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Abstract Indoor security systems must guarantee availability, integrity, confidentiality, and traceability; however,
traditional single-sensor techniques frequently fail in low-light, occluded, or loud environments. This work presents a hybrid
indoor security system that integrates Ultra-High Frequency (UHF) RFID, millimeter wave (mmWave) radar (IWR1642),
and YOLOV5-Tiny-based computer vision to detect, track, and identify persons in enclosed locations such as museums and
exhibition halls. Each sensing modality serves a distinct purpose: RFID checks identity and counts authorized entries/exits;
mmWave radar follows movement in all visibility conditions and offers blind-spot coverage; and the vision subsystem
makes high-speed facial/person recognition to enforce blacklists. A Kalman filter-based fusion technique synchronizes
asynchronous sensor streams, while TensorRT edge acceleration enables low-latency vision inference. Experimental results
in dynamic indoor environments indicate that the proposed model increases detection accuracy by 14%, lowers false positives
by 22%, and achieves real-time performance (24 FPS) when compared to baseline single-sensor models. This multi-sensor
fusion proposed architecture overcomes the constraints of standalone systems by providing a scalable and privacy-preserving
solution for current smart surveillance applications.
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1. Introduction

Non-specialists may struggle to upgrade or install security systems. While a correctly constructed surveillance
system considerably improves emergency response, a poor configuration renders it ineffective. Prioritizing critical
components improves property protection. In sensitive, confined areas, a simple camera recording system is
sometimes insufficient; reliable, real-time tracking is required. Although camera-based systems are effective at
face recognition, they can be obtrusive and often require user consent, which may be problematic in homes and
workplaces [1].
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Simple indoor public venues, such as museums, exhibition halls, and government buildings, require powerful
security systems that can detect, track, and respond to unlawful entry or suspicious movement. Traditional
surveillance methods, which depend exclusively on cameras or RFID, sometimes suffer from environmental
restrictions such as low illumination, obstacles, and restricted detection range [2], [3]. Furthermore, the lack of
real-time integration of sensory inputs results in uneven data interpretation and delayed reaction.

Radio frequency (RF) approaches [4] are less intrusive, using Wi-Fi signal fluctuations to identify people without
requiring them to carry gadgets. However, these systems frequently need extra devices such as separate transmitters
and receivers. Other alternatives include point cloud sensors such as LiDAR and depth cameras [5]. However,
LiDAR is too costly for household usage, while depth cameras have limited range and accuracy. Both LiDAR and
depth cameras face challenges with user acceptance.

Recent improvements in sensing technology and embedded intelligence have created new opportunities for hybrid
systems that use complementary sensors to overcome individual constraints. For example, mmWave radar detects
the mobility of objects using a single device regardless of visibility conditions [6], UHF RFID allows identification
verification at entry points [7]. Furthermore, deep learning-based computer vision approaches such as YOLOv5
provide facial recognition and visual tracking [8]. Security operations are divided into securing open areas and
securing closed areas. In this work, the focus is on securing closed places such as museums, theatres, cinemas,
and others. However, most present systems run most object tracking sensors in isolation or lack real-time
synchronization and data fusion, limiting their usefulness in dynamic contexts [9].

The main objective of this paper is to develop a unified, real-time, hybrid security tracking and identification system
tailored for indoor surveillance. The main contributions of this work are as follows:

e Hybrid multi-sensor architecture that integrates UHF RFID, mmWave radar, and YOLOvVS5-Tiny-based
computer vision to provide identity verification, blind-spot motion tracking, and real-time facial/person
identification.

* Real-time sensor fusion framework with a Kalman Filter, time-synchronization protocol, and adaptive sensor
weighting to address environmental changes.

e Optimized vision processing with TensorRT acceleration for high frame rates (24 FPS) without affecting
detection accuracy.

» Experimental evaluation included baseline comparisons with single-sensor approaches, occlusion-resilience
testing, and performance analysis in various illumination and interference scenarios.

* Considerations for scalability and privacy, including multi-room installations and GDPR-compliant face
data management. This combination enables timely detection of anomalies such as unauthorized access,
overcrowding, or sensor failure, thereby enhancing security responsiveness.

The remainder of this paper is organized as follows: Section 2 reviews related works. Section 3 details the system
architecture and methodology. Section 4 presents experimental results and performance evaluation. Section 5
concludes the paper with future research directions.

2. Literature Review

Among the many research investigations looking at the use of particular technologies for interior tracking and
security are vision systems, millimeter-wave (mmWave) radar, and RFIDs. Most of these techniques, however,
operate alone and are therefore less effective in uncertain or blocked surroundings. The pertinent literature is
reviewed in this part, together with the main flaws that our suggested unified framework tries to treat.

