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Abstract One pertinent model for intelligent systems and decision making is the Set-union Knapsack Problem (SUKP).
Heuristic algorithms are helpful in finding high-quality answers in a reasonable amount of time, despite their inherent
difficulty (NP-hardness). The binary spotted hyena optimization algorithm for the set-union knapsack problem is presented
in this study. Numerous heuristic and approximation techniques for resolving the set-union knapsack issue have been
documented in the literature. The quality of the solution still has to be improved, though. The purpose of this study is to
apply Z-shaped transfer functions to the binary spotted hyena optimization algorithm used to solve the Set-union knapsack
problem. Comparative experimental results show that Z-shaped transfer functions are competitive or superior than the other
state-of-the-art transfer function. The experiments were done on three types of 30 popular SUKP benchmark examples.
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1. Introduction

The set-union knapsack problem (SUKP) is one of the most important generalization and the natural extension
of the standard 0-1 Knapsack problem [1, 2]. It is more complex of the 0-1 knapsack problem and it is a non
deterministic polynomial time (NP) hard problem.

Recent years have seen a significant increase in interest in the SUKP among operational research scholars
because of its broad scope, interesting application scenarios, and difficulties in answering large, complex
situations in an efficient manner. Database partitioning, financial decision-making, smart cities, budgetary
issues, manufacturing systems, enhancing the robustness and scalability of cybernetic systems, hydrology, and
transportation are some of the applications.

Artificial intelligence techniques, particularly meta-heuristic algorithms, have opened up new avenues for solving
these kinds of problems in recent years. They are also continuously being improved to address large, complex
problems, decrease execution times, improve the quality of optimal solutions, and obtain improved results in
a reasonable amount of time. For instance, set cover problems, knapsack issues, satisfiability questions, and
numerical optimization problems [4, 5, 20, 21, 22, 23, 24, 25].

In the literature, there are several research studies and many successful applications of the SUKP. To address
SUKEP, [6] proposed an artificial bee colony algorithm by adopting a full mapping function to deal with or the goal
of addressing infeasible solutions and the proposed algorithm integrates a greedy strategy with other evolutionary
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algorithms. Compared to existing approximation methods, the algorithm produces superior results for solving
SUKP. [7] proposed twelve different transfer functions-based discrete Moth Search algorithm for solving SUKP.

A thorough comparison and analysis of the experimental data was conducted with regard to enhancing the
quality of solutions and convergence rate.Methods based on swarm intelligence provide remarkable opportunities
in solving complex problems, these methods have been proven to be effective in solving SUKP. [8]proposed
an effective hybrid binary swarm intelligence technique based on two nature-inspired algorithms, Genetic
Algorithm and Particle Swarm Optimization called the global particle swarm optimization algorithm (gPSO). The
performance of the proposed method is applied on SUKP. The effectiveness of the proposed method is developed an
optional mutation procedure that exponentially decreases the introduced diversity to the population to avoid local
optima where it uses genetic operators such as crossover and mutation. Applied swarm optimization to explore local
neighborhoods and applied genetic algorithm to diversify the search procedure. The goal of this hybrid algorithm
is to maintain the diversity of the population throughout generations. The superiority of the solutions provided with
this method represented with a comparative study.

Another hybrid binary swarm intelligence technique based on tabu search (HBPSO/TS) is proposed by [9]. The
hybrid algorithm used a tabu search mutation procedure to enhance the exploitation ability and inhance the solution
quality to obtain optimal quality solutions for solving SUKP. An adaptive penalty function was used to evaluate
the quality of solutions, to ensure the feasibility of the search by exploring the boundary of the solution space,and
to avoid the violation of the problem constraints. The proposed algorithm outperformed on the other algorithms in
terms of solution quality and the reduction execution time. The experimental results has proven its hybrid algorithm
robustness.

A neighbourhood competitive metaheuristic algorithm employing the concept kernel based tabu search algorithm
components is proposed by[10] for the SUKP. The kernel based powerful tabu search algorithm merged three
complementary search components to efficiently examine the search space, finding various local optima using
effective local search procedure , and finding additional high-quality solutions. The results showed that the high
performance of the proposed algorithm outperformed the existing best SUKP algorithms in terms of solution
quality, robustness and computation time.

