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Abstract Compared to their distribution function-based extropy measure (Lad et al. 2015), the quantile-based extropy
measures have a few special characteristics (Krishnan et al. 2020). The present communication deals with the study of the
quantile-based extropy measure for record statistics. In this context, a generalized model for which there is no cdf or pdf
is examined, and several examples are provided for illustration purposes. Additionally, we examine the dynamic version of
the suggested extropy measure for record statistics and provide characterization results for that. Finally, we investigate the
suggested extropy measure in the F γ family of distributions.
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1. Introduction

The term ‘record’ was first introduced by K. N. Chandler [5]. Suppose {Xn, n ≥ 1} be a sequence of independently
and identically distributed (iid) random variables with F (x) cumulative distribution function (cdf) and f(x)
probability density function (pdf), then Xm will be called an upper record value if Xm is greater than all Xi

for i < m. Similarly, by the replacement of {Xn} by {−Xn} the lower record values can be obtained. The pdf of
mth upper record value is given by

fm(x) =
1

Γ(m)
{− ln(F̄ (x))}m−1f(x), −∞ < x < +∞ (1)

and
fL
m
(x) =

1

Γ(m)
{− ln(F (x))}m−1f(x); −∞ < x < +∞ , (2)

is the pdf of mth lower record value, where Γ(m) is the gamma function. For more details and applications of these
statistics, see [2] and [6].
“The theory of information” is an individual area of study that emerged from Shannon’s proposal for entropy
[24]. Further, during the study of the “classical record model” [5] considers the observations from a continuous
probability distribution for the underlying sample from which records are obtained and studies the stochastic
behavior of random record values. For more details and applications of Shannon entropy based on record value,
refer to [22],[3], [4], [30], [1], [16, 17], and [11, 12].
One of the two explanations for a probability distribution is a quantile function or a distribution function. In many
situations, quantile functions are more sway to distribution functions. Also, many probability distributions can
not be expressed by specific density functions but they can be tracked by some quantile density functions refer
to Hankel and Lee [7], Van Staden and Loots [28], and [18]. However, in life testing studies using a quantile
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approach, one need not wait for the failure results of a part to provide useful estimations. The quantile function
Q(w) corresponding to a nonnegative random variable X and distribution function F (x), is given as

Q(w) = F−1(w) = inf{x | F (x) ≥ w}, 0 ≤ w ≤ 1. (3)

The derivative of the quantile function is q(w) and f(Q(w)), which are known as the quantile density function and
density quantile function, respectively [19]. From (3), we obtain F (Q(w)) = w and by differentiating with respect
to w we obtain a relationship between quantile density function and density quantile function, defined as

q(w)f(Q(w)) = 1.

The hazard quantile function and reversed hazard quantile function are important quantile measures that are helpful
in reliability analysis. These are defined as

H(w) =
1

(1− w)q(w)
, and (4)

H̄(w) =
1

(w)q(w)
, (5)

respectively.
The complementary dual to Shannon’s entropy measure is the extropy measure (Lad et al. 2015), the differential
extropy measure is defined as

J(X) = −1

2

∫ ∞

0

f2(x)dx (6)

For the study the concept of extropy and residual extropy for order statistics and record value refer to [21] and [20].
The residual and past extropy of k-record values[9]. Symmetric properties of extropy and some characterization
results for record value [27], and [8].
Recently the study of information measures based on quantile function has found much attention among
researchers. The quantile version of extropy (6) has been considered [10], which is defined as

L(X) =−
∫ 1

0

1

q(w)
dw

=−
∫ 1

0

1

(1− w)H(w)
dw. (7)

L(X) gives a quantile version of the extropy that measures the uncertainty of X and H(w) is the hazard quantile
function.
Quantile-based information measure[25]. Quantile-based entropy of order statistics [26] . For a more details study
on quantile-based measures, we refer to [13], [29], [26], and [10].
A study on quantile-based shannon entropy for record statistics has been studied [14], and quantile-based
cumulative residual extropy of order statistics has been proposed and studied by Sathar and Vijyan [23]. The
present study introduces the results of quantile-based extropy measures for record statistics and related measures.
Motivated by these, we proposed and studied the quantile-based extropy measures based on record statistics in this
research paper.
The results are described throughout the manuscript as follows: In Section 2, a quantile version of the extropy of
mth upper record statistics is introduced and expressed in the form of expectation. A comparative study of the
proposed measure for a generalized model and some examples concludes the study of proposed measures for the
various models that do not have any closed-form expression for pdf or cdf but have simple or tractable quantile
functions or quantile density functions presented in Section 3. In Section 4, the Dynamic quantile extropy measure
of mth record, characterization results, bounds, and results for some specific lifetime distributions are studied. In
Section 5, the proposed measure has been studied for F γ-family of distributions, and Section 6 concludes this
paper.
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2 QUANTILE-BASED EXTROPY MEASURE FOR RECORD STATISTICS

