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Abstract The Indonesian Sharia stock market has experienced significant growth over the past year, accompanied by a rise
in market capitalization. However, high volatility remains a critical challenge for investors when deciding to invest in Sharia-
compliant stocks. Accurately modeling return volatility is essential to support effective risk management and investment
decision-making. This study conducts a comprehensive comparative analysis of several volatility models to identify the
most effective approach for modeling Sharia stock return volatility. The models evaluated include classical Generalized
Autoregressive Conditional Heteroscedasticity (GARCH), asymmetric variants such as Exponential GARCH (EGARCH),
Threshold GARCH (TGARCH), and Asymmetric Power GARCH (APGARCH), as well as the regime-switching Markov
Switching GARCH (MSGARCH) and a Bayesian extension of MSGARCH that incorporates structural shifts and parameter
uncertainty. The comparison is based on information criteria and predictive accuracy metrics to assess both in-sample fit and
out-of-sample performance. Results indicate that the Bayesian MSGARCH model consistently outperforms the other models
in capturing the complex volatility dynamics of Jakarta Islamic Index (JII) returns, particularly during structural breaks and
market regime changes. Furthermore, the analysis reveals that investment activity significantly affects volatility behavior
during periods of market appreciation and depreciation. These findings provide valuable guidance for selecting appropriate
volatility models in Sharia markets and inform the design of more robust investment and risk mitigation strategies.

Keywords APGARCH, Bayesian MSGARCH, EGARCH, GARCH, Indonesian Sharia Stock, MSGARCH, TGARCH,
Volatility

AMS 2010 subject classifications 62M 10, 62P20
DOI: 10.19139/s0ic-2310-5070-2679

1. Introduction

The development of the stock market in Indonesia is not limited to the conventional sector, as the Sharia stock
market has experienced significant growth in recent years. According to the Financial Services Authority (FSA), the
capitalization of Indonesia’s Sharia stock market reached IDR 6,759.54 trillion as of 27 December 2024, marking
a 9.98% year-to-date increase, while the Indonesia Sharia Stock Index (ISSI) closed at 213.86 points, reflecting
strong market performance. The growing prominence of Sharia-compliant stocks highlights their strengthening
role in the national financial system, driven by robust investor interest, proactive regulatory oversight, and the
increasing participation of younger retail investors, who now constitute 79% of individual market participants.
However, high volatility remains a defining characteristic, with stock fluctuations influenced by macroeconomic
conditions, government policies, and global uncertainties, necessitating advanced risk management techniques
[18].
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Time series modeling has been extensively developed to measure volatility and help investors predict stock return
volatility levels. The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is among the
most commonly used models. GARCH effectively captures volatility components such as time variation, volatility
clustering, and leverage effects, which describe increased volatility resulting from data fluctuations [18]. While
GARCH effectively models volatility, it struggles to address asymmetric responses to positive and negative shocks,
particularly in financial data. This limitation has led to the development of asymmetric models such as Exponential
GARCH (EGARCH), Threshold GARCH (TGARCH), and Asymmetric Power GARCH (APGARCH), which are
designed to capture leverage effects better and provide more accurate predictions [11].

In particular, the Sharia stock market faces unique challenges, such as liquidity fluctuations and structural
changes that can cause volatility to shift unpredictably over time. The challenge variations may lead to inaccurate
results when using traditional GARCH models, as they fail to account for sudden shifts in market conditions. To
address the inaccurate results, the Markov Switching GARCH (MSGARCH) model has been introduced, which
accounts for structural changes by dividing the model into multiple regimes. The incorporation of Time-Varying
Transition Probabilities (TVTP) into MSGARCH has shown improved goodness-of-fit and predictive accuracy, as
it allows regime changes to be driven by market liquidity conditions rather than remaining constant. Empirical
findings suggest that deteriorating liquidity can increase the probability of entering a high-volatility state, making
TVTP-MSGARCH a more effective tool for forecasting market uncertainty [41]. Additionally, Bayesian methods
enhance parameter estimation, particularly in small sample conditions, leading to more robust volatility predictions
in Sharia stock markets. The optimal volatility model for Sharia stocks should integrate liquidity effects, leverage
asymmetry, and structural regime shifts, ensuring more accurate risk assessments and investment strategies.

Volatility plays a crucial role in risk management within financial markets, including the Sharia stock market,
where dynamic fluctuations require advanced modeling techniques. Markov Switching GARCH (MSGARCH)
with Bayesian estimation enhances predictive accuracy by integrating time-varying transition probabilities (TVTP),
allowing for adaptive regime switching based on liquidity shifts and structural changes. Asymmetric models
such as EGARCH, TGARCH, and APGARCH further refine volatility estimates by capturing leverage effects,
ensuring a more accurate representation of risk dynamics in Sharia-compliant markets. In incorporating Bayesian
MSGARCH with multi-chain Markov-switching structures, investors can optimize portfolio allocation, strengthen
hedging strategies, and mitigate risk during uncertain market periods [4].

Stock market data exhibit varying characteristics, with Sharia stock data differing from conventional stock
data, particularly regarding volatility. For instance, the volatility of Sharia stocks is generally lower than that of
conventional stocks, making Sharia stocks an attractive option for investors seeking lower-risk investments [24].
The GARCH volatility model, introduced by Bollerslev as an extension of ARCH, addresses heteroscedasticity in
time series data. It has been widely used to measure stock volatility, market risk, and hedging in both Sharia and
conventional stock markets [26].

Despite its strengths, GARCH struggles to handle asymmetric data, where volatility responds more strongly
to negative shocks than positive ones. Asymmetric models such as EGARCH, TGARCH, and APGARCH were
developed to address this issue. The asymmetric models effectively estimate volatility in the Indonesian financial
sector, emphasizing their ability to capture leverage effects better than standard GARCH models [25].

MSGARCH, an advanced version of GARCH, accounts for regime changes in stock market data by capturing
shifts between high-volatility and low-volatility market environments. This model also allows for more robust
parameter estimation by considering market uncertainty. Bayesian estimation in MSGARCH leads to more accurate
volatility predictions, particularly during periods of instability [32]. The Bayesian estimation that is combined with
Markov Switching GARCH also improves volatility predictions over traditional GARCH models [34].

In a similar case, the MSGARCH method is applied to measure the volatility of the Composite Stock Price
Index, and it effectively captured changes in market volatility [20, 21]. The study specifically demonstrated how the
Bayesian MSGARCH model performs well in modeling volatility during structural changes and provides valuable
insights for risk assessment using Value at Risk (VaR). Furthermore, the combination of MSGARCH and Bayesian
estimation can also measure the Value at Risk (VaR) in the ASEAN market, confirming that this model is highly
effective in managing volatility risk in Sharia stocks [28].
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The use of asymmetric models for volatility analysis with Semi-Markov Switching GARCH emphasizes the
importance of these models in assessing the stability of financial systems, especially in markets with asymmetric
volatility [40]. It underscores the relevance of incorporating both asymmetric and switching models to measure
volatility in the Sharia stock market during unstable conditions.