Three solution initialization strategies, random, greedy, and weighted, have been proposed and evaluated by

[11]. Using k-means as a binarization technique, the initialization solutions have been combined within a sine
cosine metaheuristic algorithm . The three initialization strategies .Testing is done on medium- sized and large-
sized SUKP instances to evaluate the three initialization strategies. When applying the weighted method to the
SUKP , it consistently outperforms the other two, with the aim of examining the impact of solution initialization
methods on the performance of a hybrid algorithm. The results proven that an improvement in terms of the quality
solutions , reiterating the importance of the initialization strategy on the effectiveness performance of the algorithm.
The study discovered applicability to a variety of combinatorial problems including traveling salesman problem
(TSP), vehicle routing problem (VRP), job shop scheduling problem (JSSP), and quadratic assignment problem
(QAP).
[12] proposed a Q-learning reinforcement learning algorithm which uses Particle Swarm Optimization , Genetic
Algorithm and a hybrid of these algorithms as metaheuristic optimization, namely, genetic-based PSO .To evaluate
the used algorithms ,the proposed algorithm worked as a reinforcement and recommendation system which selects
optimization algorithms as actions at each iteration. The objective is to learn and claim the more promising
algorithms by employing a variety of optimizers and obtaining more statistical data in order to avoid local optima.
Adopting an initial solution generation technique and triggered random immigrants mechanism to preserve swarm
diversity for improving all optimizers. In addition to these procedures, a mutation procedure that decreases the
diversity is adopted. All enhanced optimization algorithms are employed by the proposed Q-learning mechanism
.The performances of all used algorithms are analysed on the SUKP.

The goal of the current work is to create a binary version of the binary spotted hyena optimization algorithm,
BSHO, which is based on Z-shape transfer functions. Additionally, to assess the efficacy of BSHO, an investigate
of the enhanced BSHO algorithm for solving the SUKP.
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2. Set-Union Knapsack Problem

The SUKP is a binary constrained combinatorial optimization problem [1, 2]. In SUKP, there is a set of items where
each item has a profit. The total weight of a set of items is determined by the total weight of the union elements
of the corresponding element sets. The SUKP is featured or identifies by two sets items and elements. Given a set
of mitems S = {1,2,3,...,m}and a set of n elements U = {1, 2,3, ...,n}. The items and elements are associated
by a relation matrix R;j(m x n) . Furthermore, each item i € S (¢ =1,2,3,...,m} correlated to a subset U; of
elements, and U; # ¢ A U; C U A |J;~, U; = U. Each item i € Shas non-negative profit p; (i = 1,2,3,...,m)
and each element j € U has non-negative weight w; (w; 0) (j = 1,2,2,...,n) . For a nonempty subset A C S, the
total weight and the total profit of the subset A can be calculated by W(A) = >~ €U, Us Wi and P(A) = .4 pi
respectively. Finding or selecting a subset of items S C .S is the purpose of the SUKP such that meet or satisfy the
conditions W (Sx*) < C, Where C is the capacity limit of the knapsack and a nonnegative value and maximizing
the total profit P(Sx).
The mathematical model of the SUKP can be expressed as follows:

Maz P(A) = ) p; (1)
i€A
Subject to W(A) = Z w; < C, ACS 2)
J€U;ea Ui

The previous set-based formulation of the set can be used to derive a mixed-integer programming model. It is
based on two sets of binary variables. The first variable is associated with items{y; =1 if item i is selected , O
otherwise }while the second variable is associated with elements {x;=1 if element j is selected , O otherwise}. The
new mathematical model of SUKP can be formulated as follows :

Max f(Y) = Zyl Di (3)
i=1
Subjectto W(Ay)= >  w; < C (4)
jEUiEAY Us

The optimal solution can be represented by an m-dimensional binary vector Y = (y1,¥2,Y3;, s Ym) €
{0,1}", Ay ={ily, € Y,y; =1,1<i<m} C S such that y; =1 if and only if : € Ay. In particular,
Yfeasible solution satisfies knapsack constraint in Eq.(4) and infeasible solution otherwise.

