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Abstract
This research proposes a novel fractional-order eco-epidemiological model to investigate prey–predator interactions under
the combined effects of fear-induced behavioral changes, disease transmission in predators, and controlled harvesting.
Unlike classical integer-order models, our approach employs Caputo fractional derivatives to incorporate memory effects
and hereditary traits in ecological processes, offering a more realistic representation of long-term dynamics. We establish
the existence, uniqueness, and boundedness of solutions, and analyze the stability of all equilibrium points, including
the coexistence state where prey (p) and both susceptible and infected predators (s+ i) persist. Numerical simulations
demonstrate that fear effects increase prey persistence by lowering predation rates, harvesting intensity critically influences
system stability, with excessive harvesting driving predator extinction, and fractional-order dynamics reveal memory-
dependent transitions not observable in traditional models. Importantly, the fractional order α can be interpreted as an
ecological memory index, capturing long-term stress or adaptive responses across generations. These findings provide
actionable insights for ecosystem management, particularly in designing harvesting policies that balance biodiversity
conservation and disease control. The model’s framework is adaptable to empirical data, bridging theoretical ecology and
practical conservation strategies.
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1. Introduction

Mathematical biology is a crucial instrument for comprehending the intricate relationships between biological
organisms and their environments [1]. One of the most widely used approaches to analyze population dynamics
and ecological stability is the predator-prey model. The interactions between organisms in an ecosystem are
often influenced by the presence of diseases within the population [2]. The eco-epidemiological approach offers
significant insights by merging ecological and epidemiological elements to comprehend the effects of illnesses
on interspecies interactions, especially between predators and prey [3]. In natural ecosystems, diseases can
significantly affect ecological equilibrium by influencing both prey and predator populations [4].
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In recent years, numerous scientists have concentrated on analyzing eco-epidemiological models, acknowledging
their importance in comprehending the complex interplay between ecology and epidemiology. This approach offers
a unique perspective on how diseases influence population dynamics within ecosystems. Research has shown
that disease transmission is not solely determined by the characteristics of the infected population but is also
shaped by various ecological factors, including species interactions and environmental conditions. In addition,
organisms employ adaptive strategies that further influence disease dynamics, such as cannibalism [5, 6, 7], the
use of refuge [8, 9, 10], harvesting practices [11, 12, 13, 14, 15], the Allee effect [16, 17], and the fear effect
[18, 19, 20, 21, 22, 23, 24, 25]. Additionally, other ecological mechanisms have been identified as contributing
factors in shaping disease transmission and population stability [26, 27].

A notable phenomenon in eco-epidemiological systems is the fear effect, which refers to changes in prey
behavior triggered by the presence of predators or the risk of disease. This behavioral adaptation influences both
individual activity patterns and broader population dynamics. For instance, the fear of predators may drive prey to
spend more time in refuges or reduce their foraging activity [24]. These adaptive behaviors help maintain ecological
balance, supporting the joint survival of all three species within the system [25].

In ecological systems, the concept of refuge is crucial in influencing predator-prey interactions by offering
animals a mechanism for safety from predation [28]. Refuges can take various forms, including physical barriers
such as caves, dense vegetation, or deep water, as well as behavioral adaptations like concealment or reduced
activity. By lowering predation pressure, these refuges enhance prey survival rates and contribute to the overall
stability of the ecosystem. Moreover, the availability and effectiveness of refuges can influence population
dynamics, predator foraging behavior, and species coexistence, highlighting their fundamental role in maintaining
ecological balance [29, 30].

In addition to the fear effect and the utilization of refuges, another noteworthy event in eco-epidemiological
investigations is harvesting, frequently conducted via hunting, capturing, or the extraction of certain species within
an ecosystem. This phenomenon has intricate ramifications for population dynamics, particularly in respect to
disease transmission and predator-prey interactions. In ecological terms, harvesting can markedly diminish prey
populations, hence potentially alleviating predation pressure on them. Intensive harvesting, however, causes the
residual prey population to experience stress, rendering them more vulnerable to disease infections due to elevated
density in certain regions or compromised immune systems resulting from environmental stressors [31].

These interrelated ecological processes can be clearly illustrated in coral reef ecosystems, where reef fish (prey)
seek shelter among coral structures to avoid sharks (predators) [32]. The fear of predation reduces their feeding and
reproductive behavior. Simultaneously, sharks may harbor parasites that weaken their predatory capabilities, while
refuge availability among reefs shapes how and where these interactions occur [33]. Harvesting pressures from
overfishing can further disturb this balance by removing prey or predator species and intensifying stress-driven
disease transmission within the ecosystem [34].

These examples highlight the multifaceted and interconnected nature of ecological interactions, where fear
effects, refuge use, disease prevalence, and anthropogenic harvesting act simultaneously. Accurately modeling
such systems requires an approach capable of capturing not only these interdependencies but also the influence of
past events on current dynamics.

Traditional eco-epidemiological models based on integer-order differential equations typically assume that the
future state of the system depends solely on its present conditions. However, ecological systems often exhibit
memory effects, where the evolution of populations is influenced by their entire historical trajectory. A system is
deemed memoryless if its state at time t relies exclusively on instantaneous inputs, devoid of any past influence. In
contrast, memory-based systems utilize prior input values to determine current outputs [35].

Fractional-order calculus offers a powerful mathematical framework for capturing such memory-dependent
behaviors. The use of fractional differential equations enables more accurate representations of complex biological
dynamics compared to traditional first-order systems [36]. This approach has gained growing interest in
eco-epidemiology, leading to the development of models that incorporate long-term memory and hereditary
characteristics [37, 38, 39, 40, 41, 42, 43, 44, 45].

In this study, we adopt a fractional-order modeling approach to better represent the real-world ecological
processes described above. By integrating fear effects, refuge dynamics, disease transmission, and harvesting
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within a fractional differential equation framework we offer a unified eco-epidemiological model that captures
both biological complexity and memory. To the best of our knowledge, this is one of the first models of its kind
to address all four factors simultaneously using fractional-order derivatives. Our formulation bridges theoretical
insights with ecological realism, contributing to a deeper understanding of predator-prey-disease systems.

2. Model Formulation

We develop an eco-epidemiological model that integrates the combined effects of fear-induced prey behavior,
disease transmission in predators, harvesting, and prey refuge. The population is structured into three dynamic
compartments, the prey population P (T ), predator population S(T ) and infected predator population I(T ). The
model is based on the following ecological assumptions:

1. Predator infection spreads through direct contact among predators, modeled by the bilinear term βSI .
2. Prey grow logistically with intrinsic growth rate r1 and carrying capacity K, but experience suppression due

to fear effects triggered by both predator classes.
3. The fear effect reduces prey reproduction, modeled using a fear function F (S + I).
4. Both predator classes consume prey, influenced by a refuge effect (1− e) and a type-II functional response

with half-saturation constant η.
5. Harvesting is applied to prey and susceptible predators, with rates Z1 and Z2, respectively.
6. Refuges reduce both predation and harvesting efficiency.
7. Predator mortality includes natural deaths d1, d2 and disease-related death d3, with infected predators

assumed to be more fragile.
8. Energy gained from prey is converted to predator growth, modulated by conversion efficiency c.

Based on these assumptions, the classical integer-order system is:

dP

dT
=

r1P

1 + F (S + I)
− r1

K
P 2 − V (1− e)PS

1 + η(1− e)P
− VI(1− e)PI

1 + h(1− e)P
− Z1(1− e)P,

dS

dT
= −d1S +

cV (1− e)PS

1 + η(1− e)P
− βSI − Z2S,

dI

dT
= βSI +

cVI(1− e)PI

1 + η(1− e)P
− (d2 + d3)I.

