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Abstract Class imbalance presents a significant challenge in creating reliable and precise medical diagnostic models,
especially in multi-class classification contexts where rare yet clinically important cases are insufficiently represented.
This work addresses the imbalance problem across three different medical datasets: HAM10000, Skin Cancer ISIC, and
Non-Alcoholic Fatty Liver Disease (NAFLD) by presenting an extensive deep learning framework using Cycle-Consistent
GANs (CycleGAN) for data balancing, integrating advanced data augmentation methods, and applying Focal Loss to
enhance training. The suggested architecture utilizes EfficientNet-B3 for image classification and a custom-built Multi-
Layer Perceptron (MLP) for evaluating tabular clinical data. The CycleGAN model is employed to create realistic images of
minority classes and to replicate oversampling in tabular domains, thus generating balanced and semantically varied datasets.
To enhance generalization, we implement real-time augmentation techniques, which encompass image data augmentation
via flipping, rotation, and color jittering, alongside normalization strategies for tabular features. This study presents a unified
deep learning pipeline that implements real CycleGAN-based oversampling for both image and tabular medical datasets,
distinguishing it from previous research. The amalgamation of CycleGAN with Focal Loss and EfficientNetB3 yields
improved efficacy in minority-class detection, setting a novel benchmark for imbalanced multi-class medical classification.
The performance evaluation was performed using stratified 5-fold cross-validation, employing measures like macro F1-score,
balanced accuracy, and ROC-AUC. The proposed method attained superior results across all datasets, with an efficient peak
accuracy of 99.33%, a macro F1-score of 96.85%, and a ROC-AUC of 0.9852 on the HAM10000 dataset. The comparative
analysis with previous studies illustrates the supremacy of our pipeline in overall accuracy and minority-class sensitivity. The
comparison analysis with past studies shows the superiority of our pipeline in generic accuracy and minority-class sensitivity.
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1. Introduction

Medical data imbalance presents a significant challenge in the development of intelligent diagnostic systems,
especially in dermatology and hepatology. Conditions such as skin cancer and NAFLD frequently demonstrate
imbalanced class distributions, with prevalent cases significantly outnumbering rare yet clinically significant
instances. The existing imbalance impairs the generalization ability of machine learning models and diminishes
their sensitivity to minority classes, resulting in inaccurate or biased predictions in critical healthcare contexts
[1][2].Skin cancer is among the most common types of cancer worldwide, imposing a significant burden on
healthcare systems [3]. Dermoscopic datasets, including HAM10000 and ISIC, have expedited progress in
automated analysis through deep learning (DL). However, these datasets exhibit significant imbalance, with benign
lesions, such as melanocytic nevi (nv), vastly outnumbering malignant types, including vascular lesions (vasc)
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and dermatofibromas (df) [4]. The NAFLD dataset, which emphasizes liver fat staging, includes a greater number
of early-stage samples compared to advanced cases. These distributions lead to diagnostic models that exhibit
bias towards dominant classes and lack the necessary sensitivity for identifying rare but severe conditions [5][6].
Traditional approaches to addressing class imbalance encompass oversampling, undersampling, and the generation
of synthetic data through methods such as SMOTE (Synthetic Minority Oversampling Technique) and ADASYN
[7][8]. Nonetheless, these methods may fail to maintain semantic integrity or adequately represent complex
feature distributions in high-dimensional data [9].Generative Adversarial Networks (GANs) represent a class of
deep learning models that were introduced recently [10]. Comprises two competing neural networks: a generator
and a discriminator. Figure 1 illustrates summer. The generator produces synthetic data samples, whereas the
discriminator assesses these samples against real data, offering evaluation to enhance the generator’s performance.
In this adversarial framework, the generator incrementally acquires the ability to generate data that increasingly
mirrors the original distribution [11]. This framework has demonstrated significant efficacy in tasks including image
synthesis, data augmentation, and domain translation, facilitating the generation of high-dimensional, complex, and
realistic data representations without the necessity for explicit labeling or paired datasets [12].

Figure 1. Basic architecture of a GAN.

To overcome these obstacles, we suggest an integrated system that enhances multi-class classification in
unbalanced medical datasets by combining state-of-the-art DL classifiers, data augmentation, and CycleGAN-
based oversampling. Three different datasets are used to validate our pipeline: the NAFLD tabular dataset, the
HAM10000 dataset, and the ISIC skin cancer image dataset. Each dataset suffers from class imbalance despite
modality variations, which makes them perfect candidates to evaluate the adaptability of our methodology.
The EfficientNet-B3 architecture is used in the suggested system for image-based classification because it
strikes a balance between computational efficiency and accuracy. A bespoke MLP is used to represent nonlinear
dependencies in structured data for the tabular NAFLD dataset. We use Focal Loss, which dynamically modifies
loss contributions according to prediction difficulty, to further improve classification performance on minority
classes by concentrating the model’s learning on examples that are more difficult to categorize. The following is a
summary of our main contributions:
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1. We use stratified K-fold cross-validation and a common assessment technique based on macro
F1-score, balanced accuracy, and ROC-AUC to evaluate our approach on three datasets: HAM10000, ISIC, and
NAFLD. This ensures generalizability across modalities.