The objective of SUKP is to identify a subset of candidate items (S) such that a profit function is maximized i.e.
total profit associated with S, while satisfying a knapsack knapsack capacity constraint without exceeding it for a
certain budget (C > 0) and maximal profit.

3. The Spotted Hyena Optimization (SHO)

The fact that the social bond that exists between spotted hyenas and the cooperative behavior that they exhibit
while hunting prey served as the inspiration for a recently developed innovative swarm-based algorithm that was
given the name “Spotted hyena optimization” (SHO) [13, 14]. This technique consists of three primary steps:
encircling, hunting, and attacking prey. The mathematical modeling of the SHO algorithm is detailed in the
following paragraphs.

Encircling prey:

Due to the unknown search space, the target prey is considered to be the current best candidate solution that is near
the ideal solution. Once the intended prey has been identified, other hyenas will attempt to adjust their positions
toward the location of the prey [15, 16].
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Dy =|B- By(z) - P ()|
P(x+1)=P,(z)— E-Dy
where, D), is the distance between hyenas and their prey, 2 denotes the current iteration, P represents the position
vector of the hyena, P, denotes the position vector of the prey, and, B and E represent the coefficient vectors,
which can be calculated as follows [17]:
§ =2 ’I’dl
E=210 rdy— K

where, I denotes the iteration and M ax is the maximum number of iterations.
In this scenario, the value of % is reduced linearly from 5 to O throughout the repetitions. The stability that exists
between exploration and exploitation is maintained by its use. The random vectors in the range [0,1] are denoted
by rdy and rdy. Adjustments are made to the values of § and ﬁ to allow spotted hyenas to go to other regions
concerning their present location. Through the use of Equations (1) and (2), hyenas are able to update their locations
in a random manner around the prey [15].
Hunting prey:
To simulate the hunting behavior of spotted hyenas, we use the assumption that the most effective search agent
has information on the whereabouts of the prey. The rest of the search agents merge into a cluster of reliable
acquaintances and adjust their location based on the most optimal search agent. The mathematical representation
of the hunting mechanism can be described as follows [18]:
Dp=|B-P, — Py
P, =P, - E-D,
thﬁk+ﬁk+1+---+ﬁk+N
here, P, denotes the location of the first observed spotted hyena, P, shows the positions of the other spotted
hyenas, whereas N represents the number of spotted hyenas, which is found using the following calculation [13]:
N = countnos(f’h, ﬁh+1, ﬁh+2, . (ﬁh + ]\—4)))
where ]\_4> represents a randomly generated vector with a value of [0.5, 1]. ”"nos” represents the number of
solutions, while “count” refers to the total number of candidate solutions that, when combined with M, closely
resemble the best optimum solution in the search space. C_>hrepresents a group or cluster of NV optimal solutions.
Attacking prey:
Mathematical modeling for assaultig the prey requires reducing the value of the vector 7 Over the course of

repetitions, the value of the vector h may decline from 5 to 0, and this is achieved by decreasing the variance
in the vector ﬁ When |E| < 1, the spotted hyena gang attacks their victim. The following is the mathematical
expression for the assault on the prey [17]:

Pla+1) =5

where ?(m + 1) indicates the optimal solution, and additional spotted hyena placements are adjusted according
to the best search agent’s position (the hyenas who are closest to the prey). Typically, SHO algorithm aims to
balance exploration and exploitation, which can lead to competitive performance. However, its computation time
can vary based on parameter settings and problem complexity. It usually be slower compared to more established
algorithms in certain scenarios, especially if it involves complex operations or a high number of iterations.
The Binary Spotted hyena optimization (BSHO), a binary variation of the original SHO, is proposed in order
to capitalize on the strengths of SHO. An effective method for turning an algorithm’s continuous version into
binary is the transfer function (TF). Its purpose is to transform a given vector of real values into a binary vector.
Depending on the value of the step vector, the transfer function specifies the likelihood of converting an element in
a solution vector to either O or 1. The continuous form of SHO is usable to binary search space by the use of two
transfer functions: S-shaped (sigmoid) and V-shaped (hyperbolic tangent). The two binary variations in question
are referred to as BSHO-S and BSHO-V, respectively.
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4. Z-Shaped Probability Transfer Function

The transfer function (TS) is the important component of the binary version of the BSHO. Finding the best solution
to this problem entails encoding a binary value between 0 and 1. In order to achieve this goal. With simplicity and
accuracy, the transfer function determines the probability that an element of a position vector will change from 0
to 1 or vice versa.