2. Quantile-based Extropy Measure of Record Statistics

Using (3), we have F (q(w)) = w, then the quantile version of the pdfs of mth upper record (1) and lower record
(2) values become respectively as

f̧
m
(w) =

{− ln(1− w)}m−1

Γ(m)q(w)
; 0 ≤ w ≤ 1, (8)

and

f̧L
m
(w) =

{− ln(w)}m−1

Γ(m)q(w)
; 0 ≤ w ≤ 1. (9)

The survival function and hazard rate function for mth upper record value and reverse hazard rate function for mth

lower record value are
F̄m(w) =

Γ(m;− ln(1− w))

Γ(m)
; 0 ≤ w ≤ 1, (10)

Hm(w) =
1

Γ(m;− ln(1− w))q(w)
{− ln(1− w)}m−1; 0 ≤ w ≤ 1, (11)

and
H̄L

m(w) =
1

γ(m;− ln(1− w))q(w)
{− ln(1− w)}m−1; 0 ≤ w ≤ 1, (12)

respectively, where Γ(m;− ln(1− w)) and γ(m;− ln(1− w)) are incomplete upper and lower gamma functions.
Analogous to (6), we proposed the quantile-based extropy for record statistics, which is defined as

Lf̧m(w) = −1

2

∫ 1

0

{f̧
m
(w)}2q(w) dw; 0 ≤ w ≤ 1 (13)

for m = 1, equation (13) reduces to the quantile version of extropy for the parent distribution, a result obtained by
[10].
In the next Table 1, we evaluate the quantile-based hazard rate function for record statistics, for some specific
lifetime distributions. In the next theorem, we will express the proposed measure (13) in the form of expectation

Distribution function Quantile density function Hazard quantile function
q(w) Hm(w)

Exponential 1
λ (w) , λ > 0 λ{− ln(1−w)}m−1(1−w)

Γ(m;− ln(1−w))

Uniform 1
β−α , α, β > 0 {− ln(1−w)}m−1

Γ(m;− ln(1−w))(β−α)

Rescaled beta R[1− (1− w)
1
c ], C,R > 0 C{− ln(1−w)}m−1

RΓ(m;− ln(1−w))(1−w)
1
C

−1

Generalized Pareto b
a

[
(1− w)−

a
a+1 − 1

]
, a > −1 b > 0 {− ln(1−w)}m−1(1−w)

Γ(m;− ln(1−w)) b
a

[
(1−w)

− a
a+1 −1

]
Folder Crammer w

θ(1−w) , θ > 0 θ{− ln(1−w)}m−1(1−w)2

Γ(m;− ln(1−w))w

Table 1. Hm(w) for some specific lifetime distributions.

and gamma distribution.

Theorem 2.1
Quantile-based extropy measure (13) can be expressed as

Lf̧m(w) = −Γ(2m− 1)

2{Γ(m)}2
E

[
1

q(1− eT∗)

]
,

where T ∗ ∼ Γ(2m− 1) and E is the expectation.
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Proof
Substituting equations (8) and (10), in equation (13) we obtained

Lf̧m(w) = − 1

2{Γ(m)}2

∫ 1

0

1

{− ln(1− w)}−2(m−1)q(w)
dw,

putting − ln(1− w) = z, dw = e−zdz, we obtain

Lf̧m(w) = − 1

2{Γ(m)}2

∫ ∞

0

z2(m−1)e−z

q(1− e−z)
dz, (14)

equation (14) can be written as

Lf̧m(w) =− Γ(2m− 1)

2{Γ(m)}2
E

[
1

q(1− eT∗)

]
.

So, the result follows.

Theorem 2.2
If Y = rX + p, with r, p > 0, then Lf̧mY (w) = 1

r Lf̧mX (w).

Proof
We have, Y = rX + p, then
FY (y) = P [Y ≤ (y)] = P [rX + p ≤ (y)] = FX

(
y−p
r

)
.

Taking FX

(
y−p
r

)
= w, we get QY (w) = rQX(w) + p, we have

qY (w) =
1

r qX(w)
. (15)

Extropy measure (13) corresponding to random variable Y is given as

Lf̧mY (w) = − 1

2{Γ(m)}2

∫ 1

0

1

{− ln(1− w)}−2(m−1)qY (w)
dw,

using equation (15) we obtained

Lf̧mY (w) =− 1

2{Γ(m)}2

∫ 1

0

{− ln(1− w)}2(m−1)

qX(w)
dw

=− 1

2r{Γ(m)}2

∫ 1

0

{− ln(1− w)}2(m−1)

qX(w)
dw ,

Lf̧mY (w) =
1

r
Lf̧mX (w).

This proves the result.

3. Lf̧m(w) of a Generalized Model

Taking a quantile density function (qdf) of a generalized model into consideration, which is defined as

q(w) = A(− ln(1− w))B(1− w)CwD(lnw)E , (16)

where the model’s parameters are A,B,C,D, andE. Proposed Lf̧m(w) for generalized model (16) is defined as

Lf̧m(w) = − 1

2A{Γ(m)}2

∫ 1

0

(1− w)−Cw−D + 3

{− ln(1− w)}2−2m+B(lnw)E
dw. (17)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 QUANTILE-BASED EXTROPY MEASURE FOR RECORD STATISTICS

Figure 1. Quantile-based extropy measure (2.6) for m={3, 4, 5}.

