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Abstract This article aims to improve tools in monitoring processes of production by presenting four new control charts
based on the wavelet analysis with the Daubechies wavelet. The proposed charts consist of the classical average chart
with approximate coefficients, the Bayesian average chart with approximate coefficients, the classical average chart with
detailed coefficients and the Bayesian average chart with detailed coefficients. These charts were used on actual data of body
temperatures of newborns in Valia Hospital, Erbil, Kurdistan, Iraq. The proposed charts resist noise because low-pass and
high-pass filtering is performed in the wavelet transformation to separate smooth trends from noise. The new charts were
evaluated against classical Shewhart average and Bayesian average charts using simulations under control and various mean
shift situations. Average Run Length and Control Limit Width, as performance measures, were obtained as the new charts
show a better performance than traditional average charts for the case of small to medium size shifts in temperature. This
improves the ability to supervise the production process, for example, in medicine by tracking newborns’ temperatures at
hospitals
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1. Introduction

Advances in quality control and analysis of industrial processes have generated a need for better means to detect
small and large changes in processes [1]. Among these tools, statistical observation charts are of utmost importance
because the traditional Shewhart chart or control chart is one of the oldest and most widely used techniques for this
purpose. However, traditional methods alone cannot be relied upon for the early detection of minor variations or
complex oscillations in a process [2].

[3] presented a Bayesian control chart to monitor the variability of the process without assuming a normal
distribution of data. The chart uses a Bayesian predictive distribution to determine the control limits, which allows
rapid detection of changes in the variability of the process even under an unknown or variable distribution over
time. In [4] presented a method for detecting gear system malfunctions using a statistical control scheme based
on wavelet analysis. Vibration signals are analyzed using intermittent Wavelet Transform (DWT) to determine the
levels of detail, which helps in the early detection of malfunctions in noise-containing operating conditions.

[5] proposed a hybrid control scheme combining the EWMA scheme and the Bayesian method using ordered
samples. The diagram shows improved performance in detecting small changes in the process mean, with practical
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application to the process of thermal hardening in industry. [4] [6]propose a new way to reduce noise in signals
using an iterative waveform threshold inspired by the applications of statistical control schemes. The method shows
superior noise reduction performance compared to conventional methods, with applications to biomedical data.
[7] present a Bayesian control scheme for monitoring the number of defects in production processes. Using
predictive Bayes distributions, the scheme shows improved performance in terms of reducing false alarm rates
compared to traditional methods, which makes it suitable for operations with low defect rates.

To overcome these problems, hybrid approaches have been created that integrate conventional techniques, like the
Shewhart chart, and contemporary wave-based technologies (Wavelets) [8] [9]. Daubechies Wavelets are among
the most efficient types of wavelets because of their greater capability of accurately representing the local features
of signals. Daubechies can be combined with classical Shewhart wavelets and enhanced with Bayesian methods to
increase efficiency and accurately and responsively detect minor changes.

Wavelet decomposition is a mathematical technique that breaks down a complex signal into simpler components

at different scales or resolutions. Imagine listening to a recording with background noise: wavelets help us separate
the “true” signal (the sound we want) from the noise (unwanted fluctuations) (Ali et al. 2023). By applying wavelet
transforms, the original data is decomposed into approximation coefficients that capture the main features (signal)
and detail coefficients that represent the finer, often noisier details. This separation allows us to filter out noise by
selectively processing these coefficients, improving data quality for further analysis [24] [30].
This work emphasizes the construction of a better observation chart, Average Chart, based on the average,
through sophisticated wavelet analysis using Daubechies’ wavelets (approximate and detail coefficients), which
incorporates classical Shewhart and Bayesian statistics, thus improving estimation and inferential strength. The
motivation behind this new approach is the need to provide a tool capable of handling highly noisy and non-linear
data, enhancing early detection capabilities in industrial and managerial processes.

2. Methodology

2.1. Classical X Control Chart Framework

The chart X it is one of the oldest and simplest statistical tools employed to follow the stability of industrial
processes over time. This chart is generated by measuring the means of samples collected during the process to
detect potential drift from the system’s normal operation as soon as possible. Since control limits are determined
from the means of the samples and the amount of variation within each sample, it is possible to differentiate
between common cause variation and special cause variation. Using a chart X is widely employed to monitor the
quality of products and maintain continuity of performance under control [10]. The main components of the chart
X consist of the upper limit of control and consists of:

UCL_Classic = X +3 x (s/v/n) (1

The lower control consists of: -
LCL_Classic =X —3 x (s/v/n) )

Where: X: denotes the average of the sample, s: represents the estimated process standard deviation,n: be the
number of observations per sample.
The width of the control chart is calculated as:

WhidtdClassic = UCLClassic - LCLClassic =6 X (5/\/5) (3)

Where the grand mean is obtained using:
(1/m) x> X; 4)

Where: X denote the grand average of the sample averages, X; denote the average of the i-th sample, m be the total
number of samples. The overall process standard deviation can be computed either by pooling all observations
or by averaging within-sample standard deviations. If all the points are between UC'L and LC'L and there are no

Stat., Optim. Inf. Comput. Vol. x, Month 202x



2 WAVELET DAUBECHIES ENHANCED AVERAGE CHART INCORPORATING CLASSICAL

abnormal patterns, then the process is under control [11]. If a point goes out of bounds or a suspicious pattern
appears, there is an indication of a malfunction in the process.