In this study, the Z-Shaped transfer functions of Guo, Wang and Guo [19] were modified and suggested.
These transfer functions have an asymmetric mapping function as their mapping function. There is a fast rate
of convergence since this asymmetric mapping function essentially fulfills the absolute value in computing the
mapping probability of the coyote position vector fluctuation.

One way to represent the Z-Shaped transfer function (ZTF) is as

T (zf(t) = V1—a®® | (5)

where the number k is positive. By changing the value of k, a set of Z-shaped function families can be obtained.
Table 1 illustrates the four different ZTFs.

Table 1. Z-shaped transfer functions

Name Expression

Zl Tg(l‘) = \/1 — 22
Z2 Tlo(l’) = vV 1—57
Z3 Tll(LL’) = vV 1—8=
Z4 Tlg(.’L') = vV 1—20%

5. Experimental Results

Three SUKP instance types are introduced by He et al. (2018) and are also used in this investigation. These
examples are categorized based on how many things and elements there are. The number of elements in the second
category is equal to the number of items in the first category. Lastly, there are fewer items than elements in the third
category.

To simplify calculations, an m x n0 — 1 matrix M = (r;;) denotes subset family V = {U; , Ua,...,U,,} . For
eachelementr;; inM (i=1,2,... m;j=1,2,...,n),r; =1onlyifj € U; . To illustrate the value settings of
parameters of SUKP instances, we name the SUKP instances as sukp m_n__ uniformly , where m is the number
of items in instances, n is the number of elements , denotes the density of element 1 in the matrix M, i.e.,
a= (30 3T )/(nm) ,and is the ratio of C to the sum of all elements ,i.e., 3 = C/ i1 w; - According
to the relationship between m and n, there are three kinds of SUKP instances: Eq. (1) 10 SUKP instance with m n
,(2) 10 SUKP instance with m = n , and (3) 10 SUKP instance with mn.

Experimental results of S-shaped transfer (STF), V-shaped transfer (VTF) functions, and the proposed Z-transfer
function of BAOA are summarized in Tables 2-4. The Best, Mean, and Std are the best value, the mean value and
the standard deviation that are achieved by these methods over the 25 repetitions with bold font representing the
best methods. Tables 2, 3, and 4 allow us to notice the following. For each of the 30 cases, our suggested Z-transfer
functions outperformed the prior best-known findings. Additionally, there was a wide range of improvements in the
objective function value, from 1.23% to 30.54%. (2)In each of the 30 cases, Z-transfer functions yielded superior
mean objective function values. The range of improvements observed in the objective function value was 1.14% to
29.76%. Z-transfer functions outperformed SUKP, STF, and VTS in terms of the mean and best objective function
values for every instance that was examined. In every case, Z-transfer functions produced superior results. (4) In
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terms of the best and mean objective function values, the Z4 function outperformed the Z1, Z2, and Z3 in every
instance. Eq.(5) When comparing the Z-transfer functions with the STF and VTF functions, the StD values are less
than 150 in each of the thirty cases. Furthermore, in every scenario, the StD of the Z4 function is less than that of
the Z1,Z2, and Z3 Z-transfer functions. As a result, we draw the conclusion that Z-transfer functions are generally
stronger algorithms than STF and VTF.