Despite its modeling advantages, Bayesian MSGARCH also involves considerable computational costs. The
reliance on MCMC techniques, such as reversible jump and delayed rejection algorithms, often requires long pilot
runs and extensive iterations to achieve convergence—particularly in models with high parameter correlations
or complex posterior structures [31]. This introduces a trade-off between flexibility and efficiency, especially
when working with high-dimensional or multi-regime specifications. The high dimensionality and latent structure
inherent in Bayesian MSGARCH models can complicate inference, making results sensitive to prior distributions
and risking model misfit due to overfitting or underfitting [9]. To mitigate these challenges, more efficient samplers
such as multi-move Gibbs techniques have been developed to enhance convergence by jointly updating latent
states in regime-switching models [22]. These developments contribute to stabilizing parameter estimation in real
financial environments.

In light of these considerations, this study aims to evaluate the volatility dynamics of Indonesia’s Sharia stock
index by employing a range of GARCH-type models, with particular emphasis on the Bayesian MSGARCH model
under a Markov-switching framework. By incorporating asymmetry, regime dependence, and liquidity conditions,
this approach seeks to generate accurate, interpretable, and practically relevant insights to support portfolio
construction, hedging strategies, and Sharia-compliant risk management. Furthermore, the study addresses a
notable gap in the literature, namely the limited comparative analysis of volatility models in Sharia markets,
especially those utilizing regime-switching techniques such as Bayesian MSGARCH, which remain underexplored
in the context of Islamic financial instruments.

2. Methodology

Several time series models and diagnostic tests were used to identify the best model for measuring Sharia stock
return data volatility.

2.1. Logarithmic Return

Return describes how price changes over a specific period, whether in asset prices, projects, or investments.
Historical data from the Jakarta Islamic Index (JII), such as asset price differences or percentages, are used. Return
is based on the principle that profit is directly proportional to risk. It means that when the asset return rate is high,
the associated risk will also be high. Conversely, when the asset return rate is low then the risk is getting lower.
Therefore, the return can be expressed as follows:

R, = ln(dt—1> (1)

where d; is the data at time ¢, and d;_1 is the data at time ¢ — 1.

2.2. ARIMA

A time series Y; follows Autoregressive Integrated Moving Average (ARIMA) when the differencing process is
applied to non-stationary ARMA [36]. The general form of ARIMA, denoted by ARIMA(p,d,q), is as follows:

(1-B)Y; = ¢1Yio1+ ¢2Yeo+ -+ ¢pYeop — (Brer-1 + 0280 + - + Oge—g) + &4 2
or can be written as follows:
®,(B)1-B)Y, = 64(B)e 3
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where ®,(B) =1—®B— B2 — ... —®,BP, O,(B) =1—-01B - 02B2 — ... —0,B4, (1 - B)%, is the
stationary time return data after differencing d, ¢; is the Autoregressive parameter for i = 1,2,...,p, ©; is the
Moving Average parameter for j = 1,2,...,¢q, and B is the backward shift operator.

2.3. GARCH

Bollerslev and Taylor introduced p lag of conditional variance, where p is referred to as GARCH order [36]. This
combined model is called GARCH. GARCH(p, ¢) equation is presented as follows:

p
ot =w ) ity Y Biotig) )
,

where w > 0.

2.4. Asymmetric Models

GARCH is an extension of ARCH, incorporating lags in its conditional variance. However, it is not explicitly
designed to handle asymmetric problems, such as nonlinearity in data. Asymmetric models respond differently to
adverse shocks than to positive types. Various asymmetric models are explained as follows:

2.4.1. Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) The first model that
allows asymmetric responses due to leverage effects is exponential EGARCH, introduced by Nelson in 1991 [5].
EGARCH(p,q) is defined as r; = o.&¢, where:

(t—i) (t—i) E(t—k)
0 =w+ ;| — — In( o2 )+ &)
powr e (e [n]) Zﬂf )+

O(t—k)

2.4.2. Threshold Generalized Autoregressive Conditional Heteroscedasticity (TGARCH) TGARCH is based on
GARCH developed by Bollerslev [5]. Suppose o7 is a TGARCH(p,q) process, defined as follows:

q p p
of = wHd sty Biol g+ D Wl ©)
i=1 j=1 k=1
where )y, is the coefficient for asymmetric effects.

2.4.3. Asymmetric Power Generalized Autoregressive Conditional Heteroscedasticity (APGARCH) APGARCH
represents a general class of models that includes ARCH and GARCH [1]. The equation of the model is presented
as:

q p
5
af = w+ E i (lee—i| — yier—i)” + E :51"7?—.7' ™
i=1 j=1

where § is the power parameter that allows the model to capture the nonlinear nature of volatility, in summary,
EGARCH, TGARCH, and APGARCH capture asymmetric effects differently.

2.5. MSGARCH

MS-GARCH is a popular model that was first introduced by Hamilton in 1989. It incorporates structural changes
from random properties by assuming the system can be in one of a finite number of regimes [38]. The model
also assumes that the data formation process follows a consistent model structure across regimes, but each regime
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applies unique parameters. MS-GARCH(p,q) is defined as the following system:

q P
2 2 2
of = ws, +Zast et_i+2[3$t O ®)
i=1 j=1
where ws,, as,, and [, are different parameters depending on the regime s;, with s, =1,2,...,n.

2.6. Bayesian MSGARCH

Parameter estimation of the MSGARCH model using the Bayesian approach depends on the likelihood function and
the selected prior distributions to obtain the posterior distribution. Let F;_; denote the information set containing
all data up to time ¢ — 1, then the joint distribution function of r; and s; is given by

1 Ty — s, 2
" Vare P (_(20;;>> T ®

and the likelihood function for the MSGARCH model is

<><Hat exp( t;’”) )nﬁ (10)

where L(6) denotes the likelihood function for ¢ = 1,...,T. The parameter 0 represents all model parameters
in the MSGARCH framework, including the transition probabilities = (111, 121, 712, 22), the regime-dependent
means p = (u1, 42), and the model parameters wy,, a, S

The posterior parameter estimates for each parameter 6 are determined as follows:

1. Assume the prior for the transition probability parameter 7 follows a Beta distribution, i.e., n ~ Beta(c, 3).

The prior density function for 7 is given by: f(n) = % The posterior distribution for 7 is:
re— ps,)? (1 —n)P
fnlr,0) Haf exp ( 207 > Ne,t * B(a.B) (11)
2. Assume the prior for the parameter  follows a normal distribution, i.e., p ~ N (g, O‘i). The prior function
is: f(u) = \/2172 exp (—%) The posterior distribution for y is:
_MSt)2 1 (M_MM)Q
0) 5.t —_— 12
fulr, ) o H oy ' exp < 202 ) Mst P exp 202 12)

3. Assume the prior for the parameter w follows a normal distribution, i.e., w ~ N (i, 02). The prior function

is: f(w) = \/2;7 exp (—w) The posterior distribution for w is:

202
d 1 (re — p )2 1 (w—p )2
— _ Nt Pse) o f T —= e 1
f(u;|7‘7 0) X HO’t exp < 20_? > Nsyt meXP ( 20_‘% > ( 3)

t=1

4. Assume the pr10r for the parameter « follows a normal distribution, i.e., & ~ N (j1q,02). The prior function

lsf() \/ﬁ

T _ 2 1 _ 2
flalr,8) < Ho{l exp (—W) Nsit * —7==5 €XP (—((12012)) (14)

iy 2mo,

exp (— %) The posterior distribution for « is:
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5. Assume the prior for the parameter /3 follows a normal distribution, i.e., 8 ~ N (ug, U%). The prior function

is: f(B) = \/2;7 exp (—%) The posterior distribution for 3 is:
B

T 2 2
’9 -1 <_(Tt/’LSt,) ) ot 1 _(/pr,ﬁ) 15
f(ﬁ‘r ) (08 tl;[l 0y €Xp 20}2 Nyt \/@ exp 20,;23 ( )

Due to the complexity of analytically computing the marginal posterior distributions, the Markov Chain Monte
Carlo MCMC) method is employed to obtain effective posterior estimates via sampling techniques.

2.6.1. Model Interpretability and Process Flow. While the mathematical formulation of the Bayesian MSGARCH
model offers statistical rigor, it can pose challenges for readers unfamiliar with advanced econometric modeling.
To address this, a conceptual narrative and flow-based illustration are included to enhance interpretability.

Figure | illustrates a conceptual flowchart detailing the estimation procedure of the Bayesian MSGARCH model.
The diagram delineates the dynamic process through which the model transitions between volatility regimes via a
hidden Markov structure, while simultaneously incorporating prior beliefs to construct posterior distributions of the
model parameters. Each procedural component that ranging from prior specification, likelihood evaluation, regime
state estimation, to posterior inference is then systematically represented to provide a comprehensive overview of
the Bayesian MSGARCH estimation framework.

e N

Start (Input Data)
Historical Return Data (7¢)

I

Prior Specification
Specify priors for (u, w, o, B, n)

I

State Estimation
Infer latent regime s; € {1, 2}

I

Conditional Variance Update
L Update o7 using GARCH parameters )

V

Likelihood Computation
Evaluate f(r¢|0, st)

Posterior Sampling (MCMC)
Sample from posterior distribution

|

Output
Posterior estimates + regime probabilities

Figure 1. Flowchart of Bayesian MSGARCH Model Estimation Process

The flowchart in Figure 1 illustrates the step-by-step procedure in estimating the Bayesian MSGARCH model.
The process begins with the input of historical return data (r;), which serves as the basis for model estimation. Next,
prior distributions are specified for each of the model parameters, incorporating initial beliefs before observing the
data. State estimation follows, where the hidden regimes (s;) are inferred using the underlying Markov process.
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The model then updates the conditional variance (¢07) based on regime-specific GARCH parameters. With this
variance and the inferred states, the likelihood function is computed, combining the probability of the observed
data given the current parameter set.

To obtain the posterior distribution of the parameters, the model employs Markov Chain Monte Carlo (MCMC)
sampling. This step generates samples from the posterior, integrating the prior information and likelihood. Finally,
the model outputs posterior estimates of the parameters and the inferred probabilities of being in each regime at
each point in time. This structured flow ensures a coherent and interpretable estimation framework for the Bayesian
MSGARCH model.

2.6.2. Pseudocode for Gibbs Sampling in Bayesian MSGARCH Among the simulation-based approaches
proposed in the literature, one notable method is the Bayesian estimation framework that develops a single-move
Gibbs sampling algorithm for Markov Switching GARCH (MS-GARCH) models with a fixed number of regimes.
This approach not only formulates the estimation procedure but also provides theoretical guarantees regarding
geometric ergodicity and the existence of moments for the resulting process [3]. Despite its theoretical appeal, the
single-move sampler suffers from a key practical limitation of high autocorrelation in the Markov chains, which
leads to inefficient mixing and slow convergence. This inefficiency limits the practical applicability of the approach,
particularly for high-dimensional parameter spaces or models with pronounced regime persistence.

To address these challenges, alternative simulation-based methods have been proposed. For instance, a sequential
Monte Carlo (SMC) approach, also known as particle filtering, has been introduced to estimate GARCH-type
models that accommodate structural breaks [27]. While this method is more flexible in capturing abrupt regime
changes, it introduces additional computational complexity and is sensitive to the resampling mechanism. The
Gibbs sampling algorithm adopted in this study builds upon the foundation laid in [3], while incorporating
model-specific adaptations for the Bayesian MSGARCH framework used herein. The overall estimation steps are
presented in Algorithm 1.

Algorithm 1 Gibbs Sampling for Bayesian MSGARCH Estimation

1: Input: Return data {r,}._,, prior hyperparameters

2. Initialize: Parameters 00, states siO)T

3: fori=1to N do

4: Sample latent states s}, | ry.7, §0~D
5. Sample transition probabilities 5" | s\").
6: for each regime j = 1,2 do
7: Extract returns where s; = j
8: Sample GARCH parameters 15, w;, aj, 3;
9: end for
10 if ¢ > burn-in and imod thinning = 0 then
11: Store (")
12: end if
13: end for

14: Output: Posterior samples {0(“} and smoothed P(s; = j | r1.7)

3. Experimental Results

3.1. Description of Sharia Stock Data

This study used data from 51 Sharia stocks listed on the Jakarta Islamic Index (JII). The data comprised weekly
closing prices from 1 January 2024 to 31 December 2024. Subsequently, the data were subjected to a plot
observation to identify patterns. The data plot is presented in Figure 2.
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Weekly Jakarta Islamic Index Data (2024)
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Figure 2. Weekly JII closing data plot.

Figure 2 shows that the Weekly Jakarta Islamic Index (JII) data for 2024 exhibits a cyclical and volatile pattern
with no apparent long-term upward or downward trend. In the early part of the year, the index remains relatively
stable with slight fluctuations, indicating a consolidation phase without significant directional movement. This
stability is followed by a noticeable downward trend, suggesting a possible reaction to market uncertainty or
negative external influences. The decline reaches a visible low point, marking one of the more significant dips
in the index over the year.

After this decline, the index begins to recover and moves upward, reflecting potential market sentiment or
investor confidence improvements. This rising phase continues until the index reaches its highest point of the year.
However, the upward momentum is not sustained, as the index subsequently experiences a sharp drop. The final
part of the year is marked by increased volatility and irregular fluctuations, ending at a lower level than its peak.
Therefore, the visual pattern suggests that JII's performance in 2024 was shaped by short-term market dynamics
rather than a sustained trend, possibly influenced by macroeconomic factors, investor sentiment, or sectoral changes
within the index.

3.2. Identification of ARIMA Model

Identification of ARIMA is the first step in the model-building process. At this stage, ARIMA parameters are
identified using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots in Figure 3.
The vertical dashed blue lines in both plots of ACF and PACF represent the 95% confidence intervals. Any spike
that extends beyond these bounds is considered statistically significant, suggesting the presence of serial correlation
at that lag. These visual cues serve as a practical guide in determining plausible AR and MA orders.