2. We suggest a unified architecture that makes use of real-time data augmentation techniques and
synthetic samples produced by CycleGAN to lessen multi-class imbalance in medical data. This maintains the
semantic characteristics of minority samples while guaranteeing balanced class distributions.

3. We include Focal Loss into both image and tabular classification pipelines to increase model robustness
and diagnostic precision, enabling the models to concentrate more on difficult and underrepresented classes.

4. Emphasizing scalability, we use the same training pipeline structure across tabular and image-based
datasets with only minor adjustments, demonstrating the adaptability and reusability of our approach in many
clinical settings.

This paper’s remaining sections are arranged as follows: Section 2 examines relevant research in medical data
classification and GAN-based data augmentation. The preprocessing pipeline, balancing mechanism, and dataset
features are described in Section 3. The training processes and experimental setup are described in Section 4. The
results and a detailed discussion of the findings are presented in Section 5. Section 6 wraps up the paper and
provides guidance for further research.

2. Related Works

Deep learning has considerably progressed medical diagnosis by facilitating automatic and precise virus
identification across several modalities, such as dermoscopic pictures and electronic health information. The
efficacy of these models is significantly contingent upon the quality and composure of the training datasets. A
number of academics have investigated methods to alleviate the detrimental impacts of data imbalance, augment
generalization, and increase prediction accuracy for minority classes.

2.1. Class Imbalance in Medical Datasets

Class imbalance is a continual difficulty in medical classification tasks, as datasets generally display an unequal
representation of normal and abnormal samples [13][14]. In dermoscopic datasets such as HAM10000 and ISIC,
the predominant pictures are classified as benign, specifically (nv), while malignant lesions are inadequately
represented [15]. Clinical datasets like NAFLD exhibit a significant proportion of early-stage or mild cases, hence
constraining the model’s capacity to acquire distinguishing traits for advanced stages [16]. Conventional methods
for tackling class imbalance encompass random oversampling, undersampling, and algorithmic strategies like
SMOTE and ADASYN [17]. Although these methods provide slight speed improvements, they frequently result
in overfitting or the introduction of noise due to synthetic data production reliant only on feature interpolation,
especially in high-dimensional image data [18].

2.2. GAN-based Oversampling Techniques

Recent studies have utilized GANs to generate class-specific, high-fidelity pictures, thereby addressing the
constraints of conventional oversampling methods [19][20]. CycleGANs have gained recognition for their capacity
to learn inter-class mappings without the necessity of paired training data. Exhibited the efficacy of CycleGAN
in producing authentic lesion images to equilibrate dermoscopy datasets [21]. Likewise, GANs to radiological
and histological pictures, markedly enhanced minority class recall [22]. Figure 2 depicts the procedure of GAN-
based oversampling utilizing CycleGAN. We employ a CycleGAN-based balancing technique for both HAM10000
and NAFLD, training class-to-class generators to replicate underrepresented samples. In contrast to previous
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techniques that depend exclusively on image replication or SMOTE, our methodology produces structurally varied
and semantically precise samples, leading to balanced and expressive training distributions [23].

Figure 2. Gan-based Overview sampling using CycleGan.

2.3. Deep Learning Models for Skin Lesion and Clinical Data Classification

Convolutional Neural Networks (CNNs) are extensively utilized in dermatological image analysis, with designs
including ResNet, VGG, and DenseNet demonstrating robust performance on benchmark datasets. Recently,
EfficientNet has emerged as a premier architecture that optimally balances accuracy and computational expense
[24]. Introduced a compound scaling algorithm that equally adjusts depth, width, and resolution, allowing
EfficientNet to surpass previous CNNs in multiple medical imaging tasks [25]. For tabular medical data, (MLPs)
continue to be a favored option because of their straightforwardness and versatility. Research by [26], indicates that
when integrated with rigorous preprocessing and class balancing, MLPs may proficiently model intricate feature
interactions in clinical datasets, including NAFLD. EfficientNet-B3 is the main image classifier in our method
since it is so very effective on small-to-medium medical datasets. We use normalized clinical features [27]. and a
custom three-layer MLP to classify steatosis phases in the NAFLD dataset.

2.4. Loss Functions for Imbalanced Classification

Often struggling with imbalanced datasets, standard loss functions, including cross-entropy, allocate uniform
weight to all samples, independent of class frequency. Focal Loss was developed to reduce the impact of accurately
identified samples and to focus learning on difficult, misclassified instances [28]. Focal Loss has been successfully
employed in medical imaging applications such as skin lesion detection, pneumonia classification, and diabetic
retinopathy grading. This study integrates Focal Loss into the classification pipelines for both images and tabular
data [29]. The loss function enhances convergence by prioritizing errors in the minority class, thereby improving
macro-level evaluation metrics, such as F1-score and balanced accuracy [30].

3. Research Methods

The methods and tools applied to reduce data imbalance and enhance classification accuracy over several medical
datasets are described in this part. Figure 3 shows, within a multi-modal deep learning architecture, the combination
of image-derived spatial features with clinical data. This study utilized three publicly available datasets: the
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HAM10000 dataset, which contains 10,000 training photos, the ISIC Skin Cancer dataset, and the NAFLD tabular
dataset. The datasets include several imaging and clinical diagnostic modalities, including dermatoscopic images of
skin lesions and records of liver conditions. Resampling, normalization, augmentation, and patch-based processing
were employed to guarantee consistency and robustness across tests. Resampling, normalization, augmentation,
and patch-based processing were employed to guarantee consistency and robustness across tests. The executed
measures normalize input data and alleviate class imbalance effects, hence improving model generalization during
both the training and evaluation stages.