Table 2. The results of the first kind of SUKP instances

Instance Results SUKP STF VTF Z1 72 73 74
sukp Best 12459 13057 13065 13076 13074 13083 13088
100_.85_.0.10_0.75

Mean 12459 12969.4  12977.4 12988.4 12986.4 12995.4 13000.4

StD 0.00 143.66 138.21 120.54 12824 118.47 113.36
sukp Best 11119 12079 12087 12098 12096 12105 12110
100_85.0.15.0.85

Mean 11119 11559 11567 11578 11576 11585 11590

StD 0.00 227.94 220.64 114.23 11896 114.81 110.57
sukp Best 11292 13077 13085 13096 13094 13103 13108
200.185.0.10_0.75

Mean 11292 12505.5 12513.5 125245 12522.5 12531.5 12536.5

StD 0.00 248.94 241.64 135.23 13996 135.81 131.57
sukp Best 12262 13684 13692 13703 13701 13710 13715
200.185.0.15.0.85

Mean 12262 12815.9 128239 128349 12832.9 12841.9 12846.9

StD 0.00 274.94 267.64 161.23 16596 161.81 157.57
sukp Best 8941 10566 10574 10585 10583 10592 10597
300.285.0.10_0.75

Mean 8941 9993.87  10001.87 10012.87 10010.87 10019.87 10024.87

StD 0.00 260.64 253.34 146.93 151.66 147.51 143.27
sukp Best 9432 11029 11037 11048 11046 11055 11060
300.285.0.15.0.85

Mean 9432 10362.8  10370.8 10381.8 10379.8 10388.8 10393.8

StD 0.00 254.77 24747 141.06 145.79 141.64 1374
sukp Best 9076 10096 10104 10115 10113 10122 10127
400.385.0.10.0.75

Mean 9076 9654.85 9662.85 9673.85 9671.85 9680.85 9685.85

StD 0.00 292.44 285.14 178.73 183.46 179.31 175.07
sukp Best 8514 9844 9852 9863 9861 9870 9875
400.385.0.15.0.85

Mean 8514 9339.77  9347.77 9358.77 9356.77 9365.77 9370.77

StD 0.00 230.61 22331 1169 121.63 117.48 113.24
sukp Best 9864 11044 11052 11063 11061 11070 11075
500.485.0.10_0.75

Mean 9864 10580.9 10588.9 10599.9 10597.9 10606.9 10611.9

StD 0.00 205.96 200.51 182.84 190.54 180.77 175.66
sukp Best 8299 9485 9493 9504 9502 9511 9516
500.485.0.15.0.85

Mean 8299 8705.67 8713.67 8724.67 8722.67 8731.67 8736.67

StD 0.00 260.14 252.84 146.43 151.16 147.01 142.77
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Table 3. The results of the second kind of SUKP instances

Instance Results SUKP STF VTF Z1 72 73 74
sukp Best 13634 13649 13660 13672 13674 13679 13685
100-100.0.10_0.75

Mean 13634 13649 13660 13672 13674 13679 13685

StD 0.00 114.57 110.24 108.44 101.71 99.34 95.63
sukp Best 11325 11340 11351 11363 11365 11370 11376
100.100.0.15_0.85

Mean 11325 11340 11351 11363 11365 11370 11376

StD 0.00 122.98 118.65 116.85 110.12 107.75 104.04
sukp Best 10328 10343 10354 10366 10368 10373 10379
200-200.0.10_0.75

Mean 10328 10343 10354 10366 10368 10373 10379

StD 0.00 125.58 121.25 119.45 112.72  110.35 106.64
sukp Best 9784 9799 9810 9822 9824 9829 9835
200-200.0.15.0.85

Mean 9784 9799 9810 9822 9824 9829 9835

StD 0.00 113.25 108.92 107.12 100.39  98.02 94.31
sukp Best 10208 10223 10234 10246 10248 10253 10259
300-300.0.10_0.75

Mean 10208 10223 10234 10246 10248 10253 10259

StD 0.00 128.98 124.65 122.85 116.12 113.75 110.04

sukp Best 9183 9198 9209 9221 9223 9228 9234
300.300-0.15.0.85
Mean 9183 9198 9209 9221 9223 9228 9234
StD 0.00 131.38 127.05 125.25 118.52 116.15 112.44
sukp Best 9751 9766 9777 9789 9791 9796 9802