Based on Figure 3, the ACF plot of JII return shows the most significant autocorrelation coefficient at Lag
2, indicating a positive correlation between values at time ¢, t — 1, and ¢t — 2. Other lags mostly fall within the
confidence bounds, implying insignificance. Similarly, the PACF plot also exhibits a clear spike at Lag 2, with
coefficients gradually decreasing thereafter.

Based on this preliminary identification, several candidate ARIMA models were considered: ARIMA(O,1,1),
ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(2,1,0), and ARIMA(2,1,1). The next step involved parameter estimation
and selection of the best model based on the Akaike Information Criterion (AIC), as presented below.

Based on Table 1, ARIMA(2,1,1) was the best ARIMA for measuring JII return data. It occurred when it had
the lowest AIC evaluation value of —196.7124 compared to others. The parameter estimation for ARIMA(2,1,1) is
presented as follows:
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Figure 3. ACF and PACEF plots of JII return data.

Table 1. AIC Values of ARIMA Models

Model AIC

ARIMA(O,1,1) -174.3018
ARIMA(1,1,0) -152.9824
ARIMA(1,1,1) -187.3580
ARIMA(2,1,0) -173.2878
ARIMA(2,1,1) -196.7124

Table 2. Parameter Estimation for ARIMA(1,1,2)

Parameter Value

o1 ~0.7879
b0 -0.4852
0, -0.9999
o2 0.0007

Based on Table 2, the estimation for Autoregressive (AR) and Moving Average (MA) parameters of
ARIMA(2,1,1) was obtained. The equation for ARIMA(2,1,1) based on the results of its parameter estimation
is as follows:

Y, = —0.7879Y;_; — 0.4852Y;_2 — 0.9999¢;_1 + &, (16)

where Y; is the return data at time ¢, Y;_q is the return data at time ¢ — 1, Y;_o is the return data at time ¢ — 2, ;1
is the error at ¢t — 1, and ¢, is the error at ¢.

3.3. Identification of GARCH

GARCH is useful for capturing changes in variance that are not constant over time. The initial stage in
implementing the model is to determine the appropriate GARCH(p,q) specification based on the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) plots of the residuals from the ARIMA(2,1,1) model
in Figure 4. The vertical dashed lines in both plots represent the 95% confidence intervals. Any spike that crosses
these bounds indicates statistically significant autocorrelation at that lag. This helps identify whether remaining
patterns exist in the conditional heteroscedasticity of the residuals, which is a signal for applying GARCH-type
models.

Based on Figure 4, the ACF plot of the residuals shows a significant spike at Lag 1, while the PACF plot
displays significance at Lag 2. This suggests the presence of autocorrelated volatility in the residuals, justifying the
application of GARCH modeling. From these observations, several candidate GARCH models were considered:
GARCH(1,0), GARCH(1,1), GARCH(2,0), and GARCH(2,1), to be evaluated further in the model selection stage.
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Figure 4. ACF and PACEF plots for the residuals of the ARIMA(2,1,1) model.

Subsequently, the parameter estimation was carried out for these possible GARCHs to obtain the coefficient values
presented below.

Table 3. Parameter Estimation of GARCH Models

Model w aq Q9 51 Log Likelihood
GARCH(1,0) 0.0004" 0.7855" - - 100.5360
GARCH(1,1) 0.0004" 0.8251" -0.0328 (ns) 100.5630

GARCH(2,0) 0.0004" 0.8256" -0.0359 (ns) - 100.3490
GARCH(2,1) 0.0004° 0.8239" -0.0305 (ns) -0.0014 (ns) 100.3970
Significance levels: ** p < 0.001, " p < 0.01, " p < 0.05, (ns) not significant

Based on Table 3, the GARCH(1,0) model appears to be the most appropriate among the evaluated models,
as it produces the highest log likelihood value (100.536) and contains only statistically significant parameters. In
contrast, the other models such as GARCH(1,1), GARCH(2,0), and GARCH(2,1) include one or more parameters
that are not statistically significant, which may reduce the reliability of these models. For example, the additional
(1 parameter in GARCH(1,1) and GARCH(2,1), as well as the second a term in GARCH(2,0) and GARCH(2,1),
are found to be insignificant, suggesting that their inclusion does not meaningfully improve model performance.

In time series modeling, a more parsimonious model with statistically significant parameters and a higher log
likelihood is generally preferred because it provides a better balance between model fit and interpretability. Given
its simplicity and strong statistical performance, the GARCH(1,0) model is selected as the best fitting model for
capturing the volatility dynamics in the residuals of the ARIMA(2,1,1) model. The fitted variance equation for the
selected GARCH(1,0) model is:

o} = 0.0004 + 0.7855¢7_, (17)

This equation indicates that the current conditional variance is influenced solely by the past squared residuals,
characteristic of the ARCH-type structure.

The identification of asymmetric models, including Exponential GARCH (EGARCH), Threshold GARCH
(TGARCH), and Asymmetric Power GARCH (APGARCH), was subsequently carried out.

3.4. Identification of EGARCH

EGARCH is a time series model used to capture volatility with asymmetric effects. In addition, it is used to measure
asymmetric effects through the logarithm of the conditional variance in GARCH(1,0). The parameter estimation
and coefficient values of the model are presented as follows.
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Table 4. Parameter Estimation of EGARCH(1,0) with ARIMA(2,1,1)

Parameter Estimate Std. Error t value Pr(;—t—)
I -0.001241 0.002542  -0.48810 0.6255
w -4.995307 1.058940 -4.71727 0.0000
Q1 0.036193 0.129130  0.28029 0.7793
051 -0.166385 0.110946  -1.49970 0.1337
B 0.524259 0.020760 25.25387 0.0000
o] 0.767778 0.042365 18.12284 0.0000

Based on the parameter estimation of EGARCH(1,0) in Table 4, the following equation was obtained:

In(c?) = w+a G1| g || &t + 71 ci-1
O¢—1 O¢—1 Ot—1
- —4.9953+0.0362( €1 —]E{ Cr-1 D +0.7678 <€t1) (18)
Ot—1 Ot—1 Ot—1

3.5. Identification of TGARCH

TGARCH is a model that captures asymmetric effects in volatility. Positive and negative shocks to the measured
variables have different impacts on volatility.