Zhao et al. [6] suggested an mmWave radar-based system for monitoring and recognizing humans in smart
environments that use sparse point clouds and trajectory linkage. While the radar was excellent at detecting
mobility, the system lacked authenticity verification and was vulnerable to error messages without auxiliary
sensors. In the field of RFID-based applications, Fadzir et al. [10] developed an RFID-GSM system to track kids
on school vehicles and notify parents. Dias et al. [11] used RFID cards for automated attendance in university
classrooms. Similarly, Ouyang et al. [12] used RFID for vehicle management and theft detection. These techniques
illustrate RFID’s usefulness for presence logging, but they do not take into consideration in-room mobility or
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behavior analysis. Furthermore, they are frequently constrained by short-range HF RFID devices, which our
approach addresses by employing UHF RFID for longer-range recognition.

Khalid et al. [13] evaluated security problems of RFID and identified flaws in authentication schemes. This study
also noted the lack of complete privacy guidelines for various RFID-based authentication algorithms. These studies
underline that RFID devices alone cannot ensure safe identification and that multi-factor authentication methods
such as facial recognition and positioning tracking are required, which our solution delivers via camera and radar
integration. Yang et al. [ 14] demonstrated an intelligent door system with smart cameras for access control, whereas
Zhang et al. [15] examined the installation of a camera surveillance system for smart city transformation. Cameras
are beneficial for visual tracking, but they are restricted in dark, smoky, or occluded settings, which is why we
utilize mmWave radar as a complementary sensor.

Lietal. [16] developed an imaging-based indoor positioning system that employs deep belief nets and geographical
landmarks. Li L. [17] used visual SLAM and lasers for autonomously navigating. Both technologies demonstrate
the promise of vision systems for mapping and tracking, but they are computationally costly and susceptible
to visual distortions. To increase accuracy, Deng H. [18] presented a multi-camera system for real-time drone
monitoring with minimal fish-eye distortion. However, these systems are sometimes expensive and hard to operate
in public indoor settings. In contrast, our proposed system utilizes a single wide-angle camera calibration for fish-
eye correction, reducing both cost and complexity.

Other radar-based studies include Kanno et al. [19] and Guan et al. [20], who investigated radar for 3D mobility
mapping and removing foreign objects and debris (FODs) from airport runways to provide high-level safety in
aircraft movement and remove any obstacles in the path. Although these demonstrate the resilience of mmWave
radar, their use cases differ dramatically from indoor person tracking. Guan J. [21] focused on improving
radar signal precision in low-resolution circumstances, leveraging the fact that mmWave signals have favorable
propagation characteristics in low visibility conditions. Whereas Long N. [22] advocated merging Red, Green, and
Blue-Depth (RGB-D) sensors with mmWave radar to identify obstacles for visually impaired users, emphasizing
the benefits of sensor fusion.

In addition, Song et al. [23] developed a robust curved-road tracking model using an adaptive Kalman filter in
autonomous systems, which influenced our decision to use a Kalman filter to combine sensor data from radar,
camera, and RFID streams. Cui H. [24] investigated mmWave radar-based recognition for person tracking and
discovered substantial false-positive rates. This study demonstrated that using two mmWave radars can enhance
the system precision and eliminate the large number of false alarms that were raised due to unstable data and noise.
Huang X. [25] proposed a rapid indoor people tracking model that employs recursive Kalman filtering (RKF) to
outperform the exponential Kalman filter (EKF) drawbacks in terms of complexity and computation time. Also, the
study presents two clustering strategies to offer high accuracy and low processing time. While accurate, it lacked
multimodal verification and a user identification method.

According to recent studies, mmWave radar can reliably locate and count people indoors with sub-meter accuracy
and continue to function even in the presence of partial occlusions; multi-radar systems also make fall detection
and multi-person tracking possible [26]. While broader fusion frameworks (e.g., DRL-driven SLAM and hybrid
radar—wearable tracking) demonstrate the advantages of combining modalities, complementary research in sensor
fusion focuses on calibration, alignment, and deep radar—camera fusion [27]. On the compute side, YOLO-based
pipeline edge deployments show real-time object detection on limited hardware, which encourages on-device
analytics for surveillance [28].

However, recent studies seldom quantify accuracy—latency trade-offs for multi-sensor pipelines on the edge and
usually lack identity-aware access control (RFID-based authorisation) within the fusion loop. Furthermore, it
is uncommon for technical PPFR studies to link their designs to functional GDPR controls in interior security
systems. By adopting a Kalman-based framework that is accelerated on-device to combine RFID identification
with radar/vision kinematics and by putting in place privacy protections that comply with current regulatory advice,
our approach fills these gaps.

The shortcomings mentioned in the literature reveal a common issues such as single-sensor systems lack resilience,
whereas sensor fusion systems frequently ignore real-time integration and identity verification. Our proposed
hybrid overcomes the constraints of single-sensor systems by integrating UHF RFID, mmWave radar, and
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YOLOVS5-Tiny vision for real-time integration and identity verification. It implements real-time multi-sensor fusion
with a Kalman filter for consistent person tracking, optimizes latency and processing with edge-based acceleration
for the camera module, and includes an integrated GUI for live monitoring, alerting, and anomaly detection, which
was not present in previous works.