Equation (17) provides quantile versions of several lifetime distributions and their corresponding values for
different parameter values. Quantile-based extropy of mth upper record value for various lifetime distributions are
given in Table 1. For m = 1, Lf̧m(w) for the exponential distribution, uniform distribution, Pareto-II distribution,
rescaled beta distribution, and generalized pareto distribution will reduce to results obtained by [10]
Considering the importance of some specific probability distributions in real-life events, we study the proposed
Lf̧m(w) measure (2.6) for various distributions in the next subsection.

3.1. Comparison of Quantile-Based Extropy Measures Lf̧m(w) for Various Distributions

If,
Lf̧m(Uw) = − Γ(2m−1)

2(α−β){Γ(m)}2 , and Lf̧m(Ew) = − θΓ(2m−1)
2m{Γ(m)}2 are the quantile-based extropy of mth upper record

values for Uniform and Exponential distributions, respectively. Then the ratio used for comparison is

R(m) =
Lf̧m(Ew)

Lf̧m(Uw)
= θ(α− β)2 1−m.

Interpretation:
|Lf̧m(Ew)| > |Lf̧m(Uw)| ⇔ R(m) > 1,

|Lf̧m(Uw)| > |Lf̧m(Ew)| ⇔ R(m) < 1.

The threshold occurs when
m = 1 + log2

(
θ(α− β)

)
.

As m → ∞, R(m) → 0, hence Lf̧m(Uw) dominates asymptotically.
Figure 1: Illustrates the behavior of the quantile-based extropy measure Lf̧m(w) for the Uniform and Exponential

distributions across the parameter ranges β − α ∈ [1, 100] and λ ∈ [1, 100], respectively, for record orders m =
3, 4, 5. For the Uniform distribution (left panel), the extropy measure increases smoothly from large negative
values near zero parameter values and gradually approaches zero as the spread β − α widens. This indicates that
uncertainty decreases slowly as the distribution becomes more dispersed. Among the record orders, the results
show that m = 3 yields the highest extropy values, followed by m = 4 and m = 5, implying that higher-order
records exhibit lower levels of uncertainty. The curves converge closely for large values of β − α, demonstrating
reduced sensitivity to the parameter at wider ranges.
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Figure 2. Quantile-based extropy measure (2.6) for different values ofm = 3, 4, and 5.

In contrast, the Exponential distribution plot (right panel) reveals a distinctly different pattern. Here, the extropy
decreases linearly and rapidly as the rate parameter λ increases, reflecting strong sensitivity of uncertainty to
shifts in distribution concentration. The magnitude of extropy reduction is much more pronounced than in the
Uniform case, with separation among the curves for m = 3, 4, and 5 becoming significantly wider for increasing
λ, indicating that higher-order records are more strongly affected by parameter variation.

Corollary 3.1
If Lf̧m(Cw) = − θ2m Γ(2m−1)

2m (2θ+1)2m−1 [Γ(m)]2 , and Lf̧m(Pw) = − c2m Γ(2m−1)
2α (2c+1)2m−1 [Γ(m)]2 are the quantile-based extropy of

mth upper record values for classical Pareto and Pareto-II distributions, respectively. Then the ratio used for
comparison is

R =
Lf̧m(Cw)

Lf̧m(Pw)
=

θ2m

2m(2θ+1)2m−1

c2m

2α(2c+1)2m−1

=
(θ/c)2m · 2α · (2c+ 1)2m−1

2m(2θ + 1)2m−1
.

Or equivalently:

R =
α

2m−1

(
θ

c

)2m (
2c+ 1

2θ + 1

)2m−1

Observations from the ratio R:

• R > 1 =⇒ fm(Cw) > fm(Pw) in magnitude.
• R < 1 =⇒ fm(Pw) > fm(Cw) in magnitude.
• As m increases, the powers 2m and 2m− 1 dominate, so even small differences in θ/c or (2c+ 1)/(2θ + 1)

can significantly affect which function is larger.

Figure 2 illustrates the behavior of the quantile-based extropy measure Lf̧m(w) for the Classical Pareto and Pareto-
II distributions for different record orders m = 3, 4, 5. For the Classical Pareto distribution, evaluated over the scale
parameter θ ∈ [1, 100], the extropy measure exhibits a decreasing linear trend, indicating a progressive reduction
in uncertainty as θ increases. The curve corresponding to m = 3 demonstrates the steepest decline, followed by
m = 4 and m = 5, implying that higher-order record values yield relatively smaller reductions in extropy. This
suggests that the effect of increasing scale is more dominant for lower record orders.
In contrast, for the Pareto-II distribution, plotted against the scale parameter c ∈ [1, 100] with a fixed shape
parameter α = 2, the extropy measure also decreases linearly but at a noticeably faster rate than in the Classical
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Pareto case. The separation between curves becomes more pronounced as c increases, reflecting stronger sensitivity
of uncertainty to parameter variation in the Pareto-II distribution.
If, Lf̧m(Gw) = − c2m Γ(2m−1)

2R (2c−1)2m−1 [Γ(m)]2 , and fm(Fw) = − θ Γ(2m−1)
2·32m+1 [Γ(m)]2 are the quantile-based extropy of mth

upper record values for classical Pareto and Pareto-II distributions, respectively. Then the ratio used for comparison
is

RT =
fm(Rw)

fm(Fw)
=

c2m

2R(2c−1)2m−1

θ
2·32m+1

=
c2m · 32m+1

Rθ (2c− 1)2m−1
=

3 (3c)2m

Rθ (2c− 1)2m−1
.