(1)

To simplify the system, we apply the nondimensional transformation:

p =
P

K
, s =

S

K
, i =

I

K
, t = βKT

along with the scaled parameters:

f = FK, ν =
V

βK
, νi =

VI

βK
, r =

r1
βK

, h = ηK, z1 =
Z1

βK
, z2 =

Z2

βK
, d =

d1
βK

, γ =
d2 + d3
βK

Thus, the dimensionless system becomes:

dp

dt
=

rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p,

ds

dt
= −ds+

cν(1− e)ps

1 + h(1− e)p
− si− z2s,

di

dt
= si+

cνi(1− e)pi

1 + h(1− e)p
− γi.

(2)
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To provide biological justification, the parameters are summarized in Table 1, including their meaning, plausible
ranges, and references from ecological literature. Specific parameter values used in the numerical simulations
(Section 4) are chosen within these ranges.

Table 1. Model parameters, biological meaning, plausible ranges, and references.

Parameter Biological meaning Plausible range Reference
r Intrinsic growth rate of prey 0.5 – 11 [46, 47, 48]
f Fear coefficient due to predator presence 0.1 – 10 [49, 50]
ν Predation rate of susceptible predators 0.49 – 0.9 [51]
νi Predation rate of infected predators 0.3 – 0.8 [51]
c Conversion efficiency of prey into predator growth 0.2 – 0.9 [51, 52]
h Half-saturation constant 0.002 – 2 [50, 53]
e Refuge coefficient (proportion of prey in refuge) 0.01 – 0.9 [50]
z1 Harvesting rate of prey 0.01 – 1.0 [11, 52]
z2 Harvesting rate of susceptible predators 0.02 – 0.6 [54]
d Natural mortality of susceptible predators 0.1 – 0.2 [52]
γ Mortality of infected predators (natural + disease-induced) 0.2 – 1.5 [52]

To account for memory effects in ecological systems, we reformulate the model using Caputo fractional
derivatives of order α ∈ (0, 1). The fractional-order system is written as:

CDαp(t) =
rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p,

CDαs(t) = −ds+
cν(1− e)ps

1 + h(1− e)p
− si− z2s,

CDαi(t) = si+
cνi(1− e)pi

1 + h(1− e)p
− γi,

(3)

where CDα denotes the Caputo derivative defined by:

CDαf(t) =
1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n
dτ, n = ⌈α⌉

This formulation captures the memory-dependent dynamics of ecological systems and provides a more realistic
framework for studying the long-term behavior of interacting species.

3. Mathematical Analysis

In this section, we delineate the fundamental features of the system, including existence, uniqueness, non-
negativity, and boundedness of the solution.

3.1. Existence and uniqueness

Define Ω := {(p, s, i) ∈ R3
+ : p, s, i ≥ 0,max(p|, |s|, |i|) ≤ W} with W > 0.

Theorem 3.1
For any non-negative initial conditions (p0, s0, i0), the system (3) has a unique solution G(t) ∈ Ω.

Proof
It will be shown that the model always has a single solution in [t0, inf)× Ω if the initial value is given in Ω for
every t ≥ t0.
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Consider G = (p, s, i) and Ḡ = (p̄, s̄, ī) are the solution of the model (3).
Let C(G) = (C1(G), C2(G)), C3(G), and

C1(G) =
rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p,

C2(G) = −ds+
cν(1− e)ps

1 + h(1− e)p
− si− z2s,

C3(G) = si+
cνi(1− e)pi

1 + h(1− e)p
− γi,

we get,

∥C(G)− C(Ḡ)∥ = |C1(G)− C1(Ḡ)|+ |C2(G)− C2(Ḡ)|+ |C3(G)− C3(Ḡ)|

=

∣∣∣∣ rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p

− rp̄

1 + f(s̄+ ī)
+ rp̄2 +

ν(1− e)p̄s̄

1 + h(1− e)p̄
+

νi(1− e)p̄̄i

1 + h(1− e)p̄
+ z1(1− e)p̄

∣∣∣∣
+

∣∣∣∣− ds+
cν(1− e)ps

1 + h(1− e)p
− si− z2s+ ds̄− cν(1− e)p̄s̄

1 + h(1− e)p̄

+ s̄̄i+ z2s̄

∣∣∣∣
+

∣∣∣∣si+ cνi(1− e)pi

1 + h(1− e)p
− γi− s̄̄i− cνi(1− e)p̄̄i

1 + h(1− e)p̄
+ γī

∣∣∣∣
≤ r|p− p̄|+ rf(s̄+ ī)|s− s̄|+ rfp̄|p− p̄|+ ν(1− e)s|p− p̄|

(1 + h(1− e)p)(1 + h(1− e)p̄)

+
ν(1− e)(1 + h(1− e)p)p̄|s− s̄|
(1 + h(1− e)p)(1 + h(1− e)p̄)

+
νi(1− e)i|p− p̄|

(1 + h(1− e)p)(1 + h(1− e)p̄)

+
νi(1− e)(1 + h(1− e)p)p̄|i− ī|
(1 + h(1− e)p)(1 + h(1− e)p̄)

+ z1(1− e)|p− p̄|+ (d+ z2)|s− s̄|

+
cν(1− e)s|p− p̄|

(1 + h(1− e)p)(1 + h(1− e)p̄)
+

cν(1− e)(1 + h(1− e)p)p̄|s− s̄|
(1 + h(1− e)p)(1 + h(1− e)p̄)

+ 2|si− s̄̄i|+ cνi(1− e)i|p− p̄|
(1 + h(1− e)p)(1 + h(1− e)p̄)

+
cνi(1− e)(1 + h(1− e)p)p̄|i− ī|
(1 + h(1− e)p)(1 + h(1− e)p̄)

+ γ|i− ī|
≤ [r + rf(s̄+ ī) + r(p+ p̄) + (1 + c)(ν + νi)(1− e)W + z1(1− e)] |p− p̄|
+ [2W + rfW + (1 + c)ν(1− e)(1 + h(1− e)W ) + d+ z2] |s− s̄|
+ [2W + rfW + (1 + c)νi(1− e)(1 + h(1− e)W ) + γ] |i− ī|

= L1|p− p̄|+ L2|s− s̄|+ L3|i− ī|.

where,

L1 = r(1 + 2W (f + 1) + (1 + c)ν(1− e)W + (1 + c)νi(1− e)W + z1(1− e),

L2 = 2W + rfW + (1 + c)ν(1− e)(1 + h(1− e)W ) + (d+ z2),

L3 = 2W + rfW + (1 + c)νi(1− e)(1 + h(1− e)W.
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By choosing a positive L = max(L1, L2, L3), we get

∥C(G)− C(Ḡ∥ ≤ L∥G− Ḡ∥.

Provided that the function C(G) fulfills the Lipschitz condition on the domain Ω, the system (3) possesses a unique
solution G(t) ∈ Ω for all t ≥ t0.

3.2. Non-Negativity and Boundedness

Theorem 3.2
For any initial condition (p(0), s(0), i(0)) ∈ R3

+, the corresponding solution (p(t), s(t), i(t)) of system (3) remains
non-negative for all t > 0; hence, the non-negative orthant R3

+ is positively invariant under the dynamics of the
system.

Proof
The proof of this theorem relies on Theorem 6 presented by Cresson and Szafranka [55]. In the particular case
where α = 1, system (3) reduces to the following form:

dp

dt
=

rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p,

ds

dt
= −ds+

cν(1− e)ps

1 + h(1− e)p
− si− z2s,

di

dt
= si+

cνi(1− e)pi

1 + h(1− e)p
− γi.

