the kernel size. Table 12
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summarizes the effect of these parameters on the model’s classification performance using the SULFA dataset, and
Appendix B has the confusion matrices for all configuration patterns.

Table 12. Ablation Study with Different Configuration Patterns

Different Configuration
Patterns TPR FPR FNR TNR Param. FLOPs

(x10ˆ6) Accuracy (%)

Based on best weights (%)
8 Conv Layers, LR= 0.001,
Kernel size 3×3 [36] 100 0 27.03 72.97 360K∼ 1,053 86.11

10 Conv Layers, LR= 0.001,
Kernel size 3×3 97.14 2.86 5.41 94.59 546K∼ 1,128 95.83

13 Conv Layers, LR= 0.01,
Kernel size 3×3 95.71 4.29 6.76 93.24 2M∼ 1,321 94.44

12 Conv Layers, LR= 0.001,
Kernel size 5×5 98.57 1.43 5.71 94.59 1.4M∼ 1,211 96.53

13 Conv Layers, LR= 0.001,
Kernel size 3×3 (Ours) 100 0 0 100 2M∼ 1,325 100

Based on these results, the optimal configuration (13-conv layer depth, 3×3 kernel size, and Adam optimizer
with a learning rate of 0.001) satisfies both the objectives of model correctness and stability. However, performance
dropped when the network depth was reduced or the kernel size was increased, possibly because of a lack of ability
to extract features or because local spatial details were lost. Similarly, higher or lower learning rates resulted in
suboptimal convergence behavior. Furthermore, we compared our architecture with a simpler, shallower CNN
model comprising only 8 convolutional layers with Global Average Pooling instead of a Flatten layer (with fewer
parameters) [37], as shown in Table 10. The simplified model achieved an accuracy of only 85.42, which supports
the necessity of the proposed architecture’s depth and complexity.

Furthermore, the floating-point operations (FLOPs) escalated from 1053×10ˆ6 in the baseline model to
1325×10ˆ6 in the final model, indicating the increased complexity for more features extracted. Memory
consumption increased, with the most complex model requiring 2180 MB (approximately) compared to the
baseline’s 1388 MB (approximately). The suggested DCNN model, which exhibits a fair trade-off between
complexity and detection performance, requires roughly 1.32×10ˆ9 FLOPs per forward pass, which is greater
than the other configuration models but has the best accuracy.

4.2. Computational and Efficiency Analysis

We examined the computational resource requirements using various metrics to assess the model’s accuracy and
speed using the SULFA dataset. These included the following: number of parameters, floating-point operations
per second (FLOPS), memory consumption, inference time per frame, and classification accuracy. Further, we
tested the proposed model in both CPU and GPU execution settings, comparing it to a lightweight baseline model
(MobileNet-v2).

As shown in Table 13, our model maintains a moderate parameter count of 2M, lower than the lightweight
model’s (2.4M). For deeper feature extraction, the FLOPs of our proposed model (1322×10ˆ6) are larger than
those of MobileNet-v2 (600×10ˆ6), and the significant improvement in categorization accuracy, from 54.17% to
100%, justifies this increase.

Regarding resource usage, our model requires 2504 MB on CPU and 109 MB on GPU, which remains feasible
for modern hardware. The inference time remains competitive, with 150 ms/frame on CPU and 62.84 ms/frame
on GPU. This significantly improves performance while showing a little delay compared to the lightweight model
(113.76 ms/frame CPU, 61.72 ms/frame GPU).

The results indicate that while the lightweight Model is more resource-efficient, it suffers a noteworthy drop
in accuracy. In contrast, our proposed Model achieves a +45.83% accuracy improvement with only a moderate
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increase in computational cost, making it a practical choice for more applications where detection reliability is
critical. Consequently, the suggested model provides a good trade-off between detection accuracy and computing
cost, which qualifies it for real-world implementation.

Table 13. Comparative analysis with lightweight MobilNet-v2.