Our qualitative control charts assume that the monitored data follows a normal distribution. This assumption
is critical because control limits are derived under the assumption of normality to distinguish between common
cause variation and special cause variation. When the underlying data deviate significantly from normality, such as
exhibiting skewness, heavy tails, or multimodality, the control charts may generate excessive false alarms, causing
points to fall outside control limits erroneously [25] [28]. Therefore, non-normal data may lead to increased Type
I errors and reduced reliability of the control process monitoring. In such cases, alternative control chart methods
that are robust to distributional assumptions or nonparametric approaches should be considered.

2.2. Bayesian X Control Chart Framework

Charts X classic are useful in monitoring the industrial process, while it is assumed that the mean and standard
deviation are knoX = (1/m) x >_ X, wn and stable. But these parameters are usually not known exactly, or they can
be time-varying [11] [12]. Here is where the Bayesian approach comes in handy, as it combines prior information
with available data to achieve more flexible and accurate estimates [13]. From it, a chart X . A Bayesian chart that
employs a Bayesian approach to update estimates of the average process and control limits with the incoming data
was developed.

In the Bayesian chart, it is not assumed that the average p or standard deviation o is constant. Rather, knowledge
about p using a prior distribution, which is updated based on the sample data, to a posterior Distribution. Based on
the dimensional distribution, variable control limits (Bayesian Control Limits) are calculated [14].

In Bayesian analysis, prior hyperparameters reflect our initial beliefs about the parameters before seeing data.
Specifically, u represents the prior mean, and 7 controls the confidence or precision in that prior. A larger
implies stronger confidence in the prior mean, so new data has less influence on updating the estimate. Conversely,
a smaller 7 allows the observed data to have more impact \cite{19}.

For example, if prior knowledge suggests the process mean is around 50 with high certainty (large 7), the posterior
estimate will not change drastically with a few new observations. If 7 is small, the posterior mean will adapt quickly
to the new data. This flexibility helps tailor the Bayesian updating to different practical scenarios.

Assume:- The prior distribution for the process mean is p ~ N (/J(], 72). The sampling distribution for the sample
mean is Xi|u ~ N (p,0%/n).

After observing each sample mean X;. The posterior distribution of the process means is also normal with:

1. Posterior variance:
Baysyar =1/ (1/7’2 + n/oz) (5)

2. Posterior mean
Bayes]\/[ean = BayeSVar X (/110/7'2 +n X Xi/0'2 ) (6)

Once the posterior means for all samples are calculated, their overall mean and standard deviation are determined:
XBayes = (1/m) x > Bayesyscan, (7
s_Bayes = standard deviation of the posterior means, and the Bayesian control limits are then constructed as:
UCLpBayes = XBayes + 3 X 5Bayes ®)
LCLpayes = XBages — 3 X 5Bayes ©)
The corresponding control chart width is:
Widthpayes = UCLBayes — LCLBayes = 6 X SBayes (10)
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2.3. Average Run Length (ARL) as a Performance Indicator

In the field of statistical quality control (SQC), the average string length (ARL) is one of the main indicators for
measuring the performance of monitoring charts, such as X and P-Chart, and others. ARL measures the number of
samples (or time intervals) that a monitoring system needs to detect a change in the process after an actual deviation
has occurred. ARL can be used to determine how the chart responds to problems, especially small or large changes
in the target characteristics of the process.

1
ARL = 2

(Signal) (D

Where: P (Signal) The probability that a signal (a point located outside the control limits) will be emitted at each
check.
ARL : is used to determine how sensitive the scheme is to detect deviations in the process.

In classical observation charts, the ARL is the expected value of the number of samples that go through before
a true change in the process has been observed. When small changes are detected, ARL will increase since it
probably takes a longer time to follow them. In stable conditions, meaning there are no shifts or changes, meaning
under control, the ARL should be higher, as the charts would show no signals. And if the process is out of control
due to a real shift in the parameters of the distribution, such as the mean or the variance, then the ARL must be
smaller as the chart will be able to identify the shift faster [15] [16].

3. Proposed Charts

The Daubechies (DB) wavelet is chosen for the proposed control charts. The DB wavelet has N vanishing moments,
effectively capturing smooth trends (approximation coefficients) and localized fluctuations (detail coefficients)
within the dataset. The one-level Discrete Wavelet Transform (DWT) decomposes each sample observation into
two sets of coefficients: Approximation coefficients (A), which capture the low-frequency, smooth components of
the data and Detail coefficients (D), which capture the high-frequency, localized changes and irregularities.

The decomposition is performed via convolution with a pair of filters, a low-pass filter hy (scaling filter) and a
high-pass filter g, (wavelet filter). The Daubechies-11 and 16 wavelets have a specific set of 11 and 16 scaling and
wavelet coefficients (hy, gi) satisfying orthogonality and compact support properties (for the number of samples
m = 20 and 30) for filter length L = 11 and 16, respectively.

Selected Daubechies wavelets of orders 11 and 16 due to their well-known balance between accuracy and
computational efficiency. Higher-order Daubechies wavelets have more vanishing moments, enabling them to
approximate smooth functions more precisely, which enhances noise separation. However, increasing the order also
raises computational complexity. Orders 11 and 16 provide sufficient vanishing moments for capturing the essential
features of the data while maintaining reasonable processing time, making suitable choices for our application [18]
[24] [29].