3. System Architecture and Methodology

This section describes the revised design of the proposed hybrid indoor security system. The system combines
three subsystems—RFID, mmWave radar, and computer vision (camera-based) to allow real-time person detection,
tracking, and identification in confined spaces like museums and exhibition halls.

3.1. System Overview and Sensor Fusion Framework

Figure 1 shows the proposed architecture for a multi-sensor modular, synchronized framework. Unlike earlier
research that only vaguely links sensor devices, this system makes use of a centralized processing module with
real-time data fusion capability. The layered architecture was employed as the following:

* The data acquisition layer includes a UHF RFID reader, mmWave radar (TI IWR1642), and cameras (YOLO-
tuned vision system).

» The synchronization and preprocessing layer synchronizes time-stamped data with software-based buffer
queues and shared system clocks.

* Fusion and Decision Layer: Uses a Kalman Filter-based data fusion method to correlate detections from
several sensors.

¢ Interface Layer: A MATLAB-based GUI enables real-time tracking, occupancy validation, and anomaly
detection.

In this proposed model, a scenario is proposed for the security operation. A list of the names and pictures of
unwanted persons must be prepared to identify and deal with them by the concerned security services before
entering the place to be secured. The following steps show the proposed building algorithm:

Algorithm 1 Proposed Building Security Algorithm

External Camera Unit:

Capture an image of the visitor.

Compare the visitor image with the blocked image database.
RFID Unit:

Issue an RFID card to the visitor.

Security officer verifies visitor ID.

Millimeter Wave Radar Unit:

Count and track the people in the room.

Provide a motion map.

Internal Camera Unit:

: Detect, track, and count people in real time inside the room.
: Control Unit:

: Compare the counting results of the three units.

VX RD;N RN

— = = =
Wy -2

This proposed algorithm is suggested to improve the building’s security and safety based on the combination of
three units: the camera, RFID, and millimeter-wave radar.
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Figure 1. Proposed System Architecture Diagram.

3.2. RFID Module (Enhanced UHF Implementation

To overcome the restricted range issue of the original 13.56 MHz RFID design, the system utilized Ultra High
Frequency (UHF) RFID (860-960 MHz) with passive tags. These have an effective range of 1-5 meters, allowing
for accurate monitoring of entry and departure locations. The utilized hardware is an Impinj Speedway R420 reader
with circularly polarized antennae. It is positioned at entry and exit gates, with each tag scan time-stamped and
recorded. The studied case monitors legitimate entry and departures. Each tag corresponds to a user profile in the
central system. The RFID module aims to provide some legal entries from the entrance of the indoor area by giving
every visitor an RFID card. The coupling coefficient K [29] is the most important parameter. K is affected by the
distance between the separated two-loop antennas. To determine the coupling coefficient K:

2 72
Honinamdids

K =
2 (\/ LreaperLta - v/ (2% + d%)j)

(M

Where 14 is the magnetic constant (47 x 10~7). n; and n, are the number of turns of each antenna coil. d; = 7cm
and d, = 8 cm are the diameters of Tag and Reader antennas respectively. z is the separating distance between the
two coil antennas. Lrgapgr 1S the reader inductance. Ltag is the tag inductance.

To determine the magnetic coupling between the two antennas [30, 31]:
2=z —d3 2

i/(ﬂonlnzﬂd%dg)z -3 3)
xr =
22/3k2/3\/LrEADER - LTAG
Figure 2 presents the variation of coupling coefficient and mutual inductance as a function of variable distance
[32]. The design is based on two RFIDs, one on the entrance door, while the other is on the exit door. In order to
achieve this design, there are two important aspects the first one is how to sync the two RFIDs on the same MCU,
while the second is the PCB design.
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Figure 2. The Variation of Coupling Coefficient and Mutual Inductance[32].

Popular 5V microcontrollers such as Arduino and Basic Stamp typically require level shifting in sensors, displays,
and streak cards when interacting with newer 3.3V devices. A bidirectional logic level converter, suitable for
protocols like I2C and TTL serial, overcomes this by providing voltage conversions from 1.8V to 10V. It serves as
a voltage switcher and communication bridge, enabling an Arduino to communicate with two RFID modules.
This allows for simultaneous scanning and speedy data transfer to the Arduino. While 5V microcontrollers such as
Arduino and the Basic Stamp are commonly utilized for level shifting in a variety of applications, several modern
3.3V devices need a voltage downshift.

A bidirectional logic level converter that operates from 1.8V to 10V was developed. This converter is compatible
with protocols like I2C and TTL, and performs as both a voltage shifter and a communication route. It also
enables an Arduino to communicate with two RFID modules. As shown in Figure 3, the microcontroller may
share a bus with both RFIDs, ensuring simultaneous scanning and rapid data delivery to the Arduino.