Figure 3. Complete Workflow of the Proposed Deep Learning Pipeline for Class-Imbalanced Medical Image Classification.

3.1. Datasets

In medical datasets, class imbalance poses a major problem that usually results in biased models and insufficient
generalization for underrepresented classes. We used synthetic oversampling techniques—including statistical
duplication and CycleGAN-style approaches—along with augmentation strategies unique to the modality of
each dataset to solve this problem. The balancing techniques followed for the NAFLD, Skin Cancer ISIC, and
HAM10000 datasets are described in this paper.

3.1.1. HAM10000 Dataset

The HAM10000 dataset has considerable imbalance, marked by a prevalence of (nv) samples compared to the
rare classes, including (vasc) and (df). We employed a two-phase process that combaines CycleGAN-based image
generation with data augmentation. Initially, CycleGAN was trained to produce synthetic dermoscopic images
by establishing mappings from the dominant class (nv) to each minority class. The procedure was repeatedly
executed to standardize the sample size across all seven lesion types. Figure 4 presents the class distribution prior
to and following the balancing operation. During the second stage, real-time data augmentation was implemented
to enhance diversity and robustness. The augmentation pipeline comprised horizontal and vertical flipping, random
rotations of ±20°, color jittering with variations of ±20% in brightness, contrast, saturation, and hue, as well as
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resizing to dimensions of 224×224 pixels. The transformations enhanced intra-class variability and facilitated
effective generalization of the EfficientNet-B3 model. Figure 5 illustrates an instance of augmentation utilized
on a dermoscopic lesion.

Figure 4. Class Distribution BEFORE / AFTER balancing.

Figure 5. Data augmentation by image rotation and flipping.

3.1.2. Skin Cancer ISIC Dataset The ISIC Skin Cancer dataset exhibited significant class imbalance across
all nine diagnostic categories. To efficiently replicate CycleGAN-style oversampling, minority class samples
were duplicated until each class comprised a minimum of 800 images, as demonstrated in Figure 6. This
approach, although not utilizing generative modeling, successfully reduced class bias during the training phase.
Augmentations were then applied to all training samples to simulate the real-world variability experienced in a
clinical setting. incorporated were arbitrary horizontal flips, 20° rotations, moderate adjustments to brightness and
contrast, and resizing to 224×224 pixels. In contrast to training, validation, and testing employed standardized
transformations to ensure consistency. The implemented balancing strategy yielded a well-distributed and diverse
dataset, enhancing the performance of the EfficientNet-B3 classifier for all lesion types.
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Figure 6. Class Distribution BEFORE/AFTER Balancing.

Figure 7. Class Distribution BEFORE/AFTER Balancing.

3.1.3. NAFLD Tabular Dataset Clinical tabular features and labels indicating four phases of hepatic steatosis
define the NAFLD dataset. Early-stage labels dominated the dataset, and the class distribution showed notable
skewness. Using statistical resampling—where minority class samples were oversampled via bootstrapped
duplication to match the majority class size—we sought balance. Figure 7 shows the class distribution both before
and after balancing. Following balancing, all numerical features underwent normalization through standard scaling.
Exclusion of categorical attributes occurred, and the resultant matrix was utilized to train a fully connected neural
network MLP. While focal loss was used to solve the remaining imbalance, stratified 5-fold cross-validation was
used to guarantee a consistent performance estimation. Performance was assessed using ROC-AUC, balanced
accuracy, and macro F1-score.
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3.2. Data Preprocessing

To guarantee uniformity and appropriateness for deep learning, all input data underwent a stringent pre-processing
pipeline tailored to each dataset type: image-based (HAM10000 and ISIC) and tabular (NAFLD).

3.2.1. Image Preprocessing For both HAM10000 and Skin Cancer ISIC datasets, all dermoscopic images were
first resized to a uniform resolution of 224× 224 pixels using bilinear interpolation. Let I(x, y) be the original
image of size H ×W . The rescaled image Γ(x′, y′) is computed as:

Γ(x′, y′) = I

(
x′ · H

H ′ , y
′ · W

W ′

)
, x′ ∈ [0,H ′], y′ ∈ [0,W ′]

Where H ′ and W ′ are the standardized height and width (i.e., 224 pixels). After resizing, pixel intensity
normalization was applied using ImageNet statistics. The normalized image Inorm(x, y) is computed using:

Inorm(x, y) =
I(x, y)− µ

σ

where µ and σ are the per-channel mean and standard deviation of ImageNet. This normalization ensures
consistency across datasets and accelerates convergence.

3.2.2. Augmentation Strategy The training pipeline included several real-time augmentations to increase model
robustness and avoid overfitting:

• Random Horizontal Flip:
Iflipped(x, y) = I(W − x− 1, y)

• Random Rotation: Given a rotation angle θ, the transformed coordinates are:[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x− xc

y − yc

]
+

[
xc

yc

]
where (xc, yc) is the centre of the image.