Table 5. Parameter Estimation of TGARCH(1,0) with ARIMA(2,1,1)

Parameter Estimate Std. Error t value Pr(;—t—)
I -0.000154 0.003741 -0.041147 0.96718
w 0.000004 0.000037 0.120543 0.90405
ay 0.078070 0.183373 0.425747 0.67029
51 0.000000 0.150022 0.000000 1.00000
B 1.000000 0.007407 135.011334 0.00000
ol -0.158141 0.174059 -0.908544 0.36359

Based on the parameter estimation of TGARCH(1,1) in Table 6, the following equation was obtained:
o? = 0.000004 4+ 0.0780707_; — 0.158141¢7 | -T(g;_1 < 0) (19)

Based on Table 6, the parameter A; confirmed asymmetric effects on JII return data by showing a negative value.
Hence, volatility in TGARCH(1,0) was more responsive to adverse shocks than positive. However, based on the t-
value and p-value, A; was not statistically significant, as TGARCH showed insignificant and asymmetric effects on
JII return data. It confirmed no significant bias in the residuals from positive or negative shocks. TGARCH could
capture the dynamics of volatility, although asymmetric effects were insignificant. It occurred when the model
showed various diagnostic tests fit the data, and there was no remaining autocorrelation or heteroscedasticity.
TGARCH also showed good fit results when measuring JII return data.

3.6. Identification of APGARCH

APGARCH is an extension of GARCH that captures asymmetric and leverage effects (leverage effects show that
negative shocks have a greater influence than positive) in JII return volatility data. This model includes an additional
parameter § (power), allowing for differences in volatility response to positive and negative shocks.

Based on the parameter estimation of APGARCH(1,0), the following equation was obtained:

o 2372820 — 0.000063 + 0.588402 (e, 1| — 0.146392¢,_;)>*72%*° (20)
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Table 6. Parameter Estimation of APGARCH(1,0) with ARIMA(2,1,1)

Parameter Estimation Standard error t-value Pr(;—t—)

I 0.000591 0.002182  0.2707 0.7866
w 0.000063 0.000049 1.2767 0.2017
o1 0.588402 0.170668  3.4476 0.0006
51 0.000000 0.078278  0.0000 1.0000
Ba 0.000000 0.084842  0.0000 1.0000
o 0.146392 0.228363  0.6411 0.5215
) 2.372820 0.255811  9.2757 0.0000

Table 6 indicates that the AR and MA parameters were significant within the ARIMA component at various
levels, suggesting that past values and shocks influenced the current return. In contrast, within the APGARCH
component, only the «; and § parameters were statistically significant. The results imply that past shocks and the
variance transformation’s power parameters significantly contributed to volatility modeling.

However, the parameters w, 1, and both ARIMA lags 5, and 35 were not statistically significant. It indicates that
the constant term, the asymmetric effect, and the AR terms in the ARIMA component did not have a meaningful
individual impact on the model. Despite this, the APGARCH(1,0) model demonstrated a strong capability to
capture volatility dynamics, as evidenced by good model fit and the absence of residual autocorrelation and
heteroscedasticity. It confirms that the model is suitable for modeling the return volatility of the JII.

3.7. Identification of MSGARCH

MSGARCH combines elements of GARCH with Markov Switching structure to address problems of
heteroscedasticity and structural changes. This study used GARCH (1,0) to measure heteroscedasticity and two
regimes in the Markov Switching model, namely one for high volatility and another for low volatility. Subsequently,
the parameter estimation of MSGARCH was carried out and presented in Table 7. Based on Table 7, the p-value

Table 7. Parameter Estimation of MSGARCH

Parameter Estimate Std.Error tvalue Pr(;—t—)

o1 0.0004 0.0003 1.3551 0.0877
11 0.8256 0.8401 0.9828 0.1629
a1 0.0330 1.5654 0.0211 0.4916
B1 0.0002 0.0251  0.0085 0.4966
121 99.7961 12.5876  7.9281 1.11e-15
02 0.0004 0.0003 1.3176 0.0938
12 0.8256 0.8654  0.9540 0.1700
092 0.0330 1.6181 0.0204 0.4919
B2 0.0002 0.0256  0.0084 0.4967
Py 0.9065 17.3005 0.0524 0.4791
Py 0.0974 17.8856  0.0054 0.4978

was smaller than o = 0.05, confirming that all parameters in MSGARCH were significant. Parameter estimation
for Bayesian MSGARCH is presented as follows:

2y

Oy =

,  ]0.0001+0.1424¢7_,, regime 1
0.0007 + 0.042107_;, regime 2

The parameter values o and [ were positive for each regime, confirming that the conditional variance of JII
return at time ¢ — 1 was influenced by the conditional variance and squared residuals at time ¢ — 1. The transition
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probability matrix is presented as follows:

0.9065 0.0935
F= (0.0974 0.9026) 2)

Based on the transition probability matrix, the system has high persistence in both volatility regimes. Specifically,
the probability of remaining in the low volatility state is 0.9065, while the probability of switching from low to high
volatility is 0.0935. Conversely, the probability of staying in the high volatility state is 0.9026, and the probability
of transitioning from high to low volatility is 0.0974.

These values indicate that low and high-volatility states are highly persistent, with only a slight chance of
transitioning between regimes in the short term. This persistence reflects the tendency of financial markets to
remain in a given volatility regime for extended periods before switching.

3.8. Identification of Bayesian MSGARCH

3.8.1. Prior Specification and Sensitivity Analysis. This study adopts a Bayesian estimation approach and explores
two prior settings to assess the sensitivity of parameter estimates and forecasting performance: a default weakly-
informative prior and an alternative informative prior. The prior choices are motivated by both theoretical
considerations and common practices in the literature on regime-switching volatility models.

In the default specification, the transition probabilities F;; are assigned Beta distributions, consistent with their
support on the [0, 1] interval. The volatility-related parameters (w, a, and [3) follow Gamma distributions, ensuring
positivity and reflecting common prior choices in volatility modeling. For the conditional mean parameter pu, a
diffuse Normal prior centered at zero with a large variance is used, providing minimal influence on the posterior
while allowing flexibility.

The alternative prior is constructed to be more informative, with tighter distributions centered around prior
expectations. For example, the parameters governing volatility dynamics are still assigned Gamma distributions,
but with smaller variance and higher shape parameters, concentrating prior mass near central values. Similarly, the
Normal prior on 1 is given a smaller variance, and Beta priors on P;; are adjusted to favor more persistent regimes.

Table 8 reports the predictive performance of the model under both specifications, measured via out-of-sample
Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE).

Table 8. Predictive Performance under Different Prior Specifications

Prior Specification MAPE MSE

Default Prior 2.6825 0.1977
Alternative Prior 3.5735 0.3543

The results reveal that the default prior delivers superior forecasting accuracy. Although the alternative prior
incorporates more prior knowledge, it reduces the model’s flexibility to learn from the data, particularly in the
presence of latent regime-switching behavior. Informative priors can overly constrain the posterior distribution
and bias the estimates, especially in cases with weak identification or persistent state dynamics. Conversely, the
weakly informative priors allow for greater posterior adaptability, leading to more accurate and robust inferences.
This sensitivity analysis illustrates that even within standard prior families (e.g., Gamma for volatility, Beta for
transition probabilities), the informativeness of the prior plays a crucial role. The default weakly informative setting
is therefore preferred and adopted in the final model estimation.