3.3. mm Wave Radar Unit (IWR1642)

Even in low-visibility situations, the mmWave radar system is used to count and track people in a room and then
provide a map of their movements. Millimetre-wave radar is based on the Frequency-Modulated Continuous Wave
(FMCW) technique which allows the simultaneous measurement of a target’s relative radial speed and range.

3.4. Camera and Vision-Based Tracking

The camera module objective is maintaining a full view of the monitored room, performing real-time human
detection and tracking, comparing occupant counts with RFID and radar, and recognizing blacklisted individuals
at the entrance, triggering alarms for unauthorized access. The system utilized a dual-camera configuration, with
an entrance camera for face recognition against a blacklist dataset and a main surveillance camera for indoor
monitoring, both equipped with a 1536x1536 resolution fisheye lens for ultra-wide coverage and night vision. This
design provides visibility of the entire room and eliminates dead zones. Table 1 lists the specifications of both
cameras.

For fulfilling our target to have full view of the room ensuring no dead-regions, our selection for an omnidirectional
camera with an ultra-wide viewing angle was a necessity. There are 2 main properties for the camera to be
considered wide-angled: focal length and the field of view.
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Figure 3. Bidirectional logic level converter.

Table 1. Specifications of Main Camera and Entrance Door Camera

POC Specification Main Camera Entrance Door Camera
Field of View (FOV) Angle 360° (Fisheye Viewing Lens) > 100°

Resolution Pixels 1536 x 1536 — 3.0MP (Lower resolution camera)
Night Vision Ability IR Capability 10m range IR sensor Not required

Operating Power Consumption  3W (max) -

Ultra-Wide-angle cameras have a focal length less than 24mm, allowing for a wide field of view (FOV) that
exceeds 120 degrees and reaches up to 360 degrees. Wide angle viewing is achieved using fisheye lenses or
rectilinear lenses. Rectilinear lenses map the scene on a 2D image without curvilinear distortion, mapping straight
lines in the real world to the image generated by the camera. However, this model cannot be achieved for viewing
angles more than 180 degrees, leading to the selection of a fisheye camera model with a FOV of 360 degrees.
Camera calibration is done using specific pattern images, e.g., a chessboard pattern image, where the image is
printed, and many images (minimum of 15 images) are captured to have multiple views and rotations of the
chessboard pattern. In all images, the internal chessboard corners are extracted, and the positions are returned.
The typically used chessboard pattern has internal 6x9 corners. The Python OpenCV library offers a toolbox for
camera calibration, which is used to generate the camera matrix and transform the image from fisheye view to
pinhole view. The flowchart shown in Figure 4 represents the sequence of operation of the calibration method
used.

For face recognition, the YOLOvS5-Tiny model is trained on a custom dataset with the OIDv4 toolbox. Face
embeddings are used to compare against a blacklist. The YOLOVS5-Tiny was chosen for human tracking due to
its efficient speed and accuracy. To overcome delays, the model is tuned with TensorRT, obtaining 24 FPS on
Jetson Nano hardware. The Fisheye distortion is rectified using checkerboard calibration (50-image dataset), and
undistorted frames are supplied into the detector.
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Figure 4. Flowchart of camera calibration algorithm.

In YOLO algorithm, we are not looking in our image for interesting regions that might contain any object.
As shown in Figure 5, we divide our picture into cells, typically a 19x19 grid. Every cell will be responsible for
predicting five bounding boxes (if that cell contains more than one object). This will give us a picture of the 1805
bounding boxes. Confidence prediction is essential due to the ubiquity of vacant cells and boxes. Low-confidence
boxes are next deleted, and non-max suppression, as shown in Figure 6, is used to eliminate overlapping boxes
with a large common area. Table 2 illustrates a YOLO CNN architecture, comprising convolutional and max
pooling layers, followed by two fully connected layers. The proposed YOLO model was trained using the COCO
(Common Objects in Context) dataset, which is a large-scale object detection, segmentation, and captioning
dataset. COCO dataset consists of 200,000 photos from 80 categories and over 500,000 item annotations. Figure
7 depicts the human tracking process, which uses the YOLO algorithm. As seen in Figure 8, YOLO algorithm
can recognize and track people with high confidence. However, the first installation was significantly delayed.
To address this, we trained a special dataset dedicated just to the “person” class. This reduction in the number of
classes reduced processing time and caused insignificant delays.

Based on feedback from security employees, the basic concept has been improved for real-world applications.
The revised strategy entails developing a blacklist dataset for facial recognition at the admission gate. This
mechanism will prevent banned persons from entering. A second camera within the room will then identify, track,
and count persons, merging the results with other subsystems.
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Face recognition process recognizes special people, whereas face detection only identifies the existence of a face.
At the entrance, the system compares collected facial representations to a list of unauthorized people and denies
admittance if a match is detected. Inside, facial detection monitors movement and counts individuals in real time.
To be able to detect and track people in different poses and positions, the YOLO algorithm was conducted. Google
Images V5 was used as a source of images. Since training requires at least one thousand images, it is not practical
to download each individually.e. There is a tool available on GitHub to download datasets along with annotations
called the OIDv4 toolkit [33]. The last trained Y-Tiny model is used to achieve an acceptable frame rate with
negligible delay and to have high confidence in detection [34].