Mathematically, for a data vector X = {x1, xo, ..., z, }, the DWT produces:

L—-1

Am= ) hi Xk (12)
L—1
D = D, 8k X T2mei (13)
The approximate and detailed coefficients are calculated for each column of the data matrix X to obtain the
approximate and detailed coefficient matrix: A = [A1, Ao, ..., A, ] and D = [D4, Do, ..., D,] after extended

coefficients (like symmetric, zero-padding, or periodization) to get the number of coefficients equal to m/2 + L-1
and equal to m for approximate and detail. Rationale for using Daubechies 11 for m = 20 and 16 for m = 30 to
get on same number of observations. This makes it a suitable candidate for enhancing the performance of both
classical and Bayesian control charts in detecting small-to-moderate variations in industrial and healthcare process
data.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 WAVELET DAUBECHIES ENHANCED AVERAGE CHART INCORPORATING CLASSICAL

The approximation and detail coefficients are multiplied by a factor of 1/1/2 to obtain normal coefficients from
the observations. So, the new proposed charts are as follows:

3.1. Classical Wavelet Approximation Chart (CWA Chart)

The chart derives from the approximation coefficients obtained by performing DWT by using the Daubechies
wavelet, and the classical averages are the coordinates of the dots. The control limits are:
The grand mean, or overall process mean, is the average of the means of all the subgroups:
= 1 mo
A=— > A (14)
The overall process standard deviation, SA, is calculated as the standard deviation of all values of A. Having
established these values, the control charts, UCLA and LCLA, are then calculated as follows:

UCLA = A+3 % Sa/vn (15)
LCLA = A —3x Sa/vn (16)

3.2. Bayesian Wavelet Approximation Chart (BWA Chart)

The points on this chart represent the posterior distribution of the process mean, specifically the Bayes Estimator
for Normal-Normal conjugacy when prior and likelihood are both normal, for the normalized approximation
coefficients, obtained using the following formula
Ho nA;
__ ko ndd
AB; = T—2- an
=T
Where /i is the prior mean, 72 is the prior variance, o2 is a known process variance, and the sample mean A; is
from each sample. Posterior variance is:
1

1 n
=+ o2

oA? = (18)

The control limits: The overall process mean AB calculated as the mean of all subgroups’ means (Target Line):

AB = — AB; (19)
m —~i=1
The standard deviation (SB 4) is computed as the standard deviation of all AB;. Once these values are determined,
the UCL 4 5 and LCL 4 g for the control chart are given by:
UCLap = AB+3x SBa (20)

LCLap = AB — 3 x SBj Q1)

3.3. Classical Wavelet Details Chart (CWD Chart)

This chart is based on the detailed coefficients of the DWT of the Daubechies wavelet and its classical averages
DA; represent the points plotted on it. The control limits:

The overall process means D calculated as the mean of all subgroups’ means:

= 1 mo _

D=— Zi:l D; (22)
e overall process standard deviation (Sp) is computed as the standard deviation of all detail values in the D. Once
these values are determined, the UCL, and LCL , for the control chart are given by:

UCLp = D +3 x Sp/vn (23)

LCLp = D — 3 x Sp/vn (24)
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3.4. Bayesian Wavelet Details Chart (BWD Chart

The points plotted on this chart represent the posterior distribution of the process mean of the normalized detail
coefficients calculated using the following formula:

DB, = T—2 25)
zt5z
The sample mean D; is from each sample (;u0 = 0 for detail). Posterior variance is:
1

oD? =
+

(26)

~|N| —-
le 3

The control limits: The overall process mean DB calculated as the mean of all subgroups’ means (Target Line):

— 1 [
DB = — DB; 27
m —i=1
The standard deviation (SBp) is computed as the standard deviation of all DB;. Once these values are determined,
the UCLp g and LCLp g for the control chart are given by:

UCLpg = DB +3 x SBp (28)

LCLDB = B —3x SBD (29)

Figure 1. Data Analysis Process Using Discrete Wavelet Transform (Daubechies DWT) with Classical and Bayesian Control
Charts.

This Flowchart 1 illustrates the data analysis methodology using one-level Discrete Wavelet Transform with
Daubechies wavelets. It decomposes the original signals into approximation coefficients for classical control charts

and detail coefficients for advanced Bayesian control charts to enhance process monitoring sensitivity.
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3.5. Comparison with Alternative Wavelets and Computational Considerations

To validate our choice of Daubechies wavelets, we conducted a comparative analysis with other commonly used
wavelet families, including Haar and Symlets. The Daubechies wavelets demonstrated a favorable balance between
signal approximation accuracy and computational efficiency, consistently outperforming the alternatives in both
simulation studies and real-world data applications. This validates their suitability for our context, where precise
noise separation and smooth signal representation are critical [20] [22].

Regarding computational complexity, our method exhibits approximately linear scaling concerning both sample
size and wavelet decomposition level. For the typical data sizes analyzed in this study, the processing time is
sufficiently low to support near-real-time implementation. However, for applications involving high-frequency data
streams or very large datasets, further optimization strategies or parallel computing techniques may be necessary
to maintain performance [21] [26].