Observations:

• Both functions are negative, so they have the same sign.
• The magnitude comparison depends strongly on c, R, θ, and m.
• As m increases, the powers 2m and 2m− 1 dominate, so even small differences in c can significantly affect

which function is larger.
• If c is large relative to 3 and R is small, then fm(Rw) quickly dominates fm(Fw).
• If c is small or R is large, then fm(Fw) may have a larger magnitude than fm(Rw).

Example 3.1
If X be a power distributed random variable with quantile density function q(w) = γ

βw
1
β−1 ∀ γ, β > 0. The

quantile version of extropy for mth lower record value is defined as

Lf̧L
m
(w) = − (βk)

2m
Γ(2m− 1)

2γ(2β − 1)2m−1{Γ(m)}2
.

Example 3.2
If X is an Inverted exponential distribution following random variable with quantile density function q(w) =

λ
w(− lnw)2 ∀λ > 0. Then the quantile version of extropy of mth lower record value is defined as

Lf̧L
m
(w) = − Γ(2m− 1)

2λ{Γ(m)}2
.

In many situations, quantile functions are more sway to distribution functions. In the following examples, some
distributions have been studied for Lf̧m(w) for which q(.) exists.

Example 3.3
[7] introduced a lambda family of distributions that has several applications in reliability, known as the Davis
distribution, whose quantile density function is defined as

q(w) = Gwλ1−1(1− w)−λ2−1{λ1(1− w) + λ2w};G,λ1, λ2 ≥ 0. (18)

The quantile version of the extropy of mth upper record for Davis distribution is given as

Lf̧m(w) = − 1

2G{Γ(m)}2

∫ 1

0

{− ln(1− w)}2m−2

wλ1−1(1− w)−λ2−1{λ1(1− w) + λ2w}
dw, (19)

which can be easily computed numerically. As λ2 −→ 0, (19) corresponds to the Power distribution. Also as
λ1 −→ 0, (19) reduces to the Pareto I distribution. When λ1 = λ2 > 0, then (19) corresponds to Log Logistic
distribution.

Example 3.4
Let us consider Van Staden-Loots distribution with quantile function

q(w) = λ1 + λ2

[(
(1− λ3

λ4

)
(wλ4 − 1)− λ3

λ4

{
(1− w)λ4 − 1

}]
, where λi > 0 for i = 1, 2, 3, 4

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 QUANTILE-BASED EXTROPY MEASURE FOR RECORD STATISTICS

and the quantile density function of Van Staden-Loots distribution is given as

q(w) = λ2

[
(1− λ3)w

λ4−1 + λ3(1− w)λ4−1
]
. (20)

Thus, the quantile-based extropy measure of mth upper record for Van Staden-Loots distributions is given as

Lf̧m(w) = − 1

2{Γ(m)}2

∫ 1

0

(− ln(1− w))2m−2

λ2(1− λ3)wλ4−1 + λ3(1− w)λ4−1
dw, (21)

for λ1 −→ 0, (21) reduces to the Exponential distribution Also as λ4 −→ 1, (21) reduces to the Uniform distribution
and as λ2 = 2, λ3 = 1/2, λ4 = 0, (21) reduces to the Logistic distribution with parameter equals to 1.

Example 3.5
A five-parameter Lambda family of distributions introduced by Gilchrist (2000), which quantile density function
is defined as

q(w) = λ2

(
1− λ3

2

)[
(1− w)λ5−1 + wλ4−1

]
. (22)

Utilizing this family, Tarsitano (2005) provided some close approximations to a number of symmetric and
asymmetric distributions and suggested, using this model in situations when the actual situation under examination
does not suggest a particular distributional form. For this family, the quantile-based extropy of the mth upper record
is defined as

Lf̧m(w) = − 1

2{Γ(m)}2

∫ 1

0

{− ln(1− w)}2m−2

λ2

(
1−λ3

2

)
[(1− w)λ5−1 + wλ4−1]

dw, (23)

for λ4 −→ 0, (23) reduces to the exponential distribution. This family also includes the Generalized Tuckey
Lambda family of distributions, when λ4 −→ ∞, λ5 −→ 0, power distribution when λ5 −→ ∞ and |λ4| < ∞,
and the generalized Pareto distribution when λ4 −→ ∞ and |λ5| < ∞.