3.5. Time synchronization between RFID, radar and camera

Coordinated perception between cameras and radar has become essential for comprehending the surroundings in
multi-sensor fusion systems. Radar uses laser or millimeter-wave technology for accurate distance estimations,
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Table 2. YOLO Convolutional Neural Network (CNN) Architecture

Layer Name Filters / Kernel Size (Stride) Output Dimension

Conv 1 7 X 7 x 64 (stride = 2) 224 x 224 x 64
Max Pool 1 2 x 2 (stride = 2) 112 x 112 x 64
Conv 2 3 x3x192 112 x 112 x 192
Max Pool 2 2 x 2 (stride = 2) 56 x 56 x 192
Conv 3 1x1x128 56 x 56 x 128
Conv 4 3 x 3 x 256 56 x 56 x 256
Conv 5 1 x1x 256 56 x 56 x 256
Conv 6 3 x 3 x512 56 x 56 x 512
Max Pool 3 2 x 2 (stride = 2) 28 x 28 x 512

Conv 7-15 Mixed 1 x 1 and 3 x 3 filters 28 x 28 x 1024
Max Pool 4 2 x 2 (stride = 2) 14 x 14 x 1024
Conv 16-23 3 x 3 filters (stride =2 at Conv 17) 7 x 7 x 1024

FC 1 - 4096

FC2 - 7 x 7 x 30 (1470)

while cameras use texture information for object detection. RFID uses radio waves for data transfer between a chip
and a reader. These methods address single-sensor limitations by combining data from three sensors. Common time
synchronization, such as Network Time Protocol (NTP) which uses network servers to synchronize system time
for millisecond-level accuracy, is suitable for low precision needs. While Precision Time Protocol (PTP) offers
high-precision time synchronization, typically used in LANs, and compensates for network delays for device clock
alignment using a master-slave architecture and bidirectional message exchanges, as illustrated in Figure 9. Both
methods are easy to deploy and vulnerable to network delay.

GPS receivers provide PPS (pulse per second) signals that are precisely synchronized with Universal Time
Coordination (UTC) second pulses. Devices equipped with hardware interfaces, such as TTL (transistor-transistor
logic) circuits, are designed to capture the rising edges of these PPS signals. They then utilize this hardware pulse
as a time reference to adjust local clocks or triggers. Unified physical trigger pulses, such as TTL low/high-level
signals, are produced by FPGA, MCU, or dedicated triggers. Every device acquires data frames at the same time,
and hardware directly generates the timestamps.

Time-aligned fusion techniques combine data from multiple sources, such as sensors or databases, to ensure
synchronization with a shared chronology. This is crucial when data sources function independently, with varying
sample rates, acquisition durations, or internal clock drifts. The goal is to create a cohesive dataset with properly
synchronized matching events or measurements. The procedure involves coarse alignment, bringing data into a
suitable time range with one-second accuracy, and fine alignment, using a specialized synchronization signal such
as PPS signal. Fusion can involve simple concatenation or more complex processes such as weighted averaging or
Kalman filtering.

3.6. Kalman filtering

A recursive technique called a Kalman filter generates precise estimations of a system’s unobservable state by
using a sequence of noisy measurements taken over time. The Kalman filter minimizes estimation error variance
to produce optimal estimates by merging noisy sensor data with a system’s dynamics model for state prediction
and correction. When direct measurements are incorrect or unavailable, it is frequently employed in statistics and
control theory to follow objects and estimate states. Figure 10 shows a Kalman filter structure.

The Kalman filtering algorithm is a recursive state estimate method that integrates predictions and measurements
from multiple sensors to obtain the best estimate of the system state from a dynamic model. It offers a statistically
ideal estimate in terms of minimum mean square error, assuming a linear system model and Gaussian noise
distributions. The algorithm’s two primary phases are prediction and updating. The prediction phase propagates the
state estimate and its covariance forward in time, while the upgrade phase adjusts the state estimate and covariance
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Figure 9. Master-Slave Time Synchronization.

using updated measurements from the sensors. The Kalman filter is widely used in control, tracking, and navigation
fields. Its key benefits include managing noise and uncertainty in the system model and sensor data, accounting for
each sensor’s unique uncertainties and accuracy, and incorporating previous knowledge of system dynamics and
measurement procedures.