Model
Usage

Interface Parameters
FLOPs
(×106)

Memory
Used (MB)

Inference Time
(ms/frame)

Accuracy
(%)

MobileNet-
v2 CPU 2.4M∼ 600∼ 1347.95 113.76ms 54.17

GPU 2.4M∼ 600∼ 12.94 61.72ms 54.17
Proposed CPU 2M∼ 1,322∼ 2504.38 150ms 100

GPU 2M∼ 1,322∼ 109.23 62.84 ms 100

4.3. Restrictions and Ethical Issues

Although the proposed model demonstrates remarkable efficacy in forgery detection, we underscore the importance
of using it only as an ancillary instrument, especially in evaluating forensic evidence and related matters. Even with
its accuracy, this method can identify original content as counterfeit or fail to detect forgery, leading to inaccurate
results. This may result in erroneous allegations and spurious and misleading evidence fabrication.

Further, the model may be subjected to adversarial attempts to avoid detection. To improve flexibility and
generalization, data augmentation and adversarial training on a huge dataset will be the primary approaches used in
future research, alongside significant development in this model. By combining the wavelet transform with DCNN,
the proposed framework can enhance the detection of forgery even in the presence of attacks such as Geometric
attacks (rotation, scaling, etc.) and Additive noise attacks (Gaussian, etc.).

We aim to promote the responsible and trustworthy use of AI-based video forgery detection systems by
addressing these limitations and ethical concerns.

5. Conclusion

This paper proposes a new architecture of deep convolutional neural network (DCNN) for copy-move video
forgery detection with our assurance of high classification accuracy and the least possible processing time. A
crucial component of this model is batch normalization along with L1 and L2 regularization, which may be used
to initialize a layer output, accelerate training, boost the learning rate, significantly improve accuracy, reduce
overfitting, and improve operation stability. According to the compared approaches [3, 4, 5, 12, 25, 26, 27, 34,
36, 37, 38], the proposed model achieved superior and exceptional results, demonstrating a high level of accuracy
and an F1-score of 100% in both of the cases. In addition, with regard to the various methodologies, the MCC
achieved a perfect score of 100%, potentially surpassing the other approaches. Hence, while using and examining
our recommended SULFA dataset, the proposed approach is highly effective and proficient in detecting object-
oriented manipulation. At the same time, in the experiment carried out over the VTD dataset, our suggested
approach yielded superior performance to every other approach. It achieved 96.70% accuracy, as indicated by
the F1 score of 96.88, along with an MCC of 93.41%. In conclusion, the results above prove that the method
we pointed out is more accurate regarding accuracy, F1-Score, and MCC than the other methods. Again, higher
accuracy levels have supported the proposed strategy over all the techniques used on the GRIP dataset. As such, it
got an accuracy of 95.60%, an F1-Score of 95.81%, and an MCC of 91. 18%.

Furthermore, our method achieved accurate performances in all the datasets and yielded the shortest average
testing time of 21-28 seconds. Hence, we provide a textual description of our suggested method that has been
established to be effective, therefore concentrating more on the SULFA, VTD, and GRIP data sets that support our
algorithm’s viability in video analysis and security.

Future work will focus on detecting forgery in an extensive dataset by using a hybrid model that combines the
proposed model with the wavelet transform to enhance the extraction of features from input images or videos.
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Addressing this complex strategy would improve the effectiveness of forgery detection methods to handle the
intricacies of collective attacks. By combining the wavelet transform with DCNN, the proposed framework can
enhance the detection of forgery even in the presence of attacks such as Geometric attacks (rotation, scaling, etc.)
and Additive noise attacks (Gaussian, etc.).

Appendix A: Mathematical Modeling in Batch Normalization

A.1 Mathematical Background and Practical Implication

Batch Normalization (BN) is a regularization and optimization technique that addresses the problem of internal
covariate shift - i.e., the change in the distribution of inputs to each layer during training. BN stabilizes learning
and enables the use of higher learning rates by normalizing the output of each layer to have zero mean and unit
variance.