4. Dynamic Quantile Extropy for Record Statistics

Lf̧m(w) is not useful for a system that has survived for some units of time. In such cases, dynamic forms of these
measures become more important and useful for measuring uncertainty.
Residual extropy of mth upper record value is given as

J(fm; t) = −1

2

∫ ∞

t

(
f̧m(x)

F̄m(t)

)2

dx. (24)

Differentiating equation (24) on both sides with respect to t and using hm(Xt) =
f̧
m
(t)

F̄m(t)
, where hm(Xt) is hazard

function for mth upper record, we obtained

J
′
(fm; t) =

1

2

[
h2
m(Xt) + 4hm(Xt)J(fm; t)

]
,

the above equation can be written as

h2
m(Xt) + 4hm(Xt)J(fm; t)− 2J

′
(fm; t) = 0, (25)

if J
′
(fm; t) > 0 or = 0 equation (25) has only one positive root and if J

′
(fm; t) < 0 then (25) has only two

positive roots, which are given by

hm(Xt) = −2J
′
(fm; t)±

(
4J2(fm; t) + 2J

′
(fm; t)

) 1
2
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Now we propose quantile-based residual extropy of mth upper record statistics, which is defined as

L(fm;w) = −1

2

∫ 1

w

(
f̧m(p)

F̄m(p)

)2

q(p) dp. (26)

It can be written as

L(fm;w) = − 1

2{Γ(m;− ln(1− w))}2

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp, (27)

where Γ(m;− ln(1− w)) is incomplete upper gamma function.
L(fm;w) measures the expected uncertainty contained in the conditional density about the predictability of an
outcome of X until 100(1− w) % point of distribution. Differentiate the eq. (27), we get

q(w) =
(− ln(1− w))2(m−1)

2(Γ(m;− ln(1− w)))L′(fm;w) + 4Γ′(m;− ln(1− w)]Γ(m;− ln(1− w))L(fm;w)
. (28)

However equation (28) provide a directed relationship between the quantile density function q(w) and L(fm;w)
which shows that it uniquely determine the underlying distribution. The equation (28) can be expressed as

Hm(w) = −4L(fm;w)− 2
Γ(m;− ln(1− w))

Γ′(m;− ln(1− w)
L′(fm;w). (29)

The main difference between (25) and (30) is (30) provides a linear equation that presents a unique hazard function
corresponding to the extropy measure of mth upper record statistics but from (25), J(fm; t) may determine the
distribution uniquely.

Theorem 4.1
X be a random variable with a quantile density function

q(w) =
1

λ(1− w)
, λ > 0

if and only if

L(fm;w) = −λ(Γ(2m− 1);−2 ln(1− w))

22m[Γ(m;− ln(1− w))]2
.

Proof
We only prove the converse part; the direct part is obvious. Using (27) we obtained

L(fm;w) =− λ(Γ(2m− 1);−2 ln(1− w))

22m[Γ(m;− ln(1− w))]2

− 1

2[Γ(m;− ln(1− w))]2

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp =− λ(Γ(2m− 1);−2 ln(1− w))

22m[Γ(m;− ln(1− w))]2∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp =

λ

22m
(2Γ(2m− 1);−2 ln(1− w))∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp =λ

∫ ∞

− ln(1−w)

t2me−2tdt.

Substituting t = − ln(1− p), we obtained∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp = λ

∫ 1

w

− ln(1− p)
2m

(1− p)dp,
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10 QUANTILE-BASED EXTROPY MEASURE FOR RECORD STATISTICS

differentiating on both sides with respect to w, we obtained

(− ln(1− p))2(m−1)

q(p)
=λ(− ln(1− w)

2m
(1− w)

q(w) =
1

λ(1− w)

This proves the desired result.

Theorem 4.2
X be a random variable with a quantile density function

q(w) =
R

C
(1− w)(

1−C
C ), C, R > 0

if and only if

L(fm;w) = −
C2m(Γ(2m− 1);−

(
2C−1

C

)
ln(1− w))

2R(2C − 1)2m−1[Γ(m;− ln(1− w))]2
.

Proof
We only prove the converse part; the direct part is obvious. Using (27) we obtained

L(fm;w) =−
C2m(Γ(2m− 1);−

(
2C−1

C

)
ln(1− w))

2R(2C − 1)2m−1[Γ(m;− ln(1− w))]2

− 1

2[Γ(m;− ln(1− w))]2

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp =−

C2m(Γ(2m− 1);−
(
2C−1

C

)
ln(1− w))

2R(2C − 1)2m−1[Γ(m;− ln(1− w))]2

C

R

(
C

2C − 1

)2m−1 [
Γ(2m− 1);−

(
2C − 1

C

)
ln(1− w)

]
=

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp,

the above expression can be written as

C

R

∫ ∞

− ln(1−w)

t2m−2e−−( 2C−1
C )tdt =

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp.

Substituting t = − ln(1− p), we obtained

C

R

∫ 1

w

{− ln(1− p)}2m−2e(
2C−1

C )ln(1−w)

(
1

1− p

)
dp =

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp

Differentiating the above expression with respect to w

q(w) =
R

C
(1− w)(

1−C
C ).

This provides the desired result.

Theorem 4.3
If L′(fm;w) is increasing in w ∀ 0 < w < 1, i.e, (L′(fm;w) ≥ 0) then

L(fm;w) ≤ (− ln(1− w)m−1)

4Γ′(m;− ln(1− w))
H(Xw).
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Proof
Differentiating (27) w.r.t. w then we have,

L′(fm;w) =
d

dw

(
−1

2(Γ(m;− ln(1− w)))2

∫ 1

w

(− ln(1− p))2(m−1)

q(p)

)
dp

=
Γ′(m;− ln(1− w))

(Γ(m;− ln(1− w)))3

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp+

1

(Γ(m;− ln(1− w)))2
.