These findings underscore the importance of careful prior selection in Bayesian regime-switching models,
especially in financial time series characterized by high volatility persistence and nonlinear dynamics. In particular,
overly informative priors may lead to posterior shrinkage, masking regime transitions or underestimating tail
risks that are critical for risk management and forecasting in Sharia-compliant markets. The tendency of
informative priors to dominate the likelihood is especially problematic in models with latent states, where transition
probabilities and volatility parameters exhibit path dependence and are weakly identified in short samples.
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Moreover, the superior performance of the weakly informative (default) prior confirms that a more data-driven
approach allows the model to dynamically capture the asymmetries and regime shifts inherent in financial returns.
This reinforces the need for prior calibration not only based on theoretical intuition but also empirical validation
through predictive performance metrics like MAPE and MSE.

3.8.2. MCMC Settings and Convergence Diagnostics. Parameter estimation was performed via Markov Chain
Monte Carlo (MCMC) using a Gibbs sampling algorithm tailored for latent-variable models. Due to the path
dependence and unobserved regime sequences in MS-GARCH models, classical likelihood-based inference
becomes computationally infeasible [3]. MCMC offers a viable alternative, allowing posterior sampling by
increasing the latent states and iteratively drawing from conditional distributions.

Two MCMC configurations were considered: 30,000 and 100,000 iterations. The initial choice of 30,000
iterations reflects common practice in the Bayesian GARCH literature. However, given the complexity introduced
by regime switching and high persistence in volatility dynamics, longer chains may be necessary to ensure
convergence. To evaluate convergence adequacy, standard diagnostics were applied: the Gelman-Rubin Potential
Scale Reduction Factor (PSRF) and trace plots.

Gelman-Rubin Convergence Diagnostics. Table 9 presents the Potential Scale Reduction Factor (PSRF) values
for both iteration settings.

Table 9. Gelman-Rubin PSRF under Default Prior for Different Iteration Settings

30,000 Iterations 100,000 Iterations

Parameter

Point UCI Point UCI
Qo1 1.29 1.37 1.00 1.01
a1 1.08 1.12 1.01 1.06
51 1.06 1.23 1.01 1.05
Qg2 3.13 15.86 1.00 1.01
Q12 1.60 2.75 1.02 1.08
B2 2.19 5.48 1.00 1.02
Py 2.37 12.24 1.00 1.00
Py 1.09 1.10 1.01 1.03
Multivariate PSRF  2.91 - 1.03 -

Based on Table 9, under the 30,000-iteration setting, several parameters exceed the critical threshold of 1.1
for the Upper Confidence Interval (UCI), and the multivariate Potential Scale Reduction Factor (PSRF) reaches
2.91, indicating poor convergence and potential non-stationarity of the Markov chains. Such values suggest that
the chains have not yet stabilized across the parameter space and may be trapped in local modes, leading to
unreliable posterior estimates. Particularly for regime-switching models with high-dimensional latent structures
like MSGARCH, shorter iteration lengths often fail to capture the full dynamics of state transitions, especially when
parameters are highly correlated or exhibit multimodality. This can result in biased estimates, inflated uncertainty
measures, and poor model fit—ultimately undermining the credibility of subsequent inferences and predictions.

In contrast, with 100,000 iterations, all UCI values fall below the 1.1 convergence threshold, and the multivariate
PSRF decreases substantially to 1.03, indicating strong convergence and consistent mixing behavior across
chains. This improvement reflects the effectiveness of longer MCMC runs in overcoming initial burn-in effects
and achieving stationarity in posterior draws. The tighter convergence also enhances the stability of parameter
estimation, particularly for transition probabilities and volatility persistence terms that are highly sensitive to model
specification and initial values. These results underscore the importance of diagnostic-based iteration tuning in
Bayesian estimation routines. Therefore, the 100,000-iteration configuration is not only justified statistically but
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is also crucial for producing robust and interpretable results in regime-switching volatility models like Bayesian
MSGARCH.

Traceplot Interpretation. To complement the quantitative PSRF results presented earlier, a visual inspection of
the Markov Chain Monte Carlo (MCMC) simulation is conducted through trace plots, as illustrated in Figure 5.
This figure showcases the trace plots of four key parameters from one regime—specifically w (long-run average
volatility), o (short-run shock response), 51 (volatility persistence), and i (unconditional expected return). These
parameters were chosen because they represent the core dynamics of volatility behavior within regime 1 and
are critical for understanding the structural characteristics of the GARCH process in the Bayesian MSGARCH
framework. Notably, the «r; parameter in the figure corresponds to 17 in the formal model specification, indicating
its role in capturing the autoregressive response to past shocks within regime 1.

While the trace plots offer a detailed look into the behavior of select parameters, they serve as a qualitative
diagnostic tool and should be interpreted in tandem with the broader convergence diagnostics presented in Table 9.
That table covers the full parameter space, including parameters from both regimes—such as «p; and a;; for
regime 1, and g2 and «aqo for regime 2—as well as regime-specific volatility parameters 3; and (5, and the
Markov transition probabilities P;; and P»;. The inclusion of only regime 1 parameters in the trace plots is
intentional, aiming to provide a focused and interpretable visual overview without overwhelming the reader with
the full complexity of the model. This selective approach helps highlight the mixing behavior, chain stability,
and convergence tendencies in a representative subset of the parameter space. Together, the trace plots and PSRF
statistics offer a comprehensive convergence assessment, combining both visual intuition and formal statistical
evidence to validate the robustness of the MCMC estimation process.
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Figure 5. Traceplots of selected parameters (w, a1, 81, ) under the default prior.

Figure 5 presents the MCMC trace plots for four key parameters—Ilong-run volatility (w), short-run shock effect
(o), volatility persistence (31), and expected return (u)—based on the iteration configuration under the default
prior setting. The traceplot for long-run volatility (w) exhibits a mostly flat trajectory interspersed with a few
significant spikes. While the bulk of the samples are concentrated around a stable region, the occasional jumps to
extreme values may signal poor mixing or sensitivity to latent regime changes. This pattern suggests that additional
iterations or reparameterization may be necessary to ensure robust inference for this parameter. The short-run
shock effect (1) shows a well-mixed chain, fluctuating stably around a central mean without discernible trends
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or autocorrelation. This indicates effective sampling from the posterior distribution and supports convergence for
this parameter. The trace for volatility persistence, as captured by the §; parameter, spans a wide value range
but maintains free movement in the parameter space. The absence of drift or stickiness, despite the parameter’s
high persistence nature, suggests acceptable mixing and stationarity. Lastly, the expected return (u) traceplot
also reflects stable behavior, with samples oscillating around a mean level without evidence of autocorrelation
or nonstationarity. The chain appears to have traversed the posterior space adequately.

In summary, the convergence diagnostics, both numerical (PSRF) and graphical (traceplots), strongly indicate
that the 100,000 iteration MCMC setting provides stable, well-mixed chains suitable for reliable posterior
inference. These findings underscore the importance of both prior specification and sufficient sampling length
in the Bayesian estimation of regime-switching models.