From the first equation,

dp

dt
=

rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p

dp

dt
= p

(
r

1 + f(s+ i)
− rp− ν(1− e)s

1 + h(1− e)p
− νi(1− e)i

1 + h(1− e)p
− z1(1− e)

)
dp

p
=

(
r

1 + f(s+ i)
− rp− ν(1− e)s

1 + h(1− e)p
− νi(1− e)i

1 + h(1− e)p
− z1(1− e)

)
dt

p(t) = p(0)

exp

{∫ t

0

(
r

1 + f(s(τ) + i(τ))
− rp(τ)− ν(1− e)s(τ)

1 + h(1− e)p(τ)
− νi(1− e)i(τ)

1 + h(1− e)p(τ)
− z1(1− e)

)
dτ

}
≥ 0}.
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From the second equation,

ds

dt
= −ds+

cν(1− e)ps

1 + h(1− e)p
− si− z2s

ds

dt
= s

(
−d+

cν(1− e)s

1 + h(1− e)p
− i− z2

)
ds

s
=

(
−d+

cν(1− e)s

1 + h(1− e)p
− i− z2

)
dt

ln (s)− ln s(0) =

∫ t

0

(
−d+

cν(1− e)s(τ)

1 + h(1− e)p(τ)
− i(τ)− z2

)
dτ

ln (s) =

∫ t

0

(
−d+

cν(1− e)s(τ)

1 + h(1− e)p(τ)
− i(τ)− z2

)
dτ + ln s(0)

s(t) = s(0) exp

{∫ t

0

(
−d+

cν(1− e)s(τ)

1 + h(1− e)p(τ)
− i(τ)− z2

)
dτ

}
≥ 0.

From the third equation,

di

dt
= si+

cνi(1− e)pi

1 + h(1− e)p
− γi

di

dt
= i

(
s+

cνi(1− e)p

1 + h(1− e)p
− γ

)
di

i
=

(
s+

cνi(1− e)p

1 + h(1− e)p
− γ

)
dt

ln (i)− ln i(0) =

∫ t

0

(
s(τ) +

cνi(1− e)p(τ)

1 + h(1− e)p(τ)
− γ

)
dτ

ln (i) =

∫ t

0

(
s(τ) +

cνi(1− e)p(τ)

1 + h(1− e)p(τ)
− γ

)
dτ + ln i(0)

i(t) = i(0) exp

{∫ t

0

(
s(τ) +

cνi(1− e)p(τ)

1 + h(1− e)p(τ)
− γ

)
dτ

}
≥ 0.

Given that f⃗(x⃗(t)) adheres to Local Lipschitz conditions, with p(t) ≥ 0, s(t) ≥ 0, and i(t) ≥ 0 for α = 1 and
non-negative initial values, it follows from Theorem 6 by Cresson and Szafranka [55] that model (3) possesses a
non-negative solution.

Theorem 3.3
For any initial condition (p(0), s(0), i(0)) ∈ R3

+, the corresponding solution (p(t), s(t), i(t)) of system (3) remains
uniformly bounded on the interval [0,∞).

Proof
Let the function be defined as N(t) = p(t) + 1

c s(t) +
1
c i(t); consequently, we obtain

CDαN(t) = CDαp(t) +
1

c
CDαs(t) +

1

c
CDαi(t).
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For each positive constant ρ, it holds that

CDαN(t) + ρN(t) =
rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p

+
1

c
(−ds+

cν(1− e)ps

1 + h(1− e)p
− si− z2s) +

1

c
(si+

cνi(1− e)pi

1 + h(1− e)p
− γi)

+ ρ(p+
1

c
s+

1

c
i)

= (
rp

1 + f(s+ i)
− z1(1− e) + ρ)p− rp2 +

(ρ− d− z2)

c
s+

ρ− γ

c
i.

By choosing ρ < min(d+ z2, γ)

CDαN(t) + ρN(t) ≤ rp− z1(1− e)p+ ρp− rp2

= −rp2 + (r − z1(1− e) + ρ)p

≤ 1

4r
(r − z1(1− e) + ρ)2.

Utilizing the Fractional Comparison Principle [56], we obtain

N(t) ≤
(
N(0)− 1

4r
(r − z1(1− e) + ρ)2

)
Eα(−ρ(t)α) +

1

4r
(r − z1(1− e) + ρ)2.

As t → ∞, Eα(−ρ(t)α) → 0, hence N(t) → 1
4r (r − z1(1− e) + ρ)2 as t → ∞. In other words, every solution of

the system (3) that begins in R3
+ continues in the region σ, where

σ =

(
(p, s, i) ∈ R3

+ : p+
1

c
s+

1

c
i ≤ 1

4r
(r − z1(1− e) + ρ)2 + ϵ, ϵ > 0

)
.

3.3. Equilibrium Points

The fractional-order system (3) admits the following equilibrium points:

1. The trivial equilibrium E0 = (0, 0, 0), which always exists.
2. The predator-free equilibrium E1 =

(
r−z1(1−e)

r , 0, 0
)

, which exists provided that r > z1(1− e).
3. The susceptible-predator-free equilibrium E2 = (p2, 0, i2), where

p2 =
γ

cνi(1− e)− γh(1− e)
, i2 =

−A1 +
√

A2
1 − 4A0A2

2A0
.

where

A0 = νi(1− e)f,

A1 = νi(1− e) + z1(1− e)2hp2f + z1(1− e)f + rp2f + rp22fh(1− e),

A2 = rp2 + h(1− e)p22r + z1(1− e) + z1(1− e)2hp2 − r − rh(1− e)p2.

The susceptible predator free equilibrium point E2(p2, 0, i2) exist if cνi > γh and A2 < 0.
4. The disease-free equilibrium point E3(p3, s3, 0), where p3 = d+z2

cν(1−e)−(d+z2)h(1−e) , and s3 =

−B1+
√

B2
1−4B0B2

2B0
, where

B0 = ν(1− e)f,

B1 = ν(1− e) + z1(1− e)2hp3f + z1(1− e)f + rp3f + rp23fh(1− e),

B2 = rp3 + h(1− e)p23r + z1(1− e) + z1(1− e)2hp3 − r − rh(1− e)p3,
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The existence of the disease-free equilibrium point E3 = (p3, s3, 0) requires that cν > (d+ z2)h and B2 < 0.
5. The coexistence equilibrium point E∗(p∗, s∗, i∗), where s∗ = γ − cνi(1−e)p∗

1+h(1−e)p∗ , i
∗ = −(d+ z2) +

cν(1−e)p∗

1+h(1−e)p∗ .
Substituting s∗ and i∗ in prey nullcline equation gives the following polinomial equation,

C0 + C1p
∗ + C2p

∗2

+ C3p
∗3

+ C4p
∗4

= 0 (4)

where C0, C1, C2, C3, C4 are given in the Appendix. s∗ and i∗ are uniquely defined if p∗ is a solution of the
quartic polinomial equation (4). To determine the coexistence equilibrium point, it is required to find at least
one positive root of equation (4). The equation (4) possesses a maximum of four complex roots. Assume the
existence of one pair of complex roots, specifically θ and its conjugate θ∗. The following quadratic equation

P 2 + σ1P + σ2 = (P − θ)(P − θ∗) = P 2 − 2Re(θ)P + |θ|2

is created by a conjugate pair wherein σ1 = −2Re(θ), σ2 = |θ|2. Let us assume that the equation (4)
possesses two real roots, denoted as p∗1 and p∗2, such that their sum is p∗1 + p∗2 = −ϑ1 and their product is
p∗1p

∗
2 = ϑ2. Thus, the factorization of equation (4) is as follows:

C0 + C1p
∗ + C2p

∗2

+ C3p
∗3

+ C4p
∗4

= C4(P
2 + σ1P + σ2)(P

2 + ϑ1P + ϑ2)

= C4[P
4 + (σ1 + ϑ1)P

3 + (σ2 + ϑ2 + σ1ϑ1)P
2

+ (σ1ϑ2 + σ2ϑ1)P + σ2ϑ2].