If L′(fm;w) is increasing in w, i.e, (L′(fm;w) ≥ 0). Then

Γ′(m;− ln(1− w))

(Γ(m;− ln(1− w)))3

∫ 1

w

(− ln(1− p))2(m−1)

q(p)
dp+

1

(Γ(m;− ln(1− w)))2
≥ 0;

−2Γ′(m;− ln(1− w))

(Γ(m;− ln(1− w)))
J(fm;u) +

(− ln(1− w))2m−1

2(Γ(m;− ln(1− w)))2q(w)
≥ 0;

(− ln(1− w))m−1

4(Γ′(m;− ln(1− w)))
H(Xw)− L(fm;w) ≥ 0,

we get,

L(fm;w) ≤ (− ln(1− w))m−1

4(Γ′(m;− ln(1− w)))
H(Xw) (30)

By considering the generalized model (16) and different values of parameters, quantile extropy for record statistics
of mth upper record for residual lifetime for various distributions have been summarized in Table 2.

Theorem 4.4
Let us consider X and Y to be two r.v. such that X ≤Hm(w)≥ Y then X ≤L(fm;w) Y.

Proof
Let X ≤Hm(w)≤ Y . So that qX(w) ≤ qY (w) implies that

{− ln(1− w)}m−1

Γ(m;− ln(1− w))qX(w)
≤ {− ln(1− w)}m−1

Γ(m;− ln(1− w))qY (w)

1

(Γ(m;− ln(1− w)))2
{− ln(1− w)}2(m−1)

qX(w)
≤ 1

(Γ(m;− ln(1− w)))2
{− ln(1− w)}2(m−1)

qY (w)

− 1

2(Γ(m;− ln(1− w)))2

∫ 1

w

{− ln(1− w)}2(m−1)

qX(w)
≥ − 1

2(Γ(m;− ln(1− w)))2

∫ 1

w

{− ln(1− w)}2(m−1)

qY (w)

X ≤L(fm;w) Y.

This proves the result.

In some practical situations, uncertainty may have more to do with a past existence than what’s to come. Similar
to the quantile-based residual extropy of mth record, we study the quantile-based extropy of mth record for the
inactivity/ past time. Quantile extropy of mth record value for past lifetime is given by

L̄(fm;u) =
−1

2

∫ w

0

(
f̧m(p)

Fm(p)

)2

q(p) dp. (31)

It can also be written as

L̄(fm;u) =
−1

2{γ(m;− ln(1− w)}2

∫ w

0

(− ln(1− p))2(m−1)

q(p)
dp,

=
−1

2

1

γ(m;− ln(1− w))

∫ w

0

(− ln(1− p))m−1H(Xp)dp, (32)
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L(fm;w) provides quantile-based past extropy for record statistics that measure the uncertainty of X , using either
the hazard quantile function or the quantile density function.Where γ(m;− ln(1− w)) is incomplete lower gamma
function.

Remark 4.1
When m = 1, (25) and (30) redwce to the quantile residual extropy and quantile past extropy of parent distribution
respectively and when w → 0 in (25) and w → 1 in (30), both reduced to (13).

Remark 4.2
Lf̧m(w) (13) has a mathematical relation with L(fm;w) (25) and L̄(fm;w) (30), which is given as

Lf̧m(w) =

[
Γ(m;− ln(1− w))

Γ(m)

]2
L(fm;w) +

[
γ(m;− ln(1− w))

Γ(m)

]2
L̄(fm;u)

Differentiating equation (30) w.r.t. w. Then we get a direct relationship between the quantile density function q(w)
and L̄(fm;u) which shows that it uniquely determines the underlying distribution as

q(w) =
(− ln(1− w))2(m−1)

2γ(m;− ln(1− w))[L̄′(fm, u)γ(m;− ln(1− w)) + L̄(fm;u)γ′(m;− ln(1− w))]
(33)

We will now provide bounds for the quantile-based past extropy measure in terms of reverse hazard rate function
for mth record statistics.

Theorem 4.5
If L̄(fm;w) is increasing (decreasing) in w, i.e, L′(fm;w) ≥ (≤)0 then

L̄(fm;w) ≤ (≥)
−1

4

(− ln(1− w))m−1

(Γ′(m;− ln(1− w)))
H̄(Xu).