4. Results and Performance Evaluation

4.1. Simulation-Based Performance Assessment

The simulation was based on generating random data from a normal distribution representing the in-control state
of the process, using a predefined process mean (po = 100) and standard deviation (o = 4). The simulation was
designed to consist of a specific number of samples (u = 20), each containing a fixed sample size (n = 5). The
mean of each sample (X ) was computed and subsequently used to construct control charts and determine their
corresponding control limits. Additionally, the simulation allowed testing the sensitivity of the charts in detecting
shifts from the target value by introducing predefined changes in the process mean (7 = 2), thereby creating a
controlled environment to measure statistical performance indicators such as the Average Run Length (ARL),
estimated process standard deviation (Sigma), and Control Limit Width (CLW).

The data analysis and control chart implementation were fully programmed using MATLAB R2024a, with all
parameter settings and algorithms clearly defined. For transparency and reproducibility, the complete source code
and relevant sample data are provided in the Appendix of this manuscript.

Figure 1 presents a comparison between a traditional (X ) control chart and a Bayesian control chart for monitoring
the mean of 20 samples in the first simulation experiment, with each sample representing the average of five
observations. The traditional chart determines its control limits based solely on the sample means derived from
the generated data. In contrast, the Bayesian approach incorporates prior information, assuming a mean of 100,
a standard deviation of 4, and (7 = 2) and continuously updates this information using the posterior distribution
as new sample data become available. Because of this ongoing updating, the Bayesian chart constructs smoother
estimates of the process center and obtains narrower control limits, which allows the chart to become more powerful
for detecting small shifts in the process mean. The figure illustrates one of the benefits of the Bayesian approach,
which is the capability of detecting small shifts in the process sooner than the classical control chart may do,
without missing it entirely.

Figure 2 displays a comparative control chart between the CWA and BWA for the first simulation experiment in the
wavelet approximate domain (low-pass filter), with each sample representing the mean of five observations. The
CWA control chart (plotted in blue) determines the control limits based exclusively on the sample data, while the
BWA control chart (plotted in green) integrates prior information (mean = 100, standard deviation = 4, 7 = 2) with
the observed data using a continuously updated posterior distribution.

As illustrated in the figure, the BWA chart produces smoother estimates of the process mean and establishes
narrower control limits compared to the CWA chart. This results in greater sensitivity to small shifts in the process
mean. Both control charts demonstrate that, within Phase I, all sample points remain within their respective control
limits. The figure effectively highlights the advantage of the Bayesian approach in detecting minor changes in
process performance, which may not be captured as promptly by the classical method.

The CWD and BWD are compared in Figure 3, using the first simulation experiment in the wavelet detail domain,
which is equivalent to applying a high-pass filter. While the CWD control chart establishes its control limits
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Figure 2. Classical and Bayesian Control Charts for the First Simulation Experiment.
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Figure 3. CWA and BWA Control Charts for the First Simulation Experiment.
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Figure 4. CWD and BWD Control Charts for the First Simulation Experiment.

depending only on the sample data, the BWD chart considers previous information, which is updated at each
sampling instant by the new data received via a posterior distribution. The figure illustrates how the BWD chart
generates smoother estimates of the process mean and has narrower control limits than the CWD chart. This
improves its ability to identify small changes in the process mean. As a result, there was process stability during
phase I, as evidenced by the fact that all sample points for the two control charts in phase I fell within the control
limits. This figure illustrates one of the benefits of the Bayesian method: the capacity to detect small drifts in
process performance that the classical approach would take longer to notice.

The first simulation study yielded the control chart parameters as summarized in Table 1. Displays the UCL,
LCL, target, Sigma and control line width (CLW) for classical and Bayesian control charts in the wavelet
approximate (CWA, BWA) and wavelet detail (CWD, BWD) domains. The table demonstrates that Bayesian charts
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Table 1. Control Chart Parameters for the First Simulation Experiment

Chart UCL LCL Target Sigma CLW
Classical 105.9138 95.9138 100.5218 1.7973 10.7841
Bayesian 103.1740 97.4057 100.2899 0.9614 5.7684
CWA 104.6522 96.3914 100.5218 1.3768 8.2608
BWA 102.7599 97.8199 100.2899 0.8233 4.9400
CWD 3.4661 -3.4661 0.0000 1.1554 6.9322
BWD 1.2670 -1.7114 -0.2222 0.4964 2.9784

have smaller control limits and standard deviation than classical charts. More specifically, the Bayesian chart of
the original data has a UCL of 103.1740, LCL 97.4057, standard deviation of 0.9614 and CLW of 5.7684, whereas
the classical chart has wider limits and a greater standard deviation of 1.7973. The same can be noticed in the
wavelet approximate and detail space, as the approaches employing Bayesian inference, BWA, BWD, show higher
accuracy as they have narrower limits and less spread.

These results emphasize the increased sensitivity and stability of Bayesian control charts in detecting small shifts
in process performance, particularly when combined with wavelet transformation techniques. The integration of
prior information and continuous updating allows the Bayesian methods to outperform classical charts in both the
original and transformed data contexts. To evaluate the performance of the proposed control charts under various
conditions, the simulation experiments were repeated 1000 times for multiple parameter configurations, as detailed
in Table 2. The scenarios were designed to reflect a range of practical process environments by varying the sample
size per sample (m), the number of observations per subgroup (n), the process mean (pg), standard deviation (o),
and the precision of the prior information (7) for the Bayesian approach.