By equating coefficients on both sides, we ascertain that

ϑ1 =
C3

C4
+ 2Re(θ), ϑ2 =

C0

C4|θ|2
.

We will now examine the two potential scenarios that may occur.
Scenario 1: If ϑ2 > 0, specifically, if z1(1− e)(1 + fA) > r + νi(1− e)(d+ z2), then both real roots are
positive if the following criteria are met: ϑ1 < 0 and ϑ2

1 − 4ϑ2 > 0. Consequently, there are two positive real
roots.

p∗1 =
−ϑ1 +

√
ϑ2
1 − 4ϑ2

2
, p∗2 =

−ϑ1 −
√

ϑ2
1 − 4ϑ2

2
.

Scenario 2: If ϑ2 < 0, that is, if z1(1− e)(1 + fA) < r + νi(1− e)(d+ z2), then one root is evidently
positive, fulfilling the above conditions.
Consequently, the condition for the existence of the coexistence equilibrium point E∗(p∗, s∗, i∗) is given by
γ > d+ z2,

cν(1−e)p∗

1+h(1−e)p∗ > d+ z2, γ > cνi(1−e)p∗

1+h(1−e)p∗ , and z1(1− e)(1 + fA) < r + νi(1− e)(d+ z2).

3.4. Local Stability

To investigate the local stability of system (3), we apply the classical linearization technique. The corresponding
Jacobian matrix is expressed as:

J(p, s, i) =

N11 N12 N13

N21 N22 N23

N31 N32 N33


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where,

N11 =
r

1 + f(s+ i)
− 2rp− ν(1− e)s

(1 + h(1− e)p)2
− νi(1− e)i

(1 + h(1− e)p)2
− z1(1− e),

N12 = − rpf

(1 + f(s+ i))2
− ν(1− e)p

1 + h(1− e)p
,

N13 = − rpf

(1 + f(s+ i))2
− νi(1− e)p

1 + h(1− e)p
,

N21 =
cν(1− e)s

(1 + h(1− e)p)2
,

N22 = −d+
cν(1− e)p

1 + h(1− e)p
− i− z2,

N23 = −s,

N31 =
cνi(1− e)i

(1 + h(1− e)p)2
,

N32 = i,

N33 = s+
cνi(1− e)p

1 + h(1− e)p
− γ.

Theorem 3.4
The trivial equilibrium E0 = (0, 0, 0) exhibits asymptotic stability when the condition r < z1(1− e) holds. If this
condition is not satisfied, the equilibrium becomes unstable.

Proof
At the trivial equilibrium E0(0, 0, 0), the Jacobian matrix of system (3) takes the diagonal form:

J(E0) =

r − z1(1− e) 0 0
0 −d− z2 0
0 0 −γ

 ,

with characteristic equation det(J(E0)− λI) = 0 yielding explicit eigenvalues:

λ1 = r − z1(1− e),

λ2 = −d− z2 < 0,

λ3 = −γ < 0.

Case 1: When r < z1(1− e), all eigenvalues are negative:

| arg(λi)| = π >
απ

2
, for i = 1, 2, 3.

By the fractional-order stability criterion, E0 is asymptotically stable.
Case 2: For r > z1(1− e), we have:

| arg(λ1)| = 0 <
απ

2
,

| arg(λ2)| = | arg(λ3)| = π >
απ

2
.

This eigenvalue configuration (one unstable and two stable modes) makes E0 a saddle point, hence unstable.

Theorem 3.5
The predator free equilibrium point E1(

r−z1(1−e)
r , 0, 0) is stable if cν(1−e)(r−z1(1−e))

r+h(1−e)(r−z1(1−e)) < d+ z2 and
cνi(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) < γ, while saddle point if cν(1−e)(r−z1(1−e))

r+h(1−e)(r−z1(1−e)) > d+ z2 and cνi(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) > γ.
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Proof
The Jacobian matrix for E1(

r−z1(1−e)
r , 0, 0) is

J(E1) =

N11 N12 N13

0 N22 0
0 0 N33

 .

where,

N11 = −r + z1(1− e),

N12 = −(r − z1(1− e))f − ν(1− e)(r − z1(1− e))

r − h(1− e)(r − z1(1− e))
,

N13 = −(r − z1(1− e))f − νi(1− e)(r − z1(1− e))

r − h(1− e)(r − z1(1− e))
,

N22 = −d+
cν(1− e)(r − z1(1− e))

r − h(1− e)(r − z1(1− e))
− z2,

N33 =
cνi(1− e)(r − z1(1− e))

r − h(1− e)(r − z1(1− e))
− γ,

with characteristic equation det(J(E1)− λI) = 0 yielding explicit eigenvalues: λ1 = −r + z1(1− e), λ2 = −d+
cν(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) − z2 and λ3 = cνi(1−e)(r−z1(1−e))

r+h(1−e)(r−z1(1−e)) − γ. Given that r > z1(1− e) ensures the existence of
the equilibrium point E1, it follows that λ1 is always a negative real number. Consequently, | arg(λ1)| =
π > απ

2 . If cν(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) < d+ z2, λ2 < 0. Thus |arg(λ2)| = π > απ

2 . If cνi(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) < γ, λ3 < 0.

Thus |arg(λ3)| = π > απ
2 . It follows that, under the specified condition, the predator-free equilibrium E1 is

locally asymptotically stable. Otherwise, if cν(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) > d+ z2, λ2 > 0. Thus |arg(λ2)| = 0 < απ

2 . If
cνi(1−e)(r−z1(1−e))
r+h(1−e)(r−z1(1−e)) > γ, λ3 > 0. Therefore, since | arg(λ3)| = 0 < απ

2 , the predator-free equilibrium point E1is
classified as a saddle point.

Theorem 3.6
Suppose that:

∆ =

(
r

1 + fi2
− 2rp2 −

νi(1− e)i2
(1 + h(1− e)p2)2

− z1(1− e))

)2

− 4

(
rfcνi(1− e)p2i2

(1 + fi2)2(1 + h(1− e)p2)2
+

cν2i (1− e)2p2i2
(1 + h(1− e)p2)3

)

)
,

α∗ =
2

π
tan−1

( √
|∆|

r
1+fi2

− 2rp2 − νi(1−e)i2
(1+h(1−e)p2)2

− z1(1− e)

)

The susceptible predator free equilibrium point E2(p2, 0, i2) is locally asymptotically stable if cν(1−e)p2

(1+h(1−e)p2)
<

d+ i2 + z2 and

1. r
1+fi2

− 2rp2 − νi(1−e)i2
(1+h(1−e)p2)2

− z1(1− e) < 0, or;

2. r
1+fi2

− 2rp2 − νi(1−e)i2
(1+h(1−e)p2)2

− z1(1− e) > 0,∆ < 0 and α < α∗

Proof
The Jacobian matrix for E2(p2, 0, i2) is

J(E2) =

K11 K12 K13

0 K22 0
K31 K32 0

 .
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where,

K11 =
r

1 + fi2
− 2rp2 −

νi(1− e)i2
(1 + h(1− e)p2)2

− z1(1− e),

K12 = − rp2f

(1 + fi2)2
− ν(1− e)p2

1 + h(1− e)p2
,

K13 = − rp2f

(1 + fi2)2
− νi(1− e)p2

1 + h(1− e)p2
,

K22 = −(d+ i2 + z2) +
cν(1− e)p2

1 + h(1− e)p2
,

K31 =
cνi(1− e)i2

(1 + h(1− e)p2)2
,

K32 = i2.