Proof
Differentiating (30) w.r.t. w then we have,

L̄′(fm;u) =
d

dw

(
−1

2(γ(m;− ln(1− w)))2

∫ w

0

(− ln(1− p))2(m−1)

q(p)
dp

)
=

γ′(m;− ln(1− w))

(γ(m;− ln(1− w)))3

∫ w

0

(− ln(1− p))2(m−1)

q(p)
dp− (− ln(1− w))2(m−1)

2[γ(m;− ln(1− w))]2q(w)

If L̄′(fm;u) is increasing in w, i.e, (L̄′(fm;u) ≥ 0). Then

γ′(m;− ln(1− w))

(γ(m;− ln(1− w)))3

∫ w

0

(− ln(1− p))2(m−1)

q(p)
dp− (− ln(1− w))2(m−1)

2[γ(m;− ln(1− w))]2q(w)
≥ 0;

−2γ′(m;− ln(1− w))

(γ(m;− ln(1− w)))
L̄(fm;w)− (− ln(1− w))m−1

2[γ(m;− ln(1− w))]
H̄(Xw) ≥ 0, ,

L̄(fm;w) ≤ (≥)
−1

4

(− ln(1− w))m−1

(Γ′(m;− ln(1− w)))
H̄(Xu). (34)

we get the required result,

5. F γ Family of Distributions

If X is a non-negative continuous random variable and the corresponding cdf is F (X). If we add one parameter
γ > 0, it becomes [F (x)]γ that is richer and more versatile cdf compared to F (X). It allows for both non-monotone
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14 QUANTILE-BASED EXTROPY MEASURE FOR RECORD STATISTICS

and monotone hazard rates. For instance, exponential distribution has a constant hazard rate while the exponentiated
exponential distribution’s hazard rate depends upon γ, a constant hazard rate if γ = 1, an increasing hazard rate if
γ > 1 and a decreasing hazard rate if γ < 1. Furthermore, its pdf is unimodal on (0,∞) with mode at x = ln γ/λ.
Then the quantile version of pdf of mth record for F γ-distributions is given by

f̧
m
(w) =

γwγ−1{− ln(1− wγ)}m−1

Γ(m)q(w)
. (1)

Quantile based extropy of mth upper record for F γ-distributions is given by

Ļ(Um) = −1

2

∫ 1

0

{f̧
m
(w)}2q(w)dw,

which can be written using (5.1) as

Ļ(Um) = −1

2

γ2

{Γ(m)}2

∫ 1

0

w2(γ−1)(− ln(1− wγ))2(m−1)

q(w)
dw. (2)

When γ = 1, the above equation reduces to the quantile-based extropy of mth record statistics.

When γ < 1

When 0 < γ < 1, the factor w2(γ−1) behaves like a negative power of w as w → 0+, since

2(γ − 1) < 0 ⇒ w2(γ−1) → ∞.

Thus the integrand becomes more singular near the lower bound w = 0. In this case the integral is more likely to
diverge unless q(w) compensates the divergence. Therefore,

Ļ(Um) increases (or diverges) as γ decreases below 1.

When γ > 1

For γ > 1, we have
2(γ − 1) > 0,

hence
w2(γ−1) → 0 as w → 0+.

This suppresses the integrand near the origin, leading to a regularizing effect and reducing the overall value of the
integral. Consequently,

Ļ(Um) decreases and typically remains finite as γ > 1.

5.1. Ļ(Um) for Expontiated Exponential Distribution

The quantile function for the exponentiated exponential distribution is Q(w) = − 1
λ log(1− w). Then measure

Ļ(Um) for expontiated exponential distributionis defined as

LE(Um) = − λγ2

2{Γ(m)}2

∫ 1

0

u2(α−1)+1
(
− log(1− uα)

)2(α−1)
du

Make the substitution t = uα. Then u = t1/α, du =
1

α
t1/α−1 dt, and

u2(α−1)+1 = u2α−1 = t(2α−1)/α.
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Hence, the integral becomes∫ 1

0

u2α−1
(
− log(1− uα)

)2(α−1)
du =

1

α

∫ 1

0

t
(
− log(1− t)

)2(α−1)
dt.

Set s = 2(α− 1). Using the identity∫ 1

0

ta−1
(
− log(1− t)

)s
dt = Γ(s+ 1)

∞∑
k=0

(
a− 1

k

)
(−1)k

(k + 1)s+1
,

with a− 1 = 1 (so a = 2) we obtain (noting
(
1
k

)
= 0 for k ≥ 2)∫ 1

0

t
(
− log(1− t)

)s
dt = Γ(s+ 1)

(
1

1 s+1
− 1

2 s+1

)
= Γ(s+ 1)

(
1− 2−(s+1)

)
.

Therefore (with s+ 1 = 2α− 1 and Γ(s+ 1) = Γ(2α− 1)) the integral equals
1

α
Γ(2α− 1)

(
1− 2−(2α−1)

)
,

and we obtained

LE(Um) = − λγ2

2{Γ(m)}2
· 1
α
Γ(2α− 1)

(
1− 2−(2α−1)

)
.

5.2. Ļ(Um) for Expontiated Uniform Distribution

The quantile function for the exponentiated uniform distribution is Q(w) = b+ w(b− a), b > a. Then measure
Ļ(Um) for expontiated uniform distributionis defined as

LU (Um) =
−γ2

2(b− a)

1

{Γ(m)}2

∫ 1

0

w2(γ−1) (− ln (1− wγ))
2(γ−1)

dw

Let t = wγ ⇒ w = t1/γ , dw = 1
γ t

1/γ−1dt. Then∫ 1

0

w2(γ−1) (− ln (1− wγ))
2(γ−1)

dw =
1

γ

∫ 1

0

t(γ−1)/γ (− ln(1− t))
2(γ−1)

dt.