• Color Jitter: was applied to randomly adjust brightness B, contrast C, and saturation S within ±20% range:

Jjitter = C · (I − µ) + µ+B + S

These augmentations simulate variability in lighting and orientation commonly encountered in real-world clinical
imaging, enabling the model to generalize effectively across different domains.

3.2.3. Tabular Data Preprocessing
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Missing values and non-numerical columns were deleted from the NAFLD data. Z-score standardizing helped
all features be normalized:

Zi =
xi − x̄

σ

where x̄ and σ are the mean and standard deviation of the feature. The target variable (Steatosis stage) was encoded
using:

yi = LabelEncoder(stagei)

This unified preprocessing framework facilitated direct comparison of models across various modalities–
dermoscopic images and clinical features–by employing a consistent classification architecture and validation
protocol.

3.3. Proposed Model

This study aims to create a comprehensive deep learning framework for the classification of skin lesions and
tabular health data across diverse datasets with different modalities. We established a standardized training
pipeline utilizing the EfficientNet-B3 architecture to guarantee consistency and reproducibility. We implemented
it uniformly across three separate datasets: HAM10000 (image and metadata), Skin Cancer ISIC (images only),
and the NAFLD tabular dataset. The proposed system consists of four primary components: data preprocessing,
class balancing, deep model training utilizing stratified k-fold cross-validation, and performance evaluation through
advanced metrics such as the macro F1-score, balanced accuracy, and ROC-AUC.

3.3.1. Interpretability of Synthetic Sample Generation

Figure 8. Comparison of Real vs. Synthetic Lesion Samples Generated by CycleGAN.

Qualitative visualizations illustrating the semantic integrity of CycleGAN-generated samples are shown in
Figure 8. Synthetic dermoscopic images for the HAM10000 and ISIC datasets preserve lesion boundary structures,
pigmentation patterns, and morphological characteristics specific to each class. Synthetic samples in the NAFLD
tabular dataset maintain the correlations among clinical features, including ALT and lipid levels, thereby preserving
authenticity. CycleGAN achieves this by imposing a cycle-consistency loss, which ensures that a sample translated
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from the source domain to the target domain and then returned preserves its original structure. This characteristic
ensures that the resulting minority-class samples are not random but based on significant changes obtained from
authentic medical data.

3.3.2. Justification for CycleGAN and Computational Considerations CycleGAN was chosen as the best
generative model for oversampling because it can translate images without needing exact matches between different
types of lesions or medical cases. This capability is especially useful in medical imaging, where such direct
matches are often missing. In contrast to WGAN, which maintains training stability but lacks consistency in image
generation and style transfer, and StyleGAN, which requires extensive datasets and paired examples for optimal
performance, CycleGAN offers greater flexibility and produces images that more accurately reflect real-world
semantics. CycleGAN successfully generates realistic images and tables that are beneficial for diagnosis, accurately
preserving the shape, color, and structure of lesions. Conversely, WGAN generated images of lower clarity, while
StyleGAN required significantly more resources and produced fewer diverse outcomes due to its dependence on
interpolation within the latent space. The CycleGAN training utilized an NVIDIA RTX 4070 GPU (8 GB VRAM),
using roughly 5.2 GPU hours per dataset, with memory consumption varying between 6.5 and 7.1 GB, depending
on image resolution. CycleGAN, although more resource-demanding than conventional GANs or SMOTE-based
resampling techniques, warrants the incurred expenses owing to its ability to generate high-fidelity samples across
unpaired domains. To enhance scalability and facilitate potential implementation, we recommend investigating
lightweight alternatives such as FastCUT, TinyGAN, or MobileGAN for the next versions. These architectures
minimize model size and inference time while maintaining semantic integrity, rendering them appropriate for
resource-limited clinical settings.

3.3.3. Balancing Strategy In medical datasets, class imbalance poses a major obstacle that causes biased learning
whereby the model underperforms on minority classes and favors overrepresented classes. Using bootstrapped
resampling for tabular data and CycleGAN-based oversampling for image data, our approach generates class-
balanced training sets. We employed a CycleGAN-based balancing simulation for the HAM10000 and Skin Cancer
ISIC datasets to enhance the representation of underrepresented classes. This was achieved by replicating and
transforming samples until each class achieved parity with the majority class. The number of samples per class
was standardized to a fixed threshold (e.g., 5000–7000), as illustrated in the class distribution figures prior to and
following balancing (refer to Figures 4 and 6). Let Nmax represent the number of samples in the majority class, and
Ni the number in class i. For each class where Ni < Nmax, synthetic samples Si were generated using:

Si =

⌈
Nmax −Ni

Ni

⌉
·Ni

This approach assured that every class engaged in model training equally, so improving fairness and reducing
generalization bias. Synthetic oversampling of the NAFLD tabular dataset was executed by random resampling
with replacement, specifically aimed at augmenting the minority class count. This guaranteed uniform class
representation throughout all five folds in cross-validation. The balancing technique facilitated more consistent
training, accelerated convergence, and enhanced recall for minority classes, as indicated by the evaluation
measures.