Initial state

Previous state

New state (predicted, based on

physical model and previous state)

U= Control variable matrix
W= Predicted state noise matrix

it — = :
Xo I — Xi—1 Xk s AXyg—q1 + BUp + Wy Q= Process noise covariance
Py | mitiatstate Py Py = AP AT + Qy matrix. Keeps the state
becomes covariance matrix from
proviour:  abseriph K becoming too small or going to
represents Current state
each state becontes = .
Output of iteration cycle | previous A,B,C= Adaptation matrices, to
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’ ' !
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X= State matrix
P= Process covariance
matrix (represents
errorin the estimate)

State and covariance update

I= Identity matrix

R= Sensor noise/measurement covariance matrix

Calculate Kalman gain

K=Kalman gain

Measurement from sensor

Y= Measurement of state
Z = measurement noise

H= Conversion matrix (to make sizes consistent)

Figure 10. Kalman filter structure.
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4. Experimental Results and System Analysis

To enable real-time decision-making, Python scripts (for YOLO and RFID handling) are compiled as callable
functions. MATLAB is used for GUI, logic handling, and visualization. A socket-based communication protocol
ensures timely data transfer between Python and MATLAB. A time-aligned fusion algorithm matches tracked
individuals across radar, camera, and RFID streams. Any discrepancy in the number of detected individuals through
the three subsystems triggers a real-time alert to security personnel.

4.1. The RFID Module

The Advanced Design System (ADS) program is used to simulate the magnetic coupling of the RFID system.
The average power needed to power up the proximity inductive coupling card (PICC) is five volts (DC) to get an
effective connection between the reader and the tag.

After the simulation, the result shows that when Z (distance) is 5.2 cm, there will be an output voltage of five volts,
which is acceptable and sufficient to power up the PICC (TAG). Both inductances (LREADER and LTAG) ensure
the magnetic field generation and allow signal receiving, respectively. The generated magnetic field which is the
result of the interaction of both coils, is represented by K (coupling coefficient), in which the simulation shows a
significant decrease with an increase in the separating distance as shown in Figure 11. Also, the simulation result
shows that the increase in the separating distance makes the output voltage decreases until it will not be enough
to power the tag. At a distance above 10.2 cm, the output voltage will be less than 3 volts, which is not able to
make the tag able to send or receive signals, and at 20, there will be zero volts, which means no connection as
explained in Figure 12. Table 3 illustrates the relationship between the coupling coefficient, the output voltage, and
the separating distance.

Calculatod
Moasured

Coupling Factor K

\t\’\:\ .
———
—
° 1 1 1 1 L 1
2 4 6 8 10 12 14 16

Distance Between Reader and Tag (cm)

Figure 11. Designed Coupling Coefficient vs. Distance.

To achieve the proposed design, two RFIDs are used, one on the entrance door and the other one on the exit
door. There are two important aspects, the first one is how to synchronize the two RFIDs on the same MCU,
while the second is the PCB design. Reader module Mifare RC522 with its tags is chosen. This reader is a highly
coordinated RFID card reader that manages non-contact correspondence of 13.56 MHz and is configured by
the fifth-largest non-memory semiconductor supplier (NXP) as a low-power consumption, minimal-effort, and
conservatively sized reader and write chip. The need for data acquisition is to transfer the data received from the
RFID to an Excel sheet on a PC, so Parallax microcontroller data acquisition (PLX-DAQ) was used. Figure 13
illustrates the manufacturing of the proposed design PCBs.
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Figure 12. Modeled Output Voltage vs. Distance.

Table 3. Coupling coefficient and Output Voltage vs Distance

Separating Distance (z) [cm] K Calculated K Measured % Difference Output Voltage (V)

2.2 0.08078081 0.137 41.04 7.783
4.2 0.06254823 0.070 10.64 6.367
6.2 0.04450053 0.0501 11.17 4.554
8.2 0.03068811 0.040 23.27 3.138
10.2 0.02118119 0.020 5.90 2415
12.2 0.01485900 0.017 12.59 1.501
14.2 0.01065686 0.010 6.56 0.903
16.2 0.00777978 0.008 2.75 0.502

There are some challenges faced with the proposed structure:

* Making a unique detection for one RFID tag and reaching a constant implementation part for adding any
wanted number of cards.

 Delay in the identification time and the login time in the excel sheet.

* Delay in the messages that appear in the LCD that clarify what to do.

* Making two RFIDs read at the same time.

The first and third issues were resolved by performing some modifications on the microcontroller source code.
The second issue was resolved by increasing the microcontroller’s processing speed by optimizing the code and
transferring data to the Excel sheet during initialization, so accelerating the fetch, decode, and execute cycles. The
third issue was also resolved by modifying the program code. The fourth issue was resolved by connecting the
two RFIDs to a bidirectional module, which enabled them to share the microcontroller’s communication bus and
ensured they were ready to read data from system startup.