The Jacobian matrix evaluated at the equilibrium point J(E2) has three eigenvalues. The first eigenvalue is
explicitly given by λ1 = −(d+ i2 + z2) +

cν(1−e)p2

1+h(1−e)p2
and the other two eigenvalues are the solution of

λ2,3 =
r

1+fi2
−2rp2−

νi(1−e)i2
(1+h(1−e)p2)2

−z1(1−e)

2 ±
√
∆
2 . If λ1 = cν(1−e)p2

1+h(1−e)p2
< d+ i2 + z2, then |arg(λ1)| = π > απ

2 .

Furthermore, if r
1+fi2

− 2rp2 − νi(1−e)i2
(1+h(1−e)p2)2

− z1(1− e) < 0, then |arg(λ2,3)| = π > απ
2 . If r

1+fi2
− 2rp2 −

νi(1−e)i2
(1+h(1−e)p2)2

− z1(1− e) > 0 and e < 0, then λ2,3 is a pair of complex eigenvalues. Thus, |arg(λ2,3)| = π > απ
2

was achieved if α < α∗. Using the Matignon’s condition (Theorem 5), the theorem is completely proven.

Theorem 3.7
Suppose that:

ω1 = − r

1 + fs3
+ 2rp3 +

ν(1− e)s3
(1 + h(1− e)p3)2

+ z1(1− e),

ω2 = (
rp3f

(1 + fs3)2
+

ν(1− e)p3
1 + h(1− e)p3

)(
cν(1− e)s3

(1 + h(1− e)p3)2
)

The disease free equilibrium point E3(p3, s3, 0) is locally asymptotically stable if

1. s3 +
cνi(1−e)p3

1+h(1−e)p3
< γ, ω1 > 0 and ω2 > 0, or;

2. s3 +
cνi(1−e)p3

1+h(1−e)p3
< γ, ω1 < 0, 4ω2 > ω2

1 , and tan−1(

√
4ω2−ω2

1

ω1
) > απ

2 .

Proof
The Jacobian matrix for E3(p3, s3, 0) is

J(E3) =

L11 L12 L13

L21 0 L23

0 0 L33

 .
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where,

L11 =
r

1 + fs3
− 2rp3 −

ν(1− e)s3
(1 + h(1− e)p3)2

− z1(1− e),

L12 = − rp3f

(1 + fs3)2
− ν(1− e)p3

1 + h(1− e)p3
,

L13 = − rp3f

(1 + fs3)2
− νi(1− e)p3

1 + h(1− e)p3
,

L21 =
cν(1− e)s3

(1 + h(1− e)p3)2
,

L23 = −s3,

L33 = s3 +
cνi(1− e)p3

1 + h(1− e)p3
− γ.

One of the eigenvalues of the Jacobian matrix J(E3) is λ1 = s3 +
cνi(1−e)p3

1+h(1−e)p3
− γ and the other two eigenvalues

are the solution of λ2 + ω1λ+ ω2 = 0. If s3 +
cνi(1−e)p3

1+h(1−e)p3
< γ, then |arg(λ1)| = π > απ

2 . Furthermore, using the
Routh-Hurwitz criteria for a fractional order dynamic system, the two other eigenvalues satisfy |arg(λ)| = π > απ

2
if

1. ω1 > 0 and ω2 > 0 or,

2. ω1 < 0, 4ω2 > ω2
1 , and tan−1(

√
4ω2−ω2

1

ω1
) > απ

2 .

Therefore, E3(p3, s3, 0) is locally asymptotically stable if conditions (1) or (2) satisfied.

Theorem 3.8
Suppose that:

φ1 = −M11,

φ2 = −M23M32 −M12M21 −M13M31,

φ2 = M11M23M32 −M12M23M31 −M13M21M32,

The coexistence equilibrium point E∗(p∗, s∗, i∗) is locally asymptotically stable if φ1 > 0, φ3 > 0, and φ1φ2 > φ3.

Proof
The Jacobian matrix for E∗(p∗, s∗, i∗) is

J(E∗) =

M11 M12 M13

M21 0 M23

M31 M32 0

 .
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where,

M11 =
r

1 + f(s∗ + i∗)
− 2rp∗ − ν(1− e)s∗

(1 + h(1− e)p∗)2
− νi(1− e)i∗

(1 + h(1− e)p∗)2
− z1(1− e),

M12 = − rp∗f

(1 + f(s∗ + i∗))2
− ν(1− e)p∗

1 + h(1− e)p∗
,

M13 = − rp∗f

(1 + f(s∗ + i∗))2
− νi(1− e)p∗

1 + h(1− e)p∗
,

M21 =
cν(1− e)s∗

(1 + h(1− e)p∗)2
,

M23 = −s∗,

M31 =
cνi(1− e)i∗

(1 + h(1− e)p∗)2
,

M32 = i∗.

The corresponding characteristic equation is

λ3 + φ1λ
2 + φ2λ+ φ3 = 0,

where

φ1 = −M11,

φ2 = −M23M32 −M12M21 −M13M31,

φ2 = M11M23M32 −M12M23M31 −M13M21M32.

By the Routh–Hurwitz stability criterion, the coexistence equilibrium E∗(p∗, s∗, i∗) is locally asymptotically stable
if and only if φ1 > 0, φ3 > 0, and φ1φ2 > φ3.

3.5. Global Stability

Theorem 3.9
The equilibrium point E0(0, 0, 0) is said to be globally stable if it satisfies r < z1(1− e).

Proof
Let us define a Lyapunov function to analyze the stability of the system,

V0(p, s, i) = p+
1

c
s+

1

c
i,

In accordance with Lemma 3.1 from Vargas De León [57], it follows that we can express the system as follows:

CDαV0 ≤ CDαp+
1

c
CDαs+

1

c
CDαi,

=

(
rp

1 + f(s+ i)
− rp2 − ν(1− e)ps

1 + h(1− e)p
− νi(1− e)pi

1 + h(1− e)p
− z1(1− e)p

)
+

1

c

(
−ds+

cν(1− e)ps

1 + h(1− e)p
− si− z2s

)
+

1

c

(
si+

cνi(1− e)pi

1 + h(1− e)p
− γi

)
,

=
rp

1 + f(s+ i)
− rp2 − z1(1− e)p− ds

c
− z2

c
− γ

c
,

≤ [r − z1(1− e)] p.
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It is evident that CDαV0 ≤ 0 when r < z1(1− e), indicating that the Lyapunov function V0(p, s, i) satisfies the
condition for global stability. Therefore, we conclude that the equilibrium point E0 is globally asymptotically
stable under the condition r < z1(1− e).

Theorem 3.10
The coexistence equilibrium point E∗(p∗, s∗, i∗) is globally asymptotically stable.

Proof
Let us examine the following Lyapunov function, which satisfies the condition of positive definiteness:

V1(p, s, i) = [p− p∗ − p∗ln
p

p∗
] + [s− s ∗ −s ∗ ln s

s∗
] + [i− i ∗ −i ∗ ln i

i∗
]

According to Lemma 3.1 in [57], it follows that:

CDαV1(p, s, i) ≤
[
p− p∗

p

]
CDαp+

[
s− s∗

s

]
CDαs+

[
i− i∗

i

]
CDαi,

= [p− p∗]

(
r

1 + f(s+ i)
− rp− ν(1− e)s

1 + h(1− e)p
− νi(1− e)i

1 + h(1− e)p
− z1(1− e)

)
+ [s− s∗]

(
−d+

cν(1− e)p

1 + h(1− e)p
− i− z2

)
+ [i− i∗]

(
s+

cνi(1− e)p

1 + h(1− e)p
− γ

)
,

≤ −(p− p∗)(−r

(
1

1 + f(s+ i)
− 1

1 + f(s∗ + i∗)

)
+ r(p− p∗)

+ ν(1− e)

(
s

1 + h(1− e)p
− s∗

1 + h(1− e)p∗

)
+ νi(1− e)

(
i

1 + h(1− e)p
− i∗

1 + h(1− e)p∗

)
)− (s− s∗)

(−cν(1− e)

(
p

1 + h(1− e)p
− p∗

1 + h(1− e)p∗

)
+ (i− i∗))

− (i− i∗)((s− s∗)− cνi(1− e)

(
p

1 + h(1− e)p
− p∗

1 + h(1− e)p∗

)
).