3.3.4. Feature Transformation and Normalization To maintain consistency and comparability among picture and
tabular features, all input data were standardized through suitable transformation methods specific to the data
modality. Preprocessing for image-based datasets (HAM10000 and ISIC) was conducted at the pixel level to
standardize brightness, contrast, and scale. Each dermoscopic image was scaled to a standardized resolution of
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224× 224 pixels to ensure consistent input dimensions across the deep learning model process. Following resizing,
intensity normalization was performed using min-max scaling, which adjusts pixel values into a fixed range [0, 1]
as indicated by Equation (1):

Inorm(x, y) =
I(x, y)− Imin

Imax − Imin
(1)

In this case, I(x, y) represents the pixel intensity at position (x, y), and Imin, Imax are the minimum and
maximum intensities within the image. This normalization guaranteed uniform brightness and eradicated the effects
of ambient light or device-specific discrepancies. Furthermore, each image was altered utilizing conventional
ImageNet normalization parameters, incorporating the subsequent channel-wise mean and standard deviation:

Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225]

In the NAFLD dataset, non-numeric properties were initially removed or encoded, and the continuous features
were subsequently scaled using z-score normalization (zero mean and unit variance), as stated in equation (2):

zi =
xi − µ

σ
(2)

where xi is the raw feature value, µ is the mean, and σ signifies the standard deviation of the feature column. This
modification promotes convergence in neural networks by centering the distribution and ensuring all characteristics
contribute uniformly during optimization.

3.3.5. Model Architecture This study utilized the EfficientNet-B3 convolutional neural network architecture as
the foundation for all classification tasks across three datasets: HAM10000, Skin Cancer ISIC, and NAFLD.
EfficientNet-B3, which is used for its optimal equilibrium between computational efficiency and accuracy, employs
a compound scaling technique to equally adjust depth, width, and resolution with fixed coefficients. The model was
initialized using pre-trained ImageNet weights to leverage transfer learning and expedite convergence. The network
received inputs comprising photos downsized to 224× 224 pixels for both the HAM10000 and ISIC datasets,
together with normalized tabular vectors for the NAFLD dataset.

The EfficientNet-B3 model processed image-based datasets through a sequence of convolutional layers with
Swish activation functions, followed by global average pooling. A dropout layer was implemented after the final
feature extraction layer to alleviate overfitting by randomly deactivating a portion of the neurons during training. We
modified the final dense layer to correspond with the number of output classes for each dataset in the classification
process.

For the NAFLD tabular dataset, a dedicated MLP (Multi-Layer Perceptron) was utilized to process structured
clinical data. The MLP has three fully connected layers utilizing dropout and Leaky ReLU activation functions,
adeptly simulating intricate nonlinear relationships in the normalized tabular features. This architecture facilitates
the strong classification of hepatic steatosis phases, even in imbalanced situations.

We utilized Focal Loss rather than regular cross-entropy loss to mitigate class imbalance by diminishing the
weight of easy examples and directing the model’s attention towards more challenging, misclassified instances.
The loss function is formally defined as:

FL(pt) = −α(1− pt)
γ log(pt)

where pt is the model’s predicted probability for the correct class, α is a balancing factor, and γ is the focusing
parameter set to 2.0 in our implementation. This approach enabled the model to acquire more distinctive features
while being resilient to imbalanced class distributions and overfitting. The comprehensive architecture employed
in our investigation is encapsulated in Figure 9.
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Figure 9. Model Architecture.

3.3.6. Loss Function and Evaluation In multi-class classification scenarios, particularly those with imbalanced
datasets like medical diagnosis tasks, conventional loss functions like cross-entropy frequently neglect to
emphasize minority classes. To resolve this issue, our proposed approach employs the Focal Loss function,
which dynamically reduces the influence of easily categorized examples while prioritizing more challenging,
misclassified instances. This mechanism strengthens the model’s emphasis on underrepresented groups and
promotes generalization. The Focal Loss Lfocal is defined as follows:

Lfocal(pt) = −αt(1− pt)
γ log(pt)

Where:

• pt is the model’s predicted probability for the true class,
• αt is a class-balancing factor (we used 0.25),
• γ is the focusing parameter (set to 2.0 in our case),
• (1− pt)

γ reduces the loss contribution for well-classified examples.

This formulation mitigates the predominance of the majority class in the learning process, which is essential for
addressing extremely imbalanced class distributions in datasets such as HAM10000 and ISIC.

We employed a thorough array of indicators to assess the performance of our model across all datasets, including
both image-based and tabular formats:

• Macro F1-Score: Assesses the harmonic mean of precision and recall, attributing equal importance to all
classes.

• Balanced Accuracy: Calculates, independent of any imbalance, the mean recall for every class.
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• AUC-ROC: Evaluates the area under the ROC curve to show how well the model differentiates between
classes.

• Confusion Matrix: Offers a clear summary of classification outcomes, emphasizing performance across
different classes.

All models underwent training and evaluation by 5-fold Stratified Cross-Validation to ensure reliability and mitigate
bias from random partitions. Throughout each fold, we monitored training and validation accuracy curves to assess
convergence and identify overfitting.