4.2. The mmW radar

The radar framework utilizes IWR1642 evaluation module, a programming FMCW Radar, from Texas Instruments
(TI). The FMCW radar will perform range, speed and angle estimation at that point transmit every single
investigated result through UART serial communication to the PC. The PC will get the information, then do the
visualization on MATLAB.
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Figure 13. a) Entrance door PCB. b) Exit door PCB. ¢) Manufacturing the proposed design PCBs.
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Figure 14. The IWR1642 booster pack front view and back view.
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The BoosterPack contains everything required to begin creating programming for on-chip C67x DSP center and
low-power ARM RA4F controllers, including installed emulators for programming and troubleshooting as well
as locally available catches and LEDs for a snappy combination of a basic UL. The standard 20-pin Booster
Pack headers make the gadget perfect with a wide assortment of TI MCU Launch Pads and empowers simple
prototyping. The IWR1642 Booster Pack, shown in front and back views, is as shown in Figure 14 and the chirp
configuration for the IWR1642 Booster Pack is shown in Table 4. The IWR1642 Booster was chosen due to its
features, such as,

* Two 20-pin Launch Pad connectors that leverages the ecosystem of the TI Launch Pad.

e XDS110-based JTAG emulation with a serial port for onboard QSPI flash programming.

* Back-channel UART through USB-to-PC for logging purposes.

* Onboard antenna.

¢ 60-pin, high-density (HD) connector for raw analog-to-digital converter (ADC) data over LVDS and trace-
data capability.

* Onboard CAN transceiver.

* One button and two LEDs for basic user interface.

* 5-V power jack to power the board.

—

10 degrees inclination

2.5m height

Figure 15. IWR1642 Booster Pack real-life physical setup.

The physical setup of the IWR1642 Booster Pack is illustrated in Figure 15. The result of the radar on the
visualization tool is shown in Figure 16. The figure also shows the track of the targets and the count with a camera
view to compare the radar readings to the camera.

4.3. Camera module

In the proposed framework, camera calibration is performed using an image set of 50 7x7 corner chessboard images
at different views and angles. The results before and after fisheye distortion removal are shown in Figure 17. The
stream is perfectly undistorted, with a very small dead region resulting from the transformations. This region could
be simply cropped without affecting the required result. The camera matrix resulting from the calibration process,
which resembles the mathematical model of the camera matrix discussed previously, is presented in Figure 18.
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Figure 16. Radar output on the visualization tool.

Table 4. IWR1642 Chirp Configuration

Chirp Parameter (Units) Value
Start Frequency (GHz) 77
Slope (MHz/ps) 60
Samples per Chirp 128
Chirps per Frame 256
Frame Duration (ms) 50
Sampling Rate (Msps) 2.5000
Bandwidth (GHz) 3.0720
Range Resolution (m) 0.0488
Max Unambiguous Range (m) 5
Max Radial Velocity (m/s) 5.2936
Velocity Resolution (m/s) 0.0827
Azimuth Resolution (deg) 14.5
Number of Rx 4
Number of Tx 2

As shown in Figure 19, performing the detection before undistorting the video stream results in exceptionally
low accuracy at the edges due to the curvature generated by the fisheye effect. After regenerating the camera matrix
and applying it to the stream, human detection is performed with less error.

Google Images V5 is used for image training, supporting 2.8 million object instance segmentation masks in 350
categories. These masks mark the outline of objects, characterizing their spatial scale to a higher level of detail. To
download at least 1000 images for training, GITHUB offers the OIDv4 toolkit, which downloads the dataset and
annotations.

The proposed model is trained using Keras, a Python-written high-level neural network API that runs on top of
TensorFlow. To achieve reliable identification and tracking, the YOLOVS-Tiny model was trained in two steps.
First, we utilized the COCO dataset, which comprises around 200,000 images over 80 categories and over 500,000
item annotations. Second, we fine-tuned the network using a custom dataset produced using the OIDv4 toolkit and
Google Image V5, constrained to the single class “person.” This decreased model complexity, shortened inference
latency, and enhanced accuracy in the desired scenario. The dataset was divided into 80% for training and 20% for
testing. Training was performed on GPU, with inference evaluated on Jetson Nano hardware utilizing TensorRT
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Figure 17. Undistorting the camera stream using camera calibration results.
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Figure 19. Effect of Fisheye Distortion Removal on Detection Accuracy.

acceleration. The training of YOLOVS5-Tiny model was performed for 100 epochs on the COCO dataset and 50
epochs on the custom dataset.
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The customized YOLO-Tiny algorithm results shown in Figure 20 ensure accurate human recognition and

tracking. However, the first installation was significantly delayed. To address this, the model was trained purely on
the person class, resulting in person detection accuracy at an acceptable frame rate of 24 FPS.
To demonstrate the advantages of multi-sensor fusion, we compared the proposed hybrid system to individual
modules that operated independently (RFID-only, Radar-only, Camera-only). Performance was evaluated in terms
of detection accuracy, latency, false positive rate (FPR), and robustness to occlusion. The results are summarized
in Table 5. The hybrid system attained an average accuracy of around 89% in person detection, as evidenced by
our experimental configuration in Figure 21. The baseline FPS on the Jetson Nano was around 12 FPS, however
optimisation with TensorRT increased the throughput to almost 24 FPS, achieving real-time performance. In
comparison to single-sensor baselines, the hybrid system not only decreased false positives (8% versus 12—-15%)
but also preserved resilience under occlusion due to the incorporation of mmWave radar.