Given an input feature map for a mini-batch X = x1, x2, x3, . . . , xn, BN transforms it using the following step
- Step 1: compute batch statistics (Mean and Variance)

Batch Mean µB = 1
n

∑n
j=1 xj

Batch Variance σ2
B = 1

n

∑n
j=1 (xj − µB)

2

- Step 2: Normalize the inputs (Normalize the Features)

x̂j =
(xj − µB)√

σ2
B + c

we use a small constant value ε (e.g., 10−5 ) to prevent division by zero
- Step 3: Apply Learnable Scale and Shift Parameters ( α and β )

yi = αx̂J + β

where α scale and β shift are trainable parameters learned during training the model. These parameters allow the
model to retain representation flexibility after normalization, enabling it to adjust the output distribution if needed.

A.2 Numerical Example of Batch Normalization

To explain how Batch Normalization (BN) works behind a convolutional layer, suppose the following simplified
scenario:

Suppose that after applying a Conv2D layer with a single filter on a small grayscale image, the resulting feature
map (tiny feature map) is:

X =

 12 13 4
10 9 16
14 5 7


Apply Batch Normalization
- Compute the mean:

µ =
1

n

n∑
j=1

xj =
12 + 13 + 4 + 10 + 9 + 16 + 14 + 5 + 7

9
= 10

- Compute the variance:
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σ2 =
1

n

n∑
j=1

(xj − µ)
2
=

1

9

[
(12− 10)2 + (13− 10)2 + (4− 10)2 + (10− 10)2 + (9− 10)2

+(16− 10)2 + (14− 10)2 + (5− 10)2 + (7− 10)2

]

σ2 =
1

n

n∑
j=1

(xj − µ)
2
=

1

9
[4 + 9 + 36 + 0 + 1 + 36 + 16 + 25 + 9] = 15.11

- Normalize the values: Assume that the constant ϵ = 10−5

X̂ =
(xi,j − 10)√

15.11 + 0.00001
=

(xi,j − 10)

3.887

X̂ =

 12−10
3.887

13−10
3.887

4−10
3.887

10−10
3.887

9−10
3.887

16−10
3.887

14−10
3.887

5−10
3.887

7−10
3.887

 =

 0.515 0.772 −1.545
0 −0.257 1.545

1.029 −1.286 −0.772

 = Output after BN

We note that Batch Normalization centers and scales the feature map values. As a result, the values become
normally distributed with a mean of 0 and a standard deviation of 1, which leads to faster convergence and more
stable deep learning training.

- After that, apply learnable parameters α and β : the model learns the optimal value of the two parameters α
and β during the training. For illustration, we assume that α = 2, and β = 1

yi = αx̂j + β = 2x̂j + 1

yi =

 2.03 2.544 −2.09
1 0.486 4.09

3.058 −1.572 −0.544

 = Final output

Batch Normalization’s learnable parameters, α (scaling) and β (shift), enable the network to modify the
normalized output, preserving model expressiveness while providing training stability. This allows the network
to once again represent complex feature distributions.

A.3 Feature Maps Before and After Batch Normalization

Figure 8. Feature Maps before Batch-Normalization from first Conv-2D Layer

To demonstrate the impact of Batch Normalization on intermediate features, we selected a representative frame
from our dataset and showed its feature maps subsequent to the initial convolutional layer and the ensuing Batch
Normalization layer.
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• Before applying Batch Normalization (BN): feature maps may display inconsistent brightness, noise, or
imbalanced activation values.

• After applying Batch Normalization (BN): feature maps demonstrate improved consistency, reduced noise,
and more pronounced patterns.

Figure 9. Feature Maps after Batch-Normalization from first Conv-2D Layer

Figures 8 and 9 display the obtained feature map for the first 8 channels (out of 16) of the first layer of the
proposed framework, both before and after Batch Normalization.

Figure 10. Confusion Matrix for SULFA dataset in Different Configuration Patterns with varying kernel size, learning rate,
and conv layers
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Appendix B: Confusion Matrices of Different Configuration Patterns

To further illustrate the performance of each setting, we have added Confusion Matrices for all configurations in
this part, showing the classification behaviour in detail, as shown below in Figure 10.
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