Specifically, six distinct scenarios were considered. Scenario I represents a process with a high mean and high
variability, using a moderately informative prior. Scenario II serves as the baseline setting with moderate values
for all parameters. Scenario III involves a low mean and high variability coupled with a strong prior (small 7). In
contrast, Scenario IV simulates a very low process mean, moderate variability, and a weak prior. Scenario V models
a small-scale process with low variability, while Scenario VI features a high mean with moderate variability under
a non-informative prior, rendering the Bayesian approach functionally equivalent to the classical method.

The simulations were conducted for two combinations of sample size and number of observations per sample,
specifically, m = 20, 30 and n = 5, 10 to assess the charts’ sensitivity and stability across different operational
settings.

Table 2. Simulation Scenarios and Parameter Settings

Scenario m n 140 o T Description
I 20 5 100 4 2 High mean, high variability, moderately informa-
tive prior

30 10

11 20 5 50 2 1 Baseline setting — moderate everything
30 10

1 20 5 10 3 0.5 Low mean, high variability, strong prior (low 7)
30 10

v 20 5 5 2 3 Very low mean, moderate variability, weak prior
30 10

\4 20 5 1 1 1 Small-scale process, low variability
30 10

VI 20 5 100 2 Inf High mean, moderate variability, non-

informative prior (Bayesian =~ Classical)

30 10

Tables (3) summarize the control chart parameters, including the average of UCL and LCL, target value, Sigma,
CLW, and average run length (ARL), for each scenario across both classical and Bayesian charting schemes, as
well as their wavelet-transformed counterparts in the approximation and detail domains.
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Table 3. Control Chart Parameters and ARL Values for Scenario |

Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 105.3425 94.6637 100.0031 1.7798 10.6788 383.0253
Bayesian 102.9204 97.0830 100.0017 0.9729 5.8373 1235.700
CWA 103.9157 96.0379 99.9768 1.3130 7.8778 38.1855
BWA 102.0887 97.8855 99.9871 0.7005 4.2032 71.8703
CWD 3.6120 -3.6120 0.0000 1.2040 7.2239 26.7964
BWD 2.0051 -2.0051 0.0000 0.6684 4.0102 68.7091
Classical 30 10 103.7960 96.2063 100.0012 1.2649 7.5897 362.1246
Bayesian 102.6931 97.3085 100.0008 0.8974 5.3846 844.0277
CWA 102.6732 97.3191 99.9961 0.8923 5.3541 28.2068
BWA 101.8388 98.1556 99.9972 0.6139 3.6832 40.2573
CWD 2.6304 -2.6804 0.0000 0.8935 5.3607 30.5833
BWD 1.9183 -1.9183 0.0000 0.6394 3.8366 53.2050
Table 4. Control Chart Parameters and ARL Values for Scenario 11
Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 52.6712 47.3318 50.0015 0.8899 5.3394 383.0253
Bayesian 51.4602 48.5415 50.0009 0.4864 29187 1235.700
CWA 51.9578 48.0190 49.9884 0.6565 3.9389 38.1855
BWA 51.0444 48.9428 49.9936 0.3503 2.1016 71.8703
CWD 1.8060 -1.8060 0.0000 0.6020 3.6120 26.7964
BWD 1.0025 -1.0025 0.0000 0.3342 2.0051 68.7091
Classical 30 10 51.8980 48.1032 50.0006 0.6325 3.7948 362.1246
Bayesian 51.3466 48.6543 50.0004 0.4487 2.6923 844.0277
CWA 51.3366 48.6595 49.9981 0.4462 2.6770 28.2068
BWA 50.9194 49.0778 49.9986 0.3069 1.8416 40.2573
CWD 1.3402 -1.3402 0.0000 0.4467 2.6804 30.5833
BWD 0.9591 -0.9591 0.0000 0.3197 1.9183 53.2050
Table 5. Control Chart Parameters and ARL Values for Scenario III
Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 14.0069 5.9978 10.0023 1.3349 8.0091 383.0253
Bayesian 10.4808 9.5198 10.0003 0.1602 0.9610 1235.700
CWA 12.9368 7.0284 9.9826 0.9847 5.9083 38.1855
BWA 10.3439 9.6519 9.9979 0.1153 0.6920 71.8703
CWD 2.7090 -2.7090 0.0000 0.9030 5.4180 26.7964
BWD 0.3301 -0.3301 0.0000 0.1100 0.6602 68.7091
Classical 30 10 12.8470 7.1547 10.0009 0.9487 5.6922 362.1246
Bayesian 10.6147 9.3856 10.0002 0.2048 1.2291 844.0277
CWA 12.0049 7.9893 9.9971 0.6693 4.0156 28.2068
BWA 10.4197 9.5790 9.9994 0.1401 0.8407 40.2573
CWD 2.0103 -2.0103 0.0000 0.6701 4.0205 30.5833
BWD 0.4379 -0.4379 0.0000 0.1460 0.8757 53.2050
Table 6. Control Chart Parameters and ARL Values for Scenario IV
Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 7.6712 2.3318 5.0015 0.8899 5.3394 383.0253
Bayesian 7.4138 2.5890 5.0014 0.8041 4.8247 1235.700
CWA 6.9578 3.0190 49884 0.6565 3.9389 38.1855
BWA 6.7264 3.2523 4.9893 0.5790 3.4741 71.8703
CWD 1.8060 -1.8060 0.0000 0.6020 3.6120 26.7964
BWD 1.6573 -1.6573 0.0000 0.5524 3.3145 68.7091
Classical 30 10 6.8980 3.1032 5.0006 0.6325 3.7948 362.1246
Bayesian 6.8050 3.1961 5.0006 0.6015 3.6088 844.0277
CWA 6.3366 3.6595 49981 0.4462 2.6770 28.2068
BWA 6.2324 3.7639 4.9981 0.4114 2.4685 40.2573
CWD 1.3402 -1.3402 0.0000 0.4467 2.6804 30.5833
BWD 1.2857 -1.2857 0.0000 0.4286 2.5713 53.2050
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Table 7. Control Chart Parameters and ARL Values for Scenario V

Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 2.3356 -0.3341 1.0008 0.4450 2.6697 383.0253
Bayesian 2.0951 -0.0939 1.0006 0.3648 2.1890 1235.700
CWA 1.9789 0.0095 0.9942 0.3282 1.9694 38.1855
BWA 1.7833 0.2071 0.9952 0.2627 1.5762 71.8703
CWD 0.9030 -0.9030 0.0000 0.3010 1.8060 26.7964
BWD 0.7519 -0.7519 0.0000 0.2506 1.5038 68.7091
Classical 30 10 1.9490 0.0516 1.0003 0.3162 1.8974 362.1246
Bayesian 1.8569 0.1436 1.0003 0.2855 1.7133 844.0277
CWA 1.6683 0.3298 0.9990 0.2231 1.3385 28.2068
BWA 1.5851 0.4132 0.9991 0.1953 1.1719 40.2573
CWD 0.6701 -0.6701 0.0000 0.2234 1.3402 30.5833
BWD 0.6104 -0.6104 0.0000 0.2035 1.2207 53.2050

Table 8. Control Chart Parameters and ARL Values for Scenario VI

Chart m n UCL LCL Target Sigma CLW ARL
Classical 20 5 102.6712 97.3318 100.0015 0.8899 5.3394 383.0253
Bayesian 102.6283 97.3747 100.0015 0.8756 5.2536 1235.700
CWA 101.9578 98.0190 99.9884 0.6565 3.9389 38.1855
BWA 101.8798 98.0970 99.9884 0.6305 3.7829 71.8703
CWD 1.8060 -1.8060 0.0000 0.6020 3.6120 26.7964
BWD 1.8046 -1.8046 0.0000 0.6015 3.6092 68.7091
Classical 30 10 101.8980 98.1032 100.0006 0.6325 3.7948 362.1246
Bayesian 101.8852 98.1160 100.0006 0.6282 3.7692 844.0277
CWA 101.3366 98.6595 99.9981 0.4462 2.6770 28.2068
BWA 101.2872 98.7089 99.9981 0.4297 2.5782 40.2573
CWD 1.3402 -1.3402 0.0000 0.4467 2.6804 30.5833
BWD 1.3428 -1.3428 0.0000 0.4476 2.6856 53.2050

4.2. Discussion of Simulation Outcomes

To comprehensively evaluate the performance of the proposed control charts under different process conditions,
multiple simulation experiments were conducted based on the six predefined scenarios Tables 3-8. The results
consistently demonstrate that Bayesian control charts, particularly in the wavelet domain, achieve narrower control
limits and lower process standard deviations compared to their classical counterparts. This leads to improved
sensitivity in detecting small shifts in the process mean, reflected in shorter ARL values when shifts are introduced,
and longer ARLs when the process is in control, a desirable property for maintaining process stability.

The Classical X chart maintains a relatively wide CLW and moderate ARL around 383 in all scenarios for Phase
I. In contrast, the Bayesian chart presents tighter control limits and significantly higher ARL values (e.g., ARL =
1235.70 in Scenario I for m = 20, n = 5), confirming its superior in-control performance. Furthermore, wavelet-
enhanced charts, especially the Bayesian Wavelet Approximation (BWA) and Bayesian Wavelet Detail (BWD)
charts, exhibit considerable efficiency, achieving both reduced control limit widths and desirable ARL behavior,
particularly in scenarios involving low process variability and strong prior information.

In scenarios characterized by highly informative priors and high process variability (e.g., Scenario I and III), the
Bayesian-based wavelet charts outperform other methods by maintaining tighter control regions and balanced ARL
profiles. Conversely, under non-informative prior settings (Scenario VI), the Bayesian and classical charts converge,
as expected, highlighting the Bayesian method’s adaptability to the level of prior knowledge.

These findings underscore the effectiveness of integrating Bayesian techniques and wavelet analysis within control
chart methodologies for enhancing process monitoring sensitivity, particularly in healthcare-related and industrial
applications where early detection of minor shifts is critical.
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4.3. Application to Real Neonatal Temperature Data

Real data on the body temperatures of newborn infants are used to evaluate the performance of classical, Bayesian,
and proposed wavelet-enhanced control charts during both Phase I and Phase II monitoring. Temperature stability
in newborns is a vital clinical indicator, as even minor physiological changes in this highly sensitive population
may indicate potential health complications or environmental irregularities. Therefore, applying robust statistical
monitoring techniques plays a key role in enabling early and reliable detection of such deviations.