400-400.0.10-0.75
Mean 9751 9766 9777 9789 9791 9796 9802
StD 0.00 126.08 121.75 119.95 11322 110.85 107.14
sukp Best 8497 8512 8523 8535 8537 8542 8548
400-400-0.15-0.85
Mean 8497 8512 8523 8535 8537 8542 8548
StD 0.00 127.6 123.27 12147 11474 112.37 108.66
sukp Best 9615 9630 9641 9653 9655 9660 9666
500.500-0.10-0.75
Mean 9615 9630 9641 9653 9655 9660 9666
StD 0.00 134.1 129.77 127.97 121.24 118.87 115.16

sukp Best 7883 7898 7909 7921 7923 7928 7934
500.500-0.15_0.85
Mean 7883 7898 7909 7921 7923 7928 7934

StD 0.00 135.08 130.75 128.95 12222 119.85 116.14

Further, from Tables 3, it can be inferred that the best values obtained in terms of the average convergence times
is the Z-transfer functions. The proposed functions obtain the lowest time comparing to STF and VTF functions.
Further, it can be seen from Table 5 that the Z4 transfer function is superior to the Z1, Z2, and Z3 functions in
terms of the mean time performance for the three kinds of SUKP instances.
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Table 4. The results of the third kind of SUKP instances

Instance Results SUKP STF VTF Z1 72 73 74
sukp Best 10231 10246 10257 10269 10271 10276 10282
85.100-0.10_0.75

Mean 10231 10246 10257 10269 10271 10276 10282

StD 0.00 118.28 113.95 112.15 105.42 103.05 99.34
sukp Best 10483 10498 10509 10521 10523 10528 10534
85.100.0.15.0.85

Mean 10483 10498 10509 10521 10523 10528 10534

StD 0.00 126.69 122.36  120.56 113.83 11146 107.75
sukp Best 11508 11523 11534 11546 11548 11553 11559
185.200.0.10_0.75

Mean 11508 11523 11534 11546 11548 11553 11559

StD 0.00 129.29 12496 123.16 11643 114.06 110.35
sukp Best 8621 8636 8647 8659 8661 8666 8672
185.200.0.15.0.85

Mean 8621 8636 8647 8659 8661 8666 8672

StD 0.00 116.96 112.63 110.83 104.1 101.73  98.02

sukp Best 9961 9976 9987 9999 10001 10006 10012
285.300-0.10-0.75
Mean 9961 9976 9987 9999 10001 10006 10012
StD 0.00 132.69 12836  126.56 119.83 117.46 113.75
sukp Best 9618 9633 9644 9656 9658 9663 9669

285.300-0.15.0.85

Mean 9618 9633 9644 9656 9658 9663 9669

StD 0.00 135.09 130.76  128.96 12223  119.86 116.15
sukp Best 8672 8687 8698 8710 8712 8717 8723
385.400-0.10_0.75

Mean 8672 8687 8698 8710 8712 8717 8723

StD 0.00 129.79 125.46 123.66 116.93 11456 110.85
sukp Best 8064 8079 8090 8102 8104 8109 8115
385.400-0.15.0.85

Mean 8064 8079 8090 8102 8104 8109 8115

StD 0.00 131.31 126.98 125.18 118.45 116.08 112.37
sukp Best 9559 9574 9585 9597 9599 9604 9610
485-500-0.10-0.75-

Mean 9559 9574 9585 9597 9599 9604 9610

StD 0.00 137.81 133.48 131.68 12495 122.58 118.87
sukp Best 8157 8172 8183 8195 8197 8202 8208
485.500.0.15.0.85_

Mean 8157 8172 8183 8195 8197 8202 8208

StD 0.00 138.79 134.46  132.66 12593 123.56 119.85

The Friedman test is used to determine whether there is at least one significant difference between the transfer
functions’ performances in order to further highlight the performance of the suggested Z-transfer functions. The
null hypothesis, which is predicated on the idea that medians are equal, is strongly suggested to be rejected based on
the p-values for the mean and best outcomes shown in Table 6. Thus, Friedman’s test provides statistical evidence
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Table 5. The results of the convergence times in seconds of SUKP instances