It is obvious that V1(p, s, i) ≤ 0. We find out that the coexistence equilibrium point E∗(p∗, s∗, i∗) is globally
asymptotically stable.

4. Numerical Simulation and Discussion

To support and visualize the analytical findings, a series of numerical simulations were conducted for different
parameter sets representing distinct ecological scenarios. The specific parameter values and their corresponding
interpretations are summarized in Table 1. For reference, these parameter sets are used consistently throughout
this section: Set 1 corresponds to the trivial equilibrium (E0), Set 2 to the predator-free equilibrium (E1), Set 3 to
the susceptible predator-free equilibrium (E2), Set 4 to the disease-free equilibrium (E3), and Set 5 to the interior
coexistence equilibrium (E∗). In addition, Set 6 is introduced to explore the combined effects of refuge proportion
and memory (fractional order α) on the system’s stability. Together, these simulations provide a comprehensive
numerical validation of the analytical results and offer deeper ecological insights into how fear, disease, harvesting,
and memory shape the long-term dynamics of the system.
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Table 2. Parameter values used in the numerical simulations (Sets 1–5).

Set r f ν νi c h e z1 z2 d γ Figure
1 0.5 2.0 0.49 0.3 0.2 0.05 0.05 0.6 0.6 0.2 0.3 Figure 1
2 0.5 2.0 0.49 0.3 0.2 0.05 0.05 0.2 0.6 0.2 0.3 Figure 2
3 0.7 2.0 0.9 0.8 0.9 0.1 0.2 0.5 0.4 0.1 0.2 Figure 3
4 0.7 2.0 0.9 0.8 0.9 0.1 0.7 1.0 0.02 0.1 0.6 Figure 4
5 1.5 1.5 0.9 0.5 0.9 0.4 0.2 0.1 0.02 0.1 0.6 Figure 5, Figure 6
6 10 0 0.9 0.8 0.9 0.1 0.8 0.1 1 0.02 0.6 Figure 7, Figure 8

This section presents numerical simulations of the fractional-order eco-epidemiological model (3) to demonstrate
the theoretical results derived earlier. The simulations are carried out using the Adams–Bashforth–Moulton
predictor–corrector method [58], which provides accurate approximate solutions for fractional-order differential
equations. Since no empirical data are currently available for this model, the parameter values listed in Table 2 were
selected within plausible biological ranges (see Table 1) and adjusted to illustrate different ecological scenarios
such as high harvesting pressure and varying refuge proportions.

The simulations are organized to progressively illustrate the dynamical behavior of the system under different
ecological conditions. We begin with the simplest case where all populations vanish, and then gradually include
the effects of prey recovery, disease transmission, and coexistence of multiple species. Finally, we examine how
refuge and memory jointly influence system stability. This structured approach allows each simulation to highlight
a specific ecological mechanism while collectively demonstrating the consistency between analytical predictions
and numerical outcomes.

Simulation 1: Trivial equilibrium E0

The first simulation investigates the trivial equilibrium point E0(0, 0, 0), representing the extinction of all
populations. Using the parameter values in Set 1 of Table 2, the condition r < z1(1− e) is satisfied, which
guarantees that E0 is locally asymptotically stable, consistent with Theorem 3.4. Numerical results in Figure 1
show that all populations decay to zero for different fractional orders α ∈ [0.7, 1]. Specifically, Figures 1(a) and 1(b)
depict the rapid decay of the prey and susceptible predator populations, respectively, while Figure 1(c) shows the
corresponding decline of the infected predator population. The collective trajectory of this extinction process is
further illustrated in the phase portrait of Figure 1(d).

This scenario corresponds to an ecosystem where intensive harvesting overwhelms the natural reproductive
capacity of the prey. When the prey cannot sustain its population, both susceptible and infected predators eventually
perish due to food scarcity. The inequality r < z1(1− e) reflects this ecological imbalance: high harvesting and
limited accessible refuge (1− e) drive the system toward extinction.

From a dynamical point of view, the fractional order α modulates the memory effect of the system. As α increases
toward one, trajectories converge to the extinction state more rapidly, mimicking a fast ecological response with
little memory of past population states. This is evident in the steeper initial declines shown in Figures 1(a-c)
for α = 1. Conversely, when α decreases (e.g., α = 0.7), the convergence becomes slower, indicating that long
ecological memory delays the collapse of populations even under unfavorable conditions. Thus, smaller α values
represent ecosystems where past population conditions continue to influence the present, slightly buffering the rate
of decline but not preventing eventual extinction.

Simulation 2: Predator-free equilibrium point E1

The second simulation examines the predator-free equilibrium E1, in which the prey persists while both susceptible
and infected predators go extinct. Using the parameter values in Set 2 of Table 2, the condition r > z1(1− e) is
satisfied, ensuring the existence of E1, in agreement with Theorem 3.5. Numerical simulations in Figure 2 show
that prey populations stabilize at a positive equilibrium, whereas both predator classes decline to zero for various
fractional orders α ∈ [0.7, 1]. Specifically, the time series in Figure 2(a) shows the prey population converging
to its steady state, while Figures 2(b) and 2(c) illustrate the decline of the susceptible and infected predator
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(a) Time series of the prey population (p).
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(b) Time series of the susceptible predator population (s).
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(c) Time series of the infected predator population (i).
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(d) Phase portrait of the system.

Figure 1. Simulation for parameter Set 1, showing convergence to the trivial equilibrium E0(0, 0, 0) for different fractional
orders α = (0.7, 0.8, 0.9, 1): (a) Prey population, (b) Susceptible predator population, (c) Infected predator population, and
(d) Phase portrait the model’s solutions when α = 0.9.

populations, respectively. The phase portrait in Figure 2(d) visualizes the system’s trajectory towards the predator-
free equilibrium on the prey axis.

This scenario represents an ecological system where the prey population can recover despite continuous
harvesting, but predators cannot sustain themselves because their food source (prey) remains at a density too low
to offset natural mortality and harvesting losses. The inequality r > z1(1− e) indicates that prey growth exceeds
harvesting pressure, allowing prey survival even in the absence of predators. However, since prey abundance does
not reach the level needed to support predator reproduction, both predator classes die out.

From a fractional-order perspective, the value of α governs the speed of ecological adjustment. For α close to
one (e.g., α = 1), the predator extinction occurs rapidly, and the prey quickly settles at its steady-state density,
as seen in the sharp transitions in Figures 2(a-c). When α decreases (e.g., α = 0.7), the trajectories exhibit
slower convergence, with longer transients before reaching equilibrium. Ecologically, this implies that systems
with stronger memory (smaller α) retain the influence of past predator–prey interactions longer, delaying predator
extinction and prey stabilization. In contrast, when memory fades quickly (larger α), the populations respond more
immediately to current conditions, leading to faster stabilization.
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(a) Time series of the prey population (p).
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(b) Time series of the susceptible predator population (s).
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(c) Time series of the infected predator population (i).
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(d) Phase portrait converging to E1 on the prey axis.

Figure 2. Simulation for parameter Set 2, showing convergence to the predator-free equilibrium E1 for different fractional
orders α = (0.7, 0.8, 0.9, 1): (a) Prey population, (b) Susceptible predator population, (c) Infected predator population, and
(d) Phase portrait the model’s solutions when α = 0.9.