Let
a− 1 =

γ − 1

γ
=⇒ a =

2γ − 1

γ
, s = 2(γ − 1).

Using the known identity∫ 1

0

ta−1
(
− ln(1− t)

)s
dt = Γ(s+ 1)

∞∑
k=0

(
a− 1

k

)
(−1)k

(k + 1) s+1
,

we obtain

I =
1

γ
Γ(2γ − 1)

∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1
.

Therefore,

LU (Um) =
−γ2

2(b− a)

Γ(2γ − 1)

γ{Γ(m)}2
∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1

with the generalized binomial coefficient(
α

k

)
=

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
.
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5.3. Ļ(Um) for Expontiated Weibull Distribution

The quantile function for the exponentiated weibull distribution is Q(w) =
[
ln(1−w)

−λ

] 1
β

, where λ, β > 0. Then, the
measure Ļ(Um) for the exponentiated Weibull distribution is defined as

LW (Um) = − γ2

2βλ1/β

1

{Γ(m)}2

∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw

Make the substitution t = wγ . Then w = t1/γ and dw =
1

γ
t1/γ−1 dt, so

∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw =

1

γ

∫ 1

0

t(γ−1)/γ
(
− ln(1− t)

)2(γ−1)
dt.

Set
a− 1 =

γ − 1

γ
⇒ a =

2γ − 1

γ
, s = 2(γ − 1).

Using the identity ∫ 1

0

ta−1
(
− ln(1− t)

)s
dt = Γ(s+ 1)

∞∑
k=0

(
a− 1

k

)
(−1)k

(k + 1)s+1
,

with a and s as above, we obtain∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw =

1

γ
Γ(2γ − 1)

∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1
.

Therefore the evaluated expression is

LW (Um) = − γ

2βλ1/β

Γ(2γ − 1)

{Γ(m)}2
∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1

5.4. Ļ(Um) for Expontiated Generalized Rayleigh(GR) Distribution

The quantile function for the expontiated generalized rayleigh(GR) distribution is Q(w) =
[
ln(1−w)

−λ

] 1
2

, where
λ > 0. Then measure Ļ(Um) for expontiated generalized rayleigh(GR) distribution is defined as

LG(Um) = − γ2

2βλ1/2

1

{Γ(m)}2

∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw.

Make the substitution t = wγ . Then w = t1/γ and dw =
1

γ
t1/γ−1 dt, so

∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw =

1

γ

∫ 1

0

t(γ−1)/γ
(
− ln(1− t)

)2(γ−1)
dt.

Set
a− 1 =

γ − 1

γ
⇒ a =

2γ − 1

γ
, s = 2(γ − 1).

Using the identity ∫ 1

0

ta−1
(
− ln(1− t)

)s
dt = Γ(s+ 1)

∞∑
k=0

(
a− 1

k

)
(−1)k

(k + 1)s+1
,

Stat., Optim. Inf. Comput. Vol. x, Month 202x



S. SHARMA, AND V. KUMAR 17

with the above a and s, we get∫ 1

0

w2(γ−1)
(
− ln(1− wγ)

)2(γ−1)
dw =

1

γ
Γ(2γ − 1)

∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1
.

Therefore, we obtained

LG(Um) = − γ

2βλ1/2

Γ(2γ − 1)

{Γ(m)}2
∞∑
k=0

(γ−1
γ

k

)
(−1)k

(k + 1) 2γ−1

5.5. Ļ(Um) for Expontiated Power Distribution

The quantile function for the exponentiated power distribution is Q(w) = βw
1
c , where λ, β > 0. Then the measure

Ļ(Um) for the exponentiated power distribution is defined as

LEP (Um) = −cα2

2β

1

{Γ(m)}2

∫ 1

0

w
c−1
c

(
− ln(1− w)

)2(γ−1)
dw

Using the standard identity∫ 1

0

ta−1
(
− ln(1− t)

)s
dt = Γ(s+ 1)

∞∑
k=0

(
a− 1

k

)
(−1)k

(k + 1)s+1
,

set
a− 1 =

c− 1

c
⇒ a =

2c− 1

c
, s = 2(γ − 1).

Thus, ∫ 1

0

w
c−1
c

(
− ln(1− w)

)2(γ−1)
dw = Γ(2γ − 1)

∞∑
k=0

(
c−1
c

k

)
(−1)k

(k + 1) 2γ−1
.

Therefore the evaluated expression becomes

LEP (Um) = −cα2

2β

Γ(2γ − 1)

{Γ(m)}2
∞∑
k=0

(
c−1
c

k

)
(−1)k

(k + 1) 2γ−1

Quantile-based extropy of mth record for F γ family distributions is summarized in Table 3.

6. Conclusion

The quantile-based extropy measures possess some unique properties than its distribution function approach. The
quantile-based extropy of record statistics has several advantages its dynamic versions provide a linear equation
that presents a unique hazard function corresponding to the extropy measure of mth upper record statistics but
J(fm; t) may or may not determine hazard function uniquely. Quite simple in cases where the distribution function
is not tractable, while the quantile function has a simpler form.
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