Daily temperature readings were collected from neonates under continuous medical supervision at Valia Hospital
in Erbil, Kurdistan Region, Iraq. A total of 100 observations were gathered for Phase I, organized into 20 rational
subgroups of size 5, representing in-control historical data. For Phase II, 90 observations were collected, forming
18 subgroups of size 5, used to assess the effectiveness of control charts in ongoing process monitoring.

These observations provide the basis for comparing different control strategies—namely, classical Shewhart X
charts, Bayesian charts, and the newly introduced wavelet-based control charts (CWA, BWA, CWD, and BWD
charts). For the Bayesian method, a prior distribution was assumed to be a prior mean of 36.9, a prior standard
deviation of 0.3, and 7 = 0.2, reflecting initial beliefs before incorporating the sample evidence. This prior
information is updated with each sample to obtain the posterior distribution used in monitoring. The collected
temperature values for each group of five newborns are detailed in Tables A and B (Appendix), corresponding to
Phases I and II, respectively.

Figure 4 presents a comparison between a traditional control chart X and a Bayesian chart for monitoring the mean
body temperatures of newborns across 20 samples, each representing the mean temperature of five infants. The
chart indicates that the traditional approach relies on the sample mean calculated from the data alone to determine
the control boundary, whereas the Bayesian approach integrates prior information (with an assumed mean of 36.9,
a standard deviation of 0.3, and 7 = 0.2) with the emerging sample data using a continuously updated posterior
distribution. Through this updating, the Bayesian chart provides smoother estimates of the process center location
and narrower bounds, leading to increased sensitivity to small deviations in the process. The figure emphasizes
how the Bayesian method can be an effective tool for early detection of small changes in performance compared to
the traditional approach, which may overlook such changes. Finally, in Phase I, the points drawn on the two charts
were within the control limits, so they could be used to monitor the body temperatures of newborn infants in Phase
1L

Phase | Control Chart: Classical vs Bayesian
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Figure 5. Classical and Bayesian Charts for Body Temperatures of Newborns (Phase I).

Figure 5 demonstrates that the body temperatures of newborn infants remained within acceptable ranges, as all data
points fell within the control limits for both charts.

Figure 6 demonstrates that the points drawn on the two proposed charts for approximate coefficients were within
the control limits, so they could be used to monitor the body temperature average of newborn infants in Phase II.
As shown in Figure 7, the body temperatures of newborn infants remained stable and within acceptable limits, with
all measurements falling inside the control bounds on both the CWA and BWA charts.
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Figure 6. Classical and Bayesian Charts for Body Temperatures of Newborns (Phase II).
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Figure 7. CWA and BWA Charts for Body Temperatures of Newborns (Phase I).
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Figure 8. CWA and BWA Charts for Body Temperatures of Newborns (Phase II).

Figure 8 indicates that all points representing the detailed coefficients on the two proposed control charts fell
within the predefined control limits, thereby supporting their reliability for Phase II monitoring (the average body
temperature in newborns). Figure 9 demonstrates that the body temperature readings of newborn infants remained
steady and within the specified control limits, as all observations were contained within the control bounds of both
the CWD and BW charts. Table 9 presents the control chart parameters for monitoring the average body temperature
of newborn infants using various classical, Bayesian, CWA, BWA, CWD, and BWD control procedures. The
classical and Bayesian charts exhibited upper and lower control limits (UCL and LCL) of (37.4110, 36.5690)
and (37.2134, 36.7107), respectively, with target values closely aligned at approximately 36.99°c. The control
width (CLW) was notably narrower in the Bayesian chart (0.5027) compared to its classical counterpart (0.8421),
reflecting enhanced precision in monitoring. CWA and BWA charts exhibited similar control limits under their

Stat., Optim. Inf. Comput. Vol. x, Month 202x



H.H.TAHA, H. A. A. HAYAWI, T. H. ALI AND S. R. AHMED 13

Phase | Control Chart: CWD vs BWD

UCL (Classic)

Mean Value

M
(/

|~
e
"
I
L~
2o
HL

Sample Number

Figure 9. CWD and BW Charts for Body Temperatures of Newborns (Phase I).

methodologies, BWA based on Bayesian statistics having the narrowest CLW of 0.3897. In the derivative charts,
CWD and BWD, the control limits were symmetric about zero, the control width was smaller at BWD 0.3175, and
the standard deviation was smaller at BWD 0.0529, which meant that BWD exhibited better sensitivity to small
shifts in the process it monitored. This is an indication, as a whole, that procedures based on Bayesian theory
present better control performance with smaller control limits and less variability.

Table 9. Control Chart Parameters for Newborns’ Body Temperature

Chart UCL LCL Target Sigma CLW

Classical 37.4110 36.5690 36.9900 0.1403 0.8421
Bayesian 37.2134 36.7107 36.9621 0.0838 0.5027
CWA 37.3367 36.6433 36.9900 0.1156 0.6933
BWA 37.1569 36.7672 36.9621 0.0650 0.3897
CWD 0.2390 -0.2390 0.0000 0.0797 0.4779
BWD 0.1743 -0.1432 0.0155 0.0529 0.3175
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Figure 10. CWD and BW Charts for Body Temperatures of Newborns (Phase II).