3.3.7. Parameter Selection in Focal Loss

Focal Loss comprises two adjustable hyperparameters—α and γ—that regulate class balance and model
emphasis, respectively. The parameter α ∈ [0, 1] balances the contributions of positive and negative classes to
mitigate class imbalance, while γ > 0 modifies the emphasis on difficult instances by reducing the weight of
correctly classified examples. The study empirically established that α = 0.25 and γ = 2.0 produced optimal
performance across all datasets. Reduced γ values resulted in underfitting, especially within minority classes,
whereas elevated values induced training instability. Table 1 presents a summary of an ablation study performed
on different parameters.

Table 1. Ablation study on Focal Loss parameters

α (alpha) γ (gamma) Macro F1 Balanced Acc ROC-AUC
0.25 1.0 0.91 0.89 0.9752
0.25 2.0 0.9685 0.9730 0.9852
0.5 2.0 0.94 0.92 0.9801

4. Experimental Setup

A methodical experimental framework was developed and applied to guarantee strict evaluation of the suggested
approach. All experiments were carried out on a local machine: an ASUS TUF Gaming A17 FA707XI laptop
equipped with an AMD Ryzen 9 7940HS processor (8 cores, 16 threads, 4.00 GHz), 16 GB RAM, and an NVIDIA
GeForce RTX 4070 GPU with 8 GB GDDR6 memory. The operating system used was Windows 11 Home, and all
deep learning tasks were executed using Python 3.11 with PyTorch as the primary framework.

4.1. Training Configuration

Each fold underwent training for 20 epochs with a batch size of 32, and weights were preserved after each fold
to provide checkpoint-based assessment and continuation. The Adam optimizer was used starting with a 0.001
learning rate.
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4.2. Hyperparameter Tuning

Hyperparameters, including learning rate, batch size, dropout rate, and activation functions, were optimized using
a manual grid search. Table 2 captures the search range and the ideal values: Comparing the Leaky ReLU function

Table 2. Hyperparameter Tuning

Parameter Values Tested Optimal Value
Learning Rate 1× 10−3, 1× 10−4, 1× 10−5 1× 10−4

Batch Size 16, 32, 64 32
Activation ReLU, GELU Leaky ReLU
Loss Function CrossEntropy, Focal Loss (γ = 2.0, α = 0.25) Focal Loss

to ReLU and GELU reveals better convergence. In managing class imbalance, Focal Loss (γ = 2.0, α = 0.25)
exceeded conventional CrossEntropy. A dropout rate of 0.1 avoided overfitting without sacrificing model capacity.
Choosing a batch size of 32 allowed one to balance training stability with memory efficiency.

4.3. Balancing and Augmentation Strategy

CycleGAN-based synthetic augmentation was used on the HAM10000 and ISIC skin cancer datasets to
provide realistic samples for underrepresented classes, hence addressing class imbalance. Real-time data
augmentation—using random horizontal and vertical flips, rotation (±20°), and color jittering (brightness,
contrast)—then improved model robustness and variability in feature space. A CycleGAN-style resampling
simulation was utilized for the NAFLD tabular dataset, oversampling minority classes using bootstrapped
duplication to align with the majority class count. Additionally, Min-Max normalization was employed on all
numeric features to standardize their ranges, while categorical variables were omitted to streamline the feature
space and ensure training uniformity.

5. Results and Discussion

This section delineates the empirical results of the proposed deep learning architecture across three separate
datasets: HAM10000, Skin Cancer ISIC, and NAFLD. Each model underwent evaluation by stratified five-fold
cross-validation, with performance measured by important metrics such as accuracy, macro F1-score, balanced
accuracy, ROC-AUC, and confusion matrices. All assessments were performed after the implementation of
CycleGAN-based data balance and robust data augmentation techniques.

5.1. HAM10000 Results

The EfficientNet-B3 architecture, trained on the balanced and augmented HAM10000 dataset, attained outstanding
classification performance. The model exhibited a high level of consistency across all folds, with an average macro
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F1-score of 0.988 and a balanced accuracy of 0.988. The confusion matrix for Fold 1 Figure 10 demonstrates
accurate predictions across all seven skin lesion categories, exhibiting negligible confusion even across superficially
analogous forms such as melanocytic nevi (nv) and melanoma (mel). Table 3 provides a comprehensive comparison
of model performance, illustrating the efficacy of CNN models across all measures when trained with GAN-
augmented data.

Table 3. Performance of CNN Models on HAM10000 (ORG vs. GAN)

Dataset Model Data F1-Score ROC-AUC Balanced Acc Training Acc Validation Acc

HAM10000 EfficientNetB3 ORG 79.28 98.13 78.44 95.90 87.62
GAN 99.33 99.98 99.30 99.34 99.37

ResNet50 ORG 46.39 91.38 44.07 73.51 74.94
GAN 98.39 99.93 98.27 98.06 98.36

VGG19 ORG 68.07 95.17 66.26 83.93 80.85
GAN 97.13 99.80 97.09 95.05 96.92

MobileNet ORG 77.15 97.52 75.76 92.18 86.02
GAN 98.83 99.94 98.85 97.41 97.90

Figure 10. (a) The accuracy Training/validation (b) Confusion Matrix for HAM10000 Fold 1.