3.8.3. Parameter Estimation of Bayesian MSGARCH. MSGARCH integrated with Bayesian is a model estimated
using Bayesian. This estimation is carried out using the Gibbs Sampling algorithm. Parameter Estimation of
Bayesian MSGARCH can be shown as follows:

Table 10. Parameter Estimation of Bayesian MSGARCH

Parameter Mean SD SE  TSSE RNE
Qo1 0.0004  0.0002 0.0000 0.0000 0.1267
a1 0.3872  0.1864 0.0037 0.0117 0.1021
Qo1 0.5832 0.3262 0.0065 0.0268 0.0594
51 0.0801 0.0893 0.0018 0.0054 0.1081
V1 78.5190 22.1034 0.4421 1.1577 0.1458
Q2 49.5149 28.0817 0.5616 1.7238 0.1062
12 0.2527 0.1513 0.0030 0.0070 0.1858
Q99 1.0395 0.4267 0.0085 0.0292 0.0856
(B2 0.0045 0.0106  0.0002 0.0007 0.1030
Piq 0.9672  0.0237 0.0005 0.0011 0.1732
Py 0.5970  0.2449 0.0049 0.0124 0.1558

Based on Table 10, the estimated parameter of Bayesian MSGARCH can be presented as:

) {0.0004 +0.3872,¢2 | +0.5832,¢2 , +0.0801,0% ,, if regime 1 03

g
’ 49.5149 + 0.2527, €2, +1.0395,€2_, 4 0.0045,02_,, if regime 2

The parameter values «, and /3 were positive for each regime, meaning that the conditional variance value of JII
return at time ¢ — 1 was influenced by the conditional variance and squared residuals at time ¢ — 1. The transition
probability matrix is presented as follows:

0.9672  0.0328
F= <0.5970 0.4030) (24)

Based on the transition probability matrix, the probability of staying in the low volatility regime (Regime 1 to
Regime 1) is 96.72%, while the probability of switching from low to high volatility (Regime 1 to Regime 2) is
3.28%. Conversely, the probability of remaining in the high volatility regime (Regime 2 to Regime 2) is 40.30%,
and the probability of transitioning from high to low volatility (Regime 2 to Regime 1) is 59.70%. These results
indicate that the low volatility regime is more persistent, while the high volatility regime tends to revert more
frequently to the low volatility state.

3.9. Evaluation Models

In evaluating the performance of volatility models applied to Jakarta Islamic Index (JII) stock return data,
two primary evaluation approaches were utilized: information criteria and predictive accuracy metrics. The
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Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) assess model fit while penalizing
complexity, balancing goodness-of-fit and parsimony. The Deviance Information Criterion (DIC) evaluates
Bayesian models by accounting for fit and complexity based on posterior parameter distributions. Predictive
accuracy was measured using Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE), which
quantify forecasting capability. Together, these criteria furnish a comprehensive assessment of model performance
from statistical, Bayesian, and practical forecasting perspectives.

Table 11. Comparison of AIC, BIC, and DIC Values for Various GARCH Models

Model AIC BIC DIC
GARCH -4.0219 -3.9446 NA
EGARCH -3.8701 -3.5998 NA
TGARCH -4.9150 -4.7256 NA
APGARCH -3.8819 -3.6503 NA
MSGARCH -174.2089  -153.3989 NA
Bayesian MSGARCH NA NA -188.4558

Table 11 presents the comparative evaluation of volatility models estimated via maximum likelihood methods,
including GARCH(1,0), EGARCH(1,1), TGARCH(1,1), APGARCH(1,1), and the Markov Switching GARCH
(MSGARCH). Notably, the MSGARCH model exhibits the lowest AIC and BIC values, recorded at -174.2089 and
-153.3989, respectively, signifying its superior balance between parsimony and model fit in capturing the inherent
regime-switching dynamics of the Sharia stock market. These results indicate that MSGARCH provides the most
parsimonious yet best-fitting representation of the underlying volatility dynamics, effectively capturing regime-
switching behavior inherent in the Sharia stock market. While the TGARCH model demonstrates competitive
performance, it remains inferior to MSGARCH based on these information criteria.

The superiority of the MSGARCH model in terms of AIC and BIC underscores its ability to accommodate
structural breaks and time-varying volatility regimes that simpler GARCH-type models fail to capture. This
capacity is particularly relevant in financial time series exhibiting abrupt changes in market conditions, such as
those influenced by economic cycles or regulatory shifts affecting Sharia-compliant stocks. Consequently, the
MSGARCH model’s flexibility offers a more nuanced understanding of volatility clustering and persistence in the
JII returns.

Unlike classical maximum likelihood-based models, the Bayesian MSGARCH framework employs Markov
Chain Monte Carlo (MCMC) techniques for parameter estimation. Consequently, standard information criteria such
as AIC and BIC, which rely on likelihood-based penalization, are not directly applicable to Bayesian inference.
Instead, model adequacy within the Bayesian paradigm is assessed using the Deviance Information Criterion (DIC),
a generalized extension of AIC tailored for posterior distributions. With a DIC value of -188.4558, the Bayesian
MSGARCH model demonstrates a robust capacity to account for structural breaks and stochastic volatility regimes
while incorporating Bayesian regularization.

Due to the fundamental differences between likelihood-based estimation methods used for GARCH, EGARCH,
TGARCH, APGARCH, and MSGARCH models evaluated by AIC or BIC and the Bayesian estimation approach
applied to the Bayesian MSGARCH model assessed by DIC, direct comparisons are not strictly equivalent.
Therefore, an empirical evaluation based on out-of-sample forecasting accuracy was performed, as presented in
Table 12. The findings reveal that the Bayesian MSGARCH model surpasses its classical counterparts in Mean
Absolute Percentage Error (MAPE) and Mean Squared Error (MSE), highlighting its superior ability to capture
volatility clustering and persistence in JII return dynamics.

Table 12 depicts the comparative predictive accuracy of six volatility models applied to weekly JII returns:
GARCH(1,0), EGARCH(1,1), TGARCH(1,1), APGARCH(1,1), MSGARCH, and Bayesian MSGARCH. The
Bayesian MSGARCH model achieves the lowest forecasting errors, with a MAPE of 0.8106 and an MSE of 0.0224,
outperforming both classical MSGARCH and GARCH-type models. This superior predictive capability can be
attributed to the Bayesian framework’s flexibility in parameter estimation and ability to incorporate parameter
uncertainty effectively. Conversely, models such as APGARCH and EGARCH exhibit relatively higher prediction
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Table 12. Comparison of Volatility Model Performance Based on MAPE and MSE

Model MAPE MSE
GARCH 0.8185 0.0232
EGARCH 0.8716  0.0273
TGARCH 0.8634  0.0269
APGARCH 0.8702  0.0272
MSGARCH 0.8161 0.0231

Bayesian MSGARCH 0.8106  0.0224

errors, indicating less reliable forecasting performance. Hence, while the classical MSGARCH model excels in
model fit criteria under maximum likelihood estimation, the Bayesian MSGARCH model demonstrates the best
overall performance regarding out-of-sample predictive accuracy.