Simulation 3: Susceptible predator-free equilibrium E2

The third simulation investigates the susceptible predator-free equilibrium E2, where prey coexist with infected
predators, while susceptible predators are driven to extinction. Using the parameter values in Set 3 of Table 2, the
condition cνi > γh is satisfied, confirming the existence of E2 as established in Theorem 3.6. The numerical results
in Figure 3 show that trajectories converge to E2 for all tested fractional orders α ∈ [0.7, 1]. Specifically, Figure 3(a)
shows the stabilization of the prey population, Figure 3(b) demonstrates the extinction of the susceptible predator,
and Figure 3(c) confirms the persistence of the infected predator at a low level. The phase portrait in Figure 3(d)
illustrates the system’s convergence to the equilibrium in the p-i plane.

This equilibrium illustrates an ecological state in which disease dynamics regulate the predator population.
The infection reduces the predation efficiency of predators, allowing the prey to persist at moderate density.
However, the infected predators can still maintain a small but stable population because their feeding activity,
though reduced, is sufficient to balance mortality. The susceptible predators, which face higher competition and
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disease transmission pressure, gradually disappear. Thus, the disease acts as a natural control mechanism that
prevents predator overexploitation of prey.

From the viewpoint of fractional dynamics, the order α influences how the system responds to these competing
processes of predation and infection. At higher α values (close to 1), the approach to equilibrium is faster,
reflecting an ecosystem that rapidly adjusts to the new balance between disease and predation, as seen in the quick
stabilization in Figures 3(a) and 3(c). For smaller α, the memory of past predator–prey interactions introduces
inertia into the system: infection effects accumulate over time, and the transition toward equilibrium becomes
smoother and more gradual. This suggests that long ecological memory can moderate fluctuations caused by disease
transmission, promoting a more buffered coexistence between prey and infected predators.
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(a) Time series of the prey population (p).
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(b) Time series of the susceptible predator population (s).
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(c) Time series of the infected predator population (i).
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(d) Phase portrait in the p-i plane.

Figure 3. Simulation for parameter Set 3, showing convergence to the susceptible predator-free equilibrium E2 for different
fractional orders α = (0.7, 0.8, 0.9, 1): (a) Prey population stabilizes, (b) Susceptible predator population declines to zero,
(c) Infected predator population persists, and (d) Phase portrait.

Simulation 4: Disease-free equilibrium E3

The fourth simulation focuses on the disease-free equilibrium E3, where prey coexist with healthy predators, while
infected predators are eliminated. Using the parameter values in Set 4 of Table 2, the condition cν > (d+ z2)h
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is fulfilled, confirming the existence of E3 as predicted by Theorem 3.7. Numerical results in Figure 4 show
that all trajectories converge to E3 for different fractional orders α ∈ [0.7, 1]. Specifically, Figure 4(a) shows the
stabilization of the prey population, Figure 4(b) illustrates the persistence of the susceptible predator population,
and Figure 4(c) confirms the extinction of the infected predator. The phase portrait in Figure 4(d) visualizes the
system’s approach to the equilibrium in the p-s plane.

This equilibrium describes a healthy ecological system where the predation pressure is sufficient to suppress
the spread of disease within the predator population. The susceptible predators dominate, while the infected class
cannot survive due to competitive disadvantage and higher mortality. Meanwhile, the prey population stabilizes
at a moderate level, as continuous predation prevents excessive growth. The condition cν > (d+ z2)h reflects
an energetically efficient predator population capable of maintaining itself through consistent feeding, while
harvesting and mortality remain balanced.

From the viewpoint of fractional dynamics, the order α influences the damping characteristics of the oscillatory
behavior. For α approaching one, the system rapidly stabilizes after minor fluctuations, indicating a highly
responsive ecological interaction with minimal memory of past states, as seen in the quick convergence in
Figures 4(a-c). As α decreases, the trajectories exhibit weaker damping and longer-lasting oscillations before
reaching equilibrium, revealing that ecological memory can sustain short-term population fluctuations. This
suggests that when past interactions are retained (smaller α), the system temporarily experiences predator–prey
cycles before eventually stabilizing, illustrating how memory prolongs but does not destabilize the return to
equilibrium.

Simulation 5: Interior coexistence equilibrium E∗

The fifth simulation considers the interior coexistence equilibrium E∗, where prey, susceptible predators, and
infected predators coexist in a dynamically balanced state. Using the parameter values in Set 5 of Table 2, the
stability conditions φ1 > 0, φ3 > 0, and φ1φ2 > φ3 are satisfied, confirming the local stability of E∗ in agreement
with Theorem 3.8. Numerical results presented in Figure 5 demonstrate that all population densities converge to
positive steady states for different fractional orders α ∈ [0.7, 1]. Specifically, Figures 5(a), 5(b), and 5(c) show
the stabilization of prey, susceptible predator, and infected predator populations, respectively, while Figure 5(d)
displays the three-dimensional phase portrait of their coexistence.

This equilibrium represents a fully interacting ecosystem in which prey persistence, predation, and disease
transmission reach a natural balance. Predation pressure controls prey overgrowth, while the disease limits the
dominance of healthy predators, preventing them from overexploiting the prey population. The infected predators,
in turn, reduce the intensity of predation due to their lower hunting efficiency, which provides a protective feedback
to the prey population. This bidirectional interaction forms a self-regulating loop that maintains all species at
sustainable levels. The fractional order α adds an additional ecological layer to this balance. For higher α values
(close to one), the populations quickly settle into steady coexistence, representing an ecosystem that adapts swiftly
to perturbations with minimal memory of past interactions, as seen in the rapid convergence in Figures 5(a-c).
When α decreases, memory effects become stronger, and the trajectories exhibit slower convergence with mild
oscillatory behavior before stabilization. This behavior suggests that ecological memory smooths the adjustment
among species: past predation and infection events influence current population growth, creating a more resilient
but slower-reacting coexistence. Therefore, the fractional model captures how inherited ecological experiences
such as lingering effects of disease or predation avoidance behavior can sustain the long-term coexistence of all
interacting populations.

To provide a quantitative comparison of how the fractional order α affects system dynamics, an additional
analysis was performed using the parameter values from Set 5 in Table 2. Figure 6 illustrates the relationship
between α and the time required for the prey population to reach 95% of its equilibrium value (T95). A clear
decreasing trend is observed: as α increases from 0.7 to 1.0, the system reaches equilibrium more rapidly. This
result confirms that higher α values, corresponding to weaker memory, accelerate the damping of oscillations,
whereas smaller α values, representing stronger ecological memory, slow the convergence toward equilibrium.
Ecologically, this means that when the system retains longer memory of past interactions, populations adjust more
gradually to perturbations, delaying the approach to stability but contributing to smoother ecological transitions.
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(a) Time series of the prey population (p).
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(b) Time series of the susceptible predator population (s).
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(c) Time series of the infected predator population (i).

0.5

1

1.5

2
0.5

1
1.5

2
2.5

3

0.5

1

1.5

2

s (Susceptible Predator)

3D Phase Portrait (p,s,i)

p (Prey)

i 
(I

n
fe

c
te

d
 P

re
d

a
to

r)

(d) Phase portrait in the p-s plane.

Figure 4. Simulation for parameter Set 4, showing convergence to the disease-free equilibrium E3 for different fractional
orders α: (a) Prey population stabilizes, (b) Susceptible predator population persists, (c) Infected predator population declines
to zero, and (d) Phase portrait.
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Figure 6. Quantitative relationship between the fractional order α and the time required for the prey population to reach 95%
of its equilibrium value (T95) using the parameter set 5. The decreasing trend indicates that larger α values lead to faster
convergence, while smaller α (stronger memory) slow down the stabilization process.
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(a) Time series of the prey population (p).
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(b) Time series of the susceptible predator population (s).
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(c) Time series of the infected predator population (i).
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(d) Phase portrait of the coexistence equilibrium.