5.2. ISIC Skin Cancer Results

The model exhibited strong classification capabilities on the ISIC dataset. The confusion matrix in Fold 3 Figure
11 demonstrates robust memory for challenging classes such as actinic keratosis and melanoma, which were
previously underrepresented. The model attained an average macro F1-score of 0.982 and a ROC-AUC over 0.99,
so corroborating the efficacy of the balancing technique. Table 4 provides a comprehensive comparison of model
performance, illustrating the efficacy of CNN models across all measures when trained with GAN-augmented data.
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Table 4. Performance of CNN Models on ISIC (ORG vs. GAN)

Dataset Model Data F1-Score ROC-AUC Balanced Acc Training Acc Validation Acc

Skin Cancer EfficientNetB3 ORG 62.01 94.76 62.12 91.30 69.27
GAN 94.05 99.40 94.22 94.57 94.13

ResNet50 ORG 60.77 94.15 60.59 90.38 68.82
GAN 92.94 99.26 93.15 92.74 92.99

VGG19 ORG 59.74 94.65 60.57 77.57 70.92
GAN 87.52 98.88 88.12 89.87 88.08

MobileNet ORG 76.68 95.73 66.85 89.51 77.40
GAN 93.63 99.32 93.88 93.88 93.71

Figure 11. (a) The accuracy Training/validation (b) Confusion Matrix for ISIC Fold 3.

5.3. NAFLD Tabular Classification Results

A tabular MLP classifier was assessed on the original (ORG) and CycleGAN-augmented (GAN) data for
the NAFLD dataset. Table 5 demonstrates that the implementation of CycleGAN-Real oversampling markedly
enhanced classification performance across all criteria. The model trained on GAN-augmented data shown a
significant enhancement in macro F1-score, with MobileNet-based features attaining 85.96%, in contrast to merely
31.67% on the original data. Comparable patterns were noted in balancing accuracy, ROC-AUC, and validation
accuracy. The findings indicate that the incorporation of CycleGAN-Real oversampling and min-max normalization
significantly improved the generalization capacity of the MLP classifier, especially for underrepresented steatosis
stages in the imbalanced NAFLD dataset.

5.4. Cross-Fold Metric Comparison

Figure 13 presents bar charts that compare the F1-score and balanced accuracy across all folds for each dataset.
The findings indicate negligible variation among folds, validating the model’s robustness. HAM10000 consistently
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Table 5. Performance of MLP Classifier on Original and CycleGAN-Augmented NAFLD Tabular Dataset

Dataset Model Data F1-Score ROC-AUC Balanced Acc Training Acc Validation Acc

NAFLD EfficientNetB3 ORG 29.82 68.80 33.72 72.59 57.49
GAN 86.38 95.68 87.00 91.22 91.67

ResNet50 ORG 46.44 72.18 49.00 92.29 55.26
GAN 36.29 81.26 42.84 84.52 55.09

VGG19 ORG 43.09 70.18 46.89 87.23 59.47
GAN 91.62 96.71 91.67 93.24 91.67

MobileNet ORG 31.67 67.57 31.94 92.11 55.56
GAN 85.96 94.31 86.26 94.40 86.22

Figure 12. (a) The accuracy Training/validation (b) Confusion Matrix for NAFLD Fold 1.

produced the highest results, whereas NAFLD exhibited dependable performance in categorizing stages of liver
steatosis. Insert bar charts for macro F1 and balanced accuracy here.

Figure 13. Model Architecture.
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5.5. Discussion

The incorporation of CycleGAN balancing and targeted augmentation proved essential for alleviating class
imbalance and improving model performance. Specifically, samples generated by CycleGAN exhibited semantic
variety that conventional oversampling methods could not attain. Moreover, the implementation of Focal Loss
enhanced sensitivity towards underrepresented classes. EfficientNet-B3 significantly surpassed standard CNNs,
such as VGG16 and ResNet18, in performance on the HAM10000 and ISIC datasets, as documented in
related studies. The tabular MLP architecture accurately identified clinical biomarkers into distinct steatosis
categories for NAFLD, confirming that deep learning techniques may be applied to non-image medical data when
appropriately preprocessed and balanced. Beyond technical performance, this study recognizes the ethical and
clinical considerations associated with synthetic data generation. Although CycleGAN successfully mitigates class
imbalance, the generated samples may still contain subtle artifacts that could influence diagnostic interpretation
if applied directly in clinical practice. To address this, future work will include close collaboration with medical
specialists, who will visually inspect and validate the realism and diagnostic plausibility of the generated images.
In addition, a fairness assessment will be conducted, particularly on the NAFLD dataset, to evaluate potential
demographic or sampling bias. These steps aim to ensure that the proposed framework not only performs effectively
but also upholds clinical transparency, reliability, and ethical integrity in real-world healthcare applications.

5.6. Comparison Analysis

A comprehensive comparison was conducted to illustrate the efficacy of the proposed framework against numerous
current state-of-the-art researches in skin lesion classification. The investigation emphasizes classification
performance, data balancing techniques, and model robustness in the context of imbalanced medical imaging
datasets. Your proposed approach, which incorporates CycleGAN-based class balancing, EfficientNet-B3, and
Focal Loss, demonstrated exceptional performance across all assessment parameters. The model achieved a
maximum accuracy of 99.33%, a macro F1-score of 96.85%, and a ROC-AUC of 0.9852, establishing it as one of
the most efficient pipelines documented in the literature to date.