5. Conclusion

It was concluded from simulation experiments that:

1. This study successfully compared classical and Bayesian control charts for monitoring the process mean,
utilizing wavelet-based methods for both the approximation and detail sub-bands.

2. Bayesian control charts were generally more efficient as they resulted in narrower control limits, lower estimates
of process variability, and higher sensitivity to the identification of small and medium mean shifts in the process.
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3. The integration of wavelet decomposition notably improved the detection capability of both classical and
Bayesian control charts, particularly in the detail domain where high-frequency process variations are captured.

4. Among the evaluated charts, the Bayesian Wavelet Approximation (BWA) and Bayesian Wavelet Detail (BWD)
charts exhibited the smallest control limit widths, the most desirable Average Run Length (ARL) values, enhancing
their practicality for high-precision monitoring.

5. The strength of prior information in Bayesian charts significantly affected performance; strong informative priors
resulted in better detection ability and more stable ARL values, non-informative priors made Bayesian performance
converge with classical charts and confirmed the flexibility of the Bayesian framework.

From the practical application of the data, the following conclusions were drawn:

1. The wavelet-enhanced control charts, particularly the Bayesian-based BWA and BWD charts, demonstrated
superior performance compared to classical Shewhart and standard Bayesian charts.

2. The Bayesian wavelet charts showed reduced variability and tighter control limits, reflecting higher precision in
monitoring newborn body temperatures.

3. The wavelet-enhanced charts were more sensitive to minor shifts in the monitored process, crucial for early
detection in neonatal healthcare.

4. The Bayesian approach, incorporating prior information and updating with each new observation, significantly
improved monitoring accuracy.

5. The study underscores the importance of advanced control chart methods in neonatal care, where early
identification of temperature deviations is vital to patient health.

6. Recommendations

1. The findings recommend the Bayesian wavelet-based approach as a reliable and efficient method for modern
process control, especially where quick and accurate detection of subtle process changes is critical.

2. Future extensions could involve applying this hybrid control charting methodology to multivariate processes,
incorporating robust estimation techniques, and exploring real-life healthcare and industrial applications.
Appendix

Table 10. Body Temperatures of Newborn Infants for Phase I

Sample X; Xo X3 X4 X5 Mean S.D.

1 36.60 37.20 36.80 37.30 36.70 36.92 0.2598
2 37.00 36.90 37.10 36.60 37.10 36.94 0.2062
3 36.90 36.90 36.80 36.50 36.80 36.78 0.1732
4 37.20 36.60 36.80 37.50 36.60 36.94 0.3811
5 37.10 37.00 37.50 36.80 36.90 37.06 0.2640
6 36.60 36.80 37.20 37.00 36.80 36.88 0.2291
7 37.30 37.20 36.90 36.70 37.50 37.12 0.3202
8 37.20 37.40 37.00 37.50 37.10 37.24 0.1924
9 37.40 37.50 37.40 36.70 36.80 37.16 0.3753
10 36.70 37.50 36.70 36.80 37.40 37.02 0.3429
11 37.10 37.50 36.70 36.60 37.20 37.02 0.3640
12 37.50 36.90 36.60 36.60 37.30 36.98 0.3821
13 37.40 36.90 36.60 36.50 37.40 36.96 0.3997
14 36.70 36.70 37.20 37.00 36.80 36.88 0.2082
15 36.70 37.50 37.20 37.50 37.10 37.20 0.3420
16 37.30 36.90 36.70 37.40 36.70 37.00 0.3197
17 37.10 37.20 36.60 37.00 36.60 36.90 0.2784
18 37.40 36.80 36.60 36.70 36.60 36.82 0.3162
19 37.20 36.60 36.90 37.30 37.20 37.04 0.2625
20 37.30 36.90 36.60 37.40 36.50 36.94 0.3708
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Table 11. Body Temperatures of Newborn Infants for Phase II

Sample X1 X2 X3 X4 X5 Mean S.D.

1 37.10 37.00 37.50 36.80 36.90 37.06 0.2772
2 37.30 37.20 36.90 36.70 37.50 37.12 0.2799
3 37.40 37.50 37.40 36.70 36.80 37.16 0.2753
4 37.10 37.50 36.70 36.60 37.20 37.02 0.2890
5 37.40 36.90 36.60 36.50 37.40 36.96 0.3266
6 36.70 37.50 37.20 37.50 37.10 37.20 0.2857
7 37.10 37.20 36.60 37.00 36.60 36.90 0.2692
8 37.20 36.60 36.90 37.30 37.20 37.04 0.2772
9 37.00 36.90 37.10 36.60 37.10 36.94 0.2048
10 37.20 36.60 36.80 37.50 36.60 36.94 0.3266
11 36.60 36.80 37.20 37.00 36.80 36.88 0.2332
12 37.20 37.40 37.00 37.50 37.10 37.24 0.2184
13 36.70 37.50 36.70 36.80 37.40 37.02 0.2704
14 37.50 36.90 36.60 36.60 37.30 36.98 0.2904
15 36.70 36.70 37.20 37.00 36.80 36.88 0.1976
16 37.30 36.90 36.70 37.40 36.70 37.00 0.2704
17 37.40 36.80 36.60 36.70 36.60 36.82 0.2801
18 37.30 36.90 36.60 37.40 36.50 36.94 0.3023
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