Instance  STF VTF 71 72 73 74

sukp 109 98 85 81 77 71

100-85.0.10-0.75

sukp 113 102 89 85 81 75

85.100.0.15.0.85

sukp 117 106 93 89 85 79

185-200-0.10-0.75

sukp 121 110 97 93 89 83

100-85.0.15.0.85

sukp 125 114 101 97 93 87

285-300-0.10-0.75

sukp 129 118 105 101 97 91

285.300.0.15.0.85

sukp 133 122 109 105 101 95

200-185.0.10-0.75

sukp 137 128 113 109 105 99

385.400.0.15.0.85

sukp 141 132 117 113 109 103
485.500-0.10-0.75-

sukp 145 136 121 117 113 107
200.185.0.15.0.85

sukp 149 140 125 121 117 111
100-100-0.10-0.75

sukp 153 144 129 125 121 115
100.100.0.15.0.85

sukp 157 148 133 129 125 119
200-200-0.10.0.75

sukp 161 151 137 133 130 123
200.200.0.15.0.85

sukp 165 155 141 137 134 127
300-300-0.10.0.75

sukp 169 159 145 141 138 131
300-300-0.15.0.85

sukp 173 163 149 145 142 135
400-400-0.10.0.75

sukp 177 167 153 149 146 139
400-400-0.15.0.85

sukp 181 171 157 153 150 143
500.500.0.10_0.75

sukp 183 175 161 157 154 147
500-500-0.15.0.85

sukp 187 179 165 161 155 151
85.100.0.10.0.75

sukp 191 183 169 165 159 155
85.100-0.15.0.85

sukp 195 187 173 169 163 159
185.200.0.10.0.75

sukp 199 191 178 173 170 163
185-200-0.15.0.85

sukp 203 195 182 177 174 167
285.300.0.10.0.75

sukp 207 199 186 181 178 171
285-300-0.15.0.85

sukp 211 203 190 185 182 175
385.400.0.10.0.75

sukp 199 191 178 173 170 163
385.400-0.15.0.85

sukp 184 176 162 158 152 148
485.500.0.10.0.75_

sukp 154 144 130 126 123 116

485.500.0.15_0.85_
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that at least one set of transfer functions differs significantly from one another. The top-performing algorithm is
still unknown, though. Pairwise comparisons are therefore carried out using the average ranks that are obtained
using Friedman’s test. Lastly, the Bonferroni—Dunn process is used as a post-hoc technique to prevent error that
goes unreported and to manage the Family-Wise-Error-Rate. Table 7 provides the results of pairwise comparisons.
Table 7 data suggest that Z-transfer function works better than other functions in identifying the best and mean
solutions for significance levels = 0.05 and 0.10. This indicates notable advancements in comparison to these
transfer functions. Furthermore, it can be said that Z4 transfer function finds the best and mean solutions for the
significance = 0.05 much more effectively than Z1, Z2, and Z3.

Table 6. Friedman test ranks

Functions Best (Average ranks Mean (Average ranks
over all instances) over all instances)

STF 7.572 7.438

VTS 7.108 7.024

Z1 4.296 4.112

72 4.117 4.093

73 4.064 4.011

74 2.884 2.624

p-value 0.0001 0.0003

Table 7. P-values of Bonferroni—-Dunn pair-wise comparisons

74 vs. Best Mean

STF 0.0000 (significant) 0.0000 (significant)
VTS 0.0000 (significant) 0.0000 (significant)
Z1 0.0212 (significant) 0.0231 (significant)
72 0.0130 (significant) 0.0264 (significant)
73 0.0221 (significant) (significant)

6. Conclusion

We presented an improved binary spotted hyena optimization algorithm in this paper to solve the set-union
knapsack problem. To promote information sharing and population variety, an enhanced transfer function in
BSHO. The suggested Z-transfer functions outperform other competitive with state-of-the-art algorithms in the
field, according on testing results on three types of 30 SUKP cases that are often utilized in the research.
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