The findings suggest that volatility models accounting for asymmetric effects and structural regime shifts
provide robust frameworks for modeling the complex dynamics of JII Sharia stock returns. The asymmetric
nature of Sharia stock volatility, characterized by nonlinear responses and threshold effects, necessitates advanced
modeling approaches. From an investment perspective, recognizing these characteristics is crucial for designing
and implementing effective trading strategies such as long-short, market-neutral, and event-driven approaches.
Specifically, the long-short strategy capitalizes on anticipated price movements by taking simultaneous long and
short positions; the market-neutral strategy seeks to hedge systemic market risk; and the event-driven strategy
exploits volatility induced by specific economic or corporate events.

Despite its strengths, Bayesian MSGARCH involves considerable computational costs. The reliance on MCMC
techniques, such as reversible jump and delayed rejection algorithms, often requires long pilot runs and extensive
iterations to achieve convergence—particularly in models with high parameter correlations or complex posterior
structures [31]. This introduces a trade-off between flexibility and efficiency, especially when working with high-
dimensional or multi-regime specifications. The high dimensionality and latent structure inherent in Bayesian
MSGARCH models can also complicate inference. The outcomes are sensitive to prior distributions, and when the
number of regimes is inferred from data, the model risks overfitting or underfitting depending on prior assumptions.
Moreover, interpretability may diminish as model complexity increases, potentially hindering communication of
results and their practical application [9].

To address some of these issues, advanced sampling methods such as multi-move Gibbs samplers have been
developed to improve computational efficiency. By updating blocks of latent states simultaneously, these methods
enhance mixing and reduce autocorrelation in the posterior chain, particularly in settings with multiple regimes
[22]. Such techniques are crucial for stabilizing estimation in real-world financial applications. The ability of
Bayesian MSGARCH models to track regime changes over time offers valuable insights for portfolio management
and risk control. Integrating modern tools like machine learning or sentiment analysis can further augment these
models, helping investors navigate the nuanced behavior of Sharia-compliant stocks. Recognizing asymmetric
volatility patterns and regime-dependent dynamics is essential for strategy development, whether through long-
short positioning, market-neutral hedging, or event-driven trading.

Volatility in JII Sharia stocks exhibits structured asymmetry and regime-dependent dynamics, shaped
by macroeconomic shifts, regulatory frameworks, firm-specific fundamentals, and investor sentiment. These
characteristics present both risks and opportunities for market participants, necessitating robust modeling
techniques such as Bayesian MSGARCH that can adapt to dynamic and nonlinear environments. Notably, the risk
profile of Sharia-compliant investments diverges from conventional equities, underscoring the need for tailored
risk management strategies. External economic and political developments, along with company-specific financial
performance, substantially influence asymmetric volatility and price movements in the Sharia stock market.
Market sentiment likewise plays a pivotal role in shaping these dynamics. In response, investors commonly
employ hedging strategies, including long-term buy-and-hold positions and short-term volatility strategies—such
as straddle, strangle, ratio writing, and iron condor options—to manage downside risk. These approaches are
particularly effective in navigating the evolving structure of volatility regimes. Ultimately, disciplined strategy
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execution supported by empirical modeling—rather than reactive decision-making—remains crucial in mitigating
risk and leveraging the unique features of Islamic financial markets [33].

The practical applications of this study are multifaceted, particularly in the domains of portfolio optimization,
Value-at-Risk (VaR) forecasting, and policy design tailored to Sharia-compliant markets. The Bayesian
MSGARCH model’s ability to detect structural breaks and latent regime transitions enables investors to adjust
portfolio exposure proactively, especially during high-volatility periods. This regime-sensitive structure enhances
risk estimation accuracy—particularly in the context of sudden shocks or structural change—thereby supporting
more informed capital allocation decisions [14]. Additionally, asymmetric volatility patterns revealed through
the model inform dynamic hedging and long-short strategies, aligning investment behavior with underlying
market regimes. From a regulatory perspective, the identification of volatility clustering and regime durations
supports macroprudential oversight and the development of more resilient Islamic financial instruments. Thus, the
integration of advanced regime-switching models provides both theoretical insights and practical utility in real-
world decision-making within Islamic finance.

4. Conclusion

In conclusion, the Indonesian Sharia stock market, as reflected by JII returns, experienced substantial growth
accompanied by increased market capitalization throughout the year. Despite this positive trend, high volatility
remains a persistent challenge for investors, highlighting the necessity for reliable and sophisticated volatility
modeling to support effective investment decisions. In this study, classical volatility models such as GARCH
and asymmetric models including EGARCH, TGARCH, APGARCH, and MSGARCH were estimated using the
Maximum Likelihood method, while the Bayesian MSGARCH model was estimated using the Markov Chain
Monte Carlo method.

The performance evaluation employed multiple approaches, including information criteria (AIC or BIC) for
classical models and the Deviance Information Criterion (DIC) for the Bayesian model, alongside predictive
accuracy measures such as Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE). Results
showed that the MSGARCH model achieved the best balance of parsimony and fit among classical models,
effectively capturing regime-switching volatility dynamics inherent to the Sharia stock market. Meanwhile,
the Bayesian MSGARCH model demonstrated superior predictive accuracy and flexibility in accommodating
structural breaks and rapid volatility shifts, particularly with limited data availability.

The findings indicate that Sharia-compliant stock volatility demonstrates significant asymmetric patterns and
regime-dependent characteristics. These insights are essential for understanding market behavior during both
bullish and bearish conditions. The Bayesian MSGARCH framework, with its capacity to incorporate parameter
uncertainty and adjust to evolving market regimes, offers substantial value for applications in risk management
and portfolio strategy formulation. The analysis emphasizes the necessity of adopting advanced volatility models
that capture the intricate dynamics of Sharia stock returns. Employing such models facilitates improved forecasting
accuracy and more effective risk mitigation, thereby supporting sound and disciplined decision-making within the
evolving landscape of the Sharia stock market.

Moreover, this study provides empirical evidence to support the integration of regime-switching and Bayesian
approaches in the modeling of Islamic equity markets, reinforcing their relevance in both academic research
and professional practice. Future research could explore the incorporation of macroeconomic variables, high-
frequency data, or hybrid models that combine regime-switching structures such as MSGARCH with machine
learning techniques, including Long Short-Term Memory (LSTM) networks or other deep learning architectures,
for improved volatility forecasting and pattern recognition in Sharia markets. As the Sharia financial ecosystem
continues to expand, such methodological innovations will be increasingly important in aligning financial stability
with ethical investment principles.

Furthermore, these findings offer valuable implications for policymakers and investors. For regulators, the
distinct volatility structure of Sharia-compliant stocks highlights the need to develop Islamic financial instruments,
such as Islamic derivatives-based hedging tools that align with Sharia principles while enabling effective risk
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management. For investors, the study reinforces the importance of adopting strategy-specific models tailored to
the Islamic market context, which may include long-term holding, sector rotation, or Sharia-compliant options
strategies to mitigate downside risk and enhance portfolio resilience.
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