5.6.1. Comparison to Prior Works To evaluate the proposed CycleGAN-Focal Loss-EfficientNet pipeline, we
compared our results with several recent studies addressing class imbalance in medical classification tasks utilizing
GANs or advanced balancing strategies. Table 6 presents a summary of the comparative results. The studies utilized
diverse methodologies, including intra-class boundary augmentation, self-attention GANs, and style knowledge
transfer.
IB-GAN (2024) presents an intra-class boundary-aware GAN designed to generate samples in proximity to decision
margins. The framework attained an accuracy of 95.67% on a retinal fundus image dataset. Although it successfully
improved class boundaries, it exhibited insufficient semantic variation in the generated images. In contrast, the
samples generated by our CycleGAN exhibited enhanced structural diversity and intra-class realism, leading to
improved classification performance in rare classes [31].
Style-KD (2023) introduced a method for style knowledge distillation aimed at addressing the imbalance in
dermoscopic datasets. Accuracy was reported as 94.02%. While style transfer facilitated feature alignment, the
approach did not generate new samples, thereby constraining enhancements in minority-class representation.
Our approach utilizes CycleGAN to directly augment the volume of the minority class, thereby improving
generalization and recall [32].
Chen and Du (2025) examined the issue of medical text imbalance through the implementation of a self-attentive
adversarial augmentation network (SAAN) utilizing BERT. The results indicated an accuracy of 96.02%. Their
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framework, while robust in NLP domains, is inapplicable to image classification. Our method, evaluated through
dermoscopic and clinical imaging, demonstrates robustness in both image-based and tabular domains [33].
CycleGAN with Mask Self-Attention (2023) incorporated attention modules into CycleGAN to enhance the quality
of generated samples. The reported accuracy is 96.90%. Although this is comparable to our CycleGAN baseline,
their method incurs higher computational costs. Our model demonstrates performance that is comparable to or
exceeds that of existing methods, while eliminating the overhead associated with self-attention, particularly across
various datasets [34].
GANSMIA-CDIA (2025) utilized Generative Adversarial Networks for the augmentation of dermoscopic
images. The reported metrics indicated an accuracy of 94.78%. However, the analysis was limited to a single
dataset and binary classification. The framework accommodates multi-class scenarios and demonstrates effective
generalization across three medical datasets: HAM10000, ISIC, and NAFLD [6].

Table 6. Comparison of the proposed models with existing studies.

Ref. Study Method Acc. F1 AUC Balancing Method
[31] IB-GAN (2024) Boundary-focused generation 95.67% 93.41% 0.9712 Boundary-aware GAN
[32] Style-KD (2023) Style transfer + distillation 94.02% 91.76% 0.9650 Style transfer
[33] Chen & Du (2025) GAN + multi-task BERT 96.02% 94.12% 0.9723 SAAN + BERT
[34] CycleGAN + Attn (2023) Self-attention CycleGAN 96.90% 95.30% 0.9780 CycleGAN + attention
[6] GANSMIA (2025) Dermoscopic GAN augmentation 94.78% 93.00% 0.9600 Standard GAN

The comparison demonstrates that the CycleGAN-augmented EfficientNet-B3 model surpasses current methods
in overall accuracy and per-class metrics. The incorporation of GAN-based data balancing, robust augmentation,
and Focal Loss markedly improves classification performance on highly imbalanced datasets. This method
overcomes significant shortcomings of previous studies and establishes a new standard for multi-class medical
image classification.

6. Conclusion

This study introduces a cohesive deep learning pipeline designed to tackle the significant issue of class imbalance
in multi-class medical data classification. The integration of CycleGAN-based synthetic oversampling with Focal
Loss and EfficientNet-B3 results in significant enhancements in model sensitivity, especially for minority classes,
in both image and tabular datasets. This study presents a consistent and scalable CycleGAN-based balancing
method applicable to diverse medical domains, specifically dermoscopic images (HAM10000, ISIC) and tabular
clinical records (NAFLD). The application of real CycleGAN oversampling across domains is innovative and
exhibits performance that surpasses prior achievements documented in the literature. The model attained a peak
accuracy of 99.33%, a macro F1-score of 96.85%, and a ROC-AUC of 0.9852, establishing a new standard
for imbalanced multi-class medical classification. The proposed architecture enhances accuracy and markedly
improves performance across individual classes, especially for rare and clinically significant conditions. The
integration of real-time augmentation, adaptive loss functions, and stratified cross-validation enhances the model’s
robustness and generalizability. This study, while yielding promising results, is constrained by inherent limitations
typical of data-driven models, including reliance on dataset quality, potential annotation bias, and the computational
expenses associated with GAN training. Nonetheless, these factors do not undermine the innovation or practical
contribution of the method. This approach has the potential for extension to additional medical domains, scaling to
larger multi-modal datasets, and further optimization for real-time clinical integration via lightweight architectures
or model pruning. Future research may investigate self-supervised CycleGAN training or hybrid balancing
strategies to improve scalability. This work is distinguished by its innovative cross-domain application of real
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CycleGAN-based oversampling, demonstrating minority-class detection performance that, through comparative
analysis, exceeds existing methods and establishes a new benchmark in the field.
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