Table 5. Performance Comparison of Different Systems

System Accuracy (%) Latency (ms) FPS False Positive Rate (%) Occlusion Robustness
RFID-only 78 10 - 12 Low
Radar-only 82 15 - 10 High
Camera-only 85 40 12 15 Low
Hybrid with TensorRT acceleration (Proposed) 89 20 24 8 High

on 08| | FAS: 0,700465431722368
FPS: 0.6879431367602133

| FPS: 0,6858306400302983
| FPS: 0.6716591741689061

Figure 20. Final customized YOLO-Tiny algorithm results.

4.4. The System Integration

The three systems were merged into a single PC software using MATLAB and compiled into an .exe file that just
requires the MCR MATLAB Runtime to be installed. The MATLAB-based GUI shown in Figure 21 validates
people counting by analyzing data from RADAR, RFID, and camera sensors. To allow communication between
Python and MATLAB, the Python script was transformed into callable functions. The MATLAB version must be
compatible with the Python version, and all necessary libraries must be installed to ensure efficient configuration
and execution within MATLAB, taking into account library version compatibility with both platforms. The first
integration approach was used. Figure 22 depicts the combined result of a proof-of-concept scenario for the interior
space.
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5. Limitations

The proposed structure faced challenges such as unique detection for one RFID tag, delayed identification and
login times in Excel sheets, delayed LCD messages, and simultaneous reading of two RFIDs. These issues were
resolved by counting RFID codes and connecting the RFIDs to a bidirectional module. This shared communication
bus enables the microcontroller to read the RFIDs continuously, ensuring they are ready for use when the system
is turned on.

6. Conclusion

This study introduces a powerful multi-sensor indoor security system that combines UHF RFID, millimeter-wave
radar IWR1642), and a YOLOv5-Tiny-based vision subsystem, enabling continuous surveillance, recognition,
and anomaly detection in confined areas such as museums. Unlike typical single-sensor approaches, the proposed
framework takes advantage of the complementing characteristics of each modality. RFID enables identification
verification and entry/exit auditing, radar allows for continuous motion monitoring even in poor visibility or
occlusions, and computer vision gives accurate facial/person recognition. A Kalman Filter-based fusion system
synchronizes asynchronous data streams, while Edge-based inference acceleration with TensorRT enables real-time
vision inference. Experimental results show that the system is successful in dynamic, low-visibility, and congested
situations, with higher detection reliability and fewer false positives than standard techniques. The suggested
system addresses major restrictions such as camera occlusion, RFID range constraints, and poor synchronization
in previous efforts, resulting in a feasible, scalable solution for current interior security concerns.

While the proposed system was verified in a single room setting, extensive implementations like museums, airports,
or multi-room display spaces need meticulous evaluation of computing and communication resources. Scaling the
system increases GPU demand for multi-camera systems, necessitating either high-end GPUs or distributed Jetson-
class devices for concurrent vision inference. Similarly, multi-radar installations offer larger data rates that must
be handled by efficient multi-threaded pipelines, whilst video streaming can surpass 500 Mbps unless compressed
or pre-processed at the edge. To address these issues, a modular design is presented in which each monitored
room functions as its own node, incorporating local sensors and executing a local fusion pipeline. Only metadata
such as occupancy counts, alarms, and anomalies are sent to a central control server, minimising bandwidth and
enabling smooth addition or removal of nodes. This approach enhances scalability, fault tolerance, and deployment
simplicity across diverse contexts.

The suggested system incorporates privacy-preserving mechanisms to ensure compliance with international
legislation, including the General Data Protection Regulation (GDPR), due to the sensitive nature of biometric data.
Facial recognition is done on-device, with just anonymised embeddings retained momentarily to prevent central
storage of raw face photos. RFID records are connected to pseudonymized IDs rather than personal information.

7. Future Work

In future work, we will work on transforming the model to a fully edge computing model deployment to enable
PC-free mobility. Additionally, we will integrate adaptive learning fusion algorithms to adjust the weighting
between sensors in response to environmental changes. In addition, we aim to preserve visitors facial recognition
privacy with on-device encryption and federated learning. We will test the model’s multi-room scalability in
big deployments. Future deployments might include federated learning for facial recognition models, which
ensures that data never leaves local devices, and encrypted connections between nodes to protect transferred
metadata. Furthermore, user permission methods and stringent data retention regulations are required for real-world
implementation. These improvements will transform the system into a cutting-edge smart surveillance platform for
safety, asset protection, and building management.
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