Figure 5. Simulation of the interior coexistence equilibrium E∗ using parameter Set 5 for different fractional orders α: (a)
Prey population stabilizes, (b) Susceptible predator population persists, (c) Infected predator population persists, and (d)
Phase portrait.

Simulation 6: Effect of refuge and memory on stability

The final simulation investigates how the refuge proportion e and the fractional order α jointly affect the stability
of the coexistence equilibrium. Using the parameter values in Set 6 of Table 2, Figure 7 presents the dynamics for
different refuge levels at α = 1, while Figure 8 explores the effect of memory (α < 1) at a fixed refuge level.

At the integer order α = 1, Figure 7 shows that when the refuge is high (e = 0.8), the system loses stability and
exhibits oscillatory behavior (Figures 7(a) and 7(b)), indicating that excessive prey protection prevents effective
predation and disrupts the ecological balance. However, when the refuge is reduced to e = 0.2 (Figures 7(c)
and 7(d)) or e = 0.1 (Figures 7(e) and 7(f)), the system regains stability and all populations converge smoothly to
coexistence. This demonstrates that moderate refuge provides enough safety for prey while still allowing sufficient
predation to regulate population growth.

In contrast, Figure 8 reveals that even under a high-refuge condition (e = 0.8), the system can become stable
when the fractional order is reduced from α = 1 (Figures 8(a) and 8(b)) to α = 0.97 (Figures 8(c) and 8(d)). The
inclusion of fractional dynamics introduces ecological memory, meaning that present interactions are influenced by
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past population states. This memory dampens abrupt oscillations and allows the system to recover stability that was
lost in the purely integer-order case. Ecologically, this suggests that long term behavioral or physiological memory
such as delayed predation responses or stress adaptation can counteract the destabilizing effects of excessive refuge,
leading to a more resilient coexistence.

Taken together, Figures 7–8 provide a dedicated example in which varying the fractional order α leads to a
qualitative change in system behavior: for the same high-refuge setting (e = 0.8), the coexistence equilibrium is
unstable at α = 1 but becomes stable at α = 0.97. This stability switch directly demonstrates the distinctive role of
ecological memory captured by fractional dynamics.

In addition to illustrating the stabilizing influence of ecological memory, Simulation 6 also serves as a
qualitative sensitivity analysis. By systematically varying the refuge proportion (e) and the fractional order (α),
the simulation reveals how small parameter changes can lead to marked differences in system behavior—from
oscillatory instability to stable coexistence. This highlights the high sensitivity of the model to ecological protection
mechanisms and memory effects, providing valuable insight into the robustness of the system’s dynamics.
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Figure 8. The graphs (a) and (b) illustrate the time series and phase portrait of the model’s solutions when α = 1, while the
graphs(c) and (d) illustrate the time series and phase portrait of the model’s solutions when α = 0.97
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Figure 7. The dynamical behavior of the model system is analyzed for varying values of prey refuge and with fear set to
f = 0. The graphs (a) and (b) illustrate the time series and phase portrait of the model’s solutions for high refuge e = 0.8,
the graphs (c) and (d) present the time series and phase portrait for moderate refuge e = 0.2, whereas the graphs (e) and (f)
present the time series and phase portrait for low refuge e = 0.1.
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5. Conclusions

This paper proposed and analyzed a fractional-order eco-epidemiological model that integrates fear effects,
predator disease, and harvesting. The existence, uniqueness, and boundedness of the solutions were established,
and the local stability of all feasible equilibria was examined. Numerical simulations confirmed the analytical
results and illustrated how key ecological parameters influence the system’s dynamic behavior.

The findings reveal that fear effects enhance prey persistence by reducing predation pressure, whereas excessive
harvesting can drive predator extinction. Introducing the fractional derivative incorporates ecological memory
into the system, substantially affecting the transient dynamics and stability. The fractional order α represents the
degree of ecological memory, reflecting long-term stress responses or adaptive behaviors that influence population
recovery and coexistence. These insights demonstrate how memory processes shape ecological resilience and link
fractional calculus with biological interpretation in predator–prey–disease systems.

Simulation 6 further illustrates this property: small changes in the fractional order (α) can induce a qualitative
shift in system stability. For the same parameter set, the coexistence equilibrium that is unstable at α = 1 becomes
stable at α = 0.97. This finding highlights the distinctive ability of fractional dynamics to capture ecological
memory and its stabilizing influence in complex interactions.

Model Limitations and Future Directions

Several simplifying assumptions should be noted. The disease transmission is modeled only within the predator
population using a simple SI structure, while more complex frameworks such as SIR or SEIR are not considered.
Harvesting is treated as constant, ignoring seasonal or stochastic variability commonly observed in natural
ecosystems. The refuge effect is represented as a proportional term without spatial or behavioral adaptation.
Future studies could extend the model by including time delays, age or stage structure, spatially explicit refuge, or
empirical parameterization from field data to enhance ecological realism.

Additionally, management oriented extensions could further broaden the model’s applicability. Optimizing the
harvesting rates (z1, z2) through optimal control formulations may help balance biodiversity conservation and
economic yield. Incorporating climate related drivers such as temperature dependent disease transmission or
predator behavioral changes could also elucidate how environmental fluctuations interact with ecological memory.
Together, these developments would extend the fractional framework from theoretical exploration toward practical
tools for sustainable ecosystem management.

Appendix

Coefficient of p∗ in equation (4)

A = γ − (d+ z2)

B = c(ν − νi)(1− e)

C0 = −r + z1(1− e) + z1(1− e)fA− νi(1− e)d− νi(1− e)z2

− νi(1− e)fAd− νi(1− e)fAz2 + ν(1− e)γ + ν(1− e)γfA

C1 = −3hr(1− e) + r + rfA+ 2ν(1− e)γh(1− e)

+ 2ν(1− e)2γfAh+ ν(1− e)γfB − ν(1− e)2cνi

− fν(1− e)2cνiA+ z1(1− e)22h+ νi(1− e)2cν

− νi(1− e)2dh− νi(1− e)2z2h+ νi(1− e)2cνfA

− νi(1− e)2dhfA− νi(1− e)2z2hfA− νi(1− e)2dh

− νi(1− e)2z2h− νi(1− e)2dhfA− νi(1− e)2z2hfA

− νi(1− e)dfB − νi(1− e)z2fB + z1(1− e)22hfA
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+ z1(1− e)fB + z1(1− e)2hfA+ z1(1− e)2h

C2 = −3rh2(1− e)2 + 2rh(1− e) + 2rhfA(1− e) + rh(1− e)

+ rh(1− e)fA+ rfB + νγh2(1− e)3 + νγh2fA(1− e)3

+ h(1− e)2νγfB − hν(1− e)3cνi − ν(1− e)3cνihfA

− ν(1− e)2cνifB + νi(1− e)3cνh− νi(1− e)3dh2

− νiz2(1− e)3h2 + νi(1− e)3cνhfA− νid(1− e)3fAh2

− νi(1− e)3z2fAh2 + νi(1− e)2cνfB − νi(1− e)2dhfB

− νi(1− e)2z2hfB + z1h
2(1− e)3 + z1h

2(1− e)3fA

+ z1(1− e)22(1− e)h2 + z1(1− e)32fAh2 + z1(1− e)22hfB

C3 = −rh3(1− e)3 + rh2(1− e)2 + rfAh2(1− e)2 + 2rh2(1− e)2

+ 2rh2fA(1− e)2 + 2rhfB(1− e) + z1h
3(1− e)4

+ z1h
2(1− e)4hfA+ z1h

2(1− e)3fB

C4 = rh3(1− e)3 + rh3fA(1− e)3 + rh2fB(1− e)2
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