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Abstract In the context of aviation, forced landings are unwanted events that can happen to an aircraft during its flight
trajectory. They can be due engine malfunctions, adverse weather conditions and other sudden situations. For this reason, and
to ensure passengers’ safety, it is imperative to develop methods and procedures to detect potential sites that can be used as
emergency landing areas during these crisis situations. Traditionally, pilots use visual indicators to detect such landing sites,
this ability can varry from a pilot to another depending on experience, aircraft altitude and other environmental conditions.
Such circumstances can make this visual detection task highly difficult.

Image segmentation is one of the possible solutions that can be implemented in identifying potential emergency landing sites
for aircraft. Precise segmentation should improve on the effective identification of safe landing areas, thereby enhancing
aviation safety protocols in general.

In this context, the traditional U-Net [12] architecture has shown exceptional results regarding segmentation tasks. However,
a new approach derived from U-Net and incorporating transformers [13, 4] in its encoder, known as TransUNet [3], has
demonstrated promising results, surpassing in some cases those of U-Net.

This study investigates the performance of TransUNet compared to traditional U-Net for aircraft emergency landing site
detection. Both architectures were implemented, trained, and evaluated using our novel dataset tailored for this purpose.
Our work demonstrate that U-Net outperforms TransUNet in terms of accuracy and computational efficiency in this specific
segmentation task. In particular, U-Net exhibited superior performance by improving segmentation precision from 80% up
to 88% in the testing set. Moreover, the mean Intersection-Over-Union, a metric for segmentation accuracy, have also seen
an improvement of 77% for U-Net over 73% for TransUNet. These results emphasise the power of the traditional U-Net
architecture for this critical application, underlying its practical relevance in enhancing aviation safety.

Keywords Vision Transformer, Unet, TransUnet, Emergency Landing Site Detection, Semantic Segmentation.

DOI: 10.19139/s0ic-2310-5070-2753

1. Introduction

The increasing frequency of air travel necessitates robust emergency preparedness to ensure the safety of passengers
and crew. In critical situations, the ability to identify suitable emergency landing sites promptly can significantly
reduce risks. Automating the segmentation of potential emergency aircraft landing sites from aerial imagery allows
for real-time, precise decision-making, minimizing the reliance on manual assessments and enhancing the speed
of response. In this research, we evaluate two leading deep learning architectures, U-Net and TransUnet, both
recognized for their strong performance in image segmentation. Our objective is to compare these models to
determine which is better suited for the critical challenge of accurately identifying safe landing areas across diverse
terrains and under varying environmental conditions.
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This paper first lays the groundwork in Section 2 with a review of relevant literature. We then describe our
experimental design in Section 3, covering the architectures, data, and metrics. We conclude in Section 4 with a
presentation and detailed analysis of our results.

2. Background and Related Work

Classical images have been used in previous works to identify safe landing zones for aircraft and UAVs. Mejias et
al. [11] used a multiclass support vector machine (SVM) approach, while Warren et al. [14] compared the results of
applying a Canny Edge detector to a 2D image with the effect of 3D restoration using the Structure-from-Motion
method.

Considerable attention has also been paid to UAV landing/crash detection. Kikumoto et al. [9] proposed a method
for safety heat mapping using Convolutional Neural Networks (CNNs) and optical flow analysis. Hinzmann et al.
[6] used Canny edge detector and Random Forest classifier to classify the landscape.

In other ways, Eendebak et al. [5] developed a real-time emergency landing system using background
computation and remote sensing modeling, and Kalzahi et al. [1] used the Gabor Transform and Markov chain
rules to predict potential landing sites.

Recent research has focused on CNN-based semantic segmentation techniques, such as the U-Net architecture
combined with temporary dense connect modules [8] but some methods, such as the UAV crash management
system Safe2Ditch[10], do not rely on image processing techniques but use a pre-determined database of potential
crash sites.

The current methodologies for aircraft emergency landing area detection, particularly for UAVs, face several
significant limitations. Firstly, the focus on single point landing for UAVs constrains the adaptability of emergency
landing procedures, which ideally should consider continuous rectangular shaped landing sites to account for
long landing distances. Secondly, there is a notable absence of a dedicated segmentation dataset specifically for
safe landing areas. This lack hinders the development and fine-tuning of models tailored to accurately identify
and segment potential landing zones in diverse environments. The effectiveness of existing models is often
compromised by their reliance on less relevant training data, hindering their performance in real-world scenarios.
Furthermore, many current approaches overlook the advantages of state-of-the-art segmentation methods, such as
transformer-based models, which have proven superior in other demanding image analysis tasks. This reluctance
to adopt advanced techniques results in models that lack the accuracy and robustness essential for reliability in
critical emergency situations. Addressing these shortcomings is therefore a crucial step toward building safer and
more capable emergency landing systems for UAVs.

This study evaluates the U-Net [12] and TransUNet [3] architectures for segmenting safe landing areas in
aerial imagery. Although both models are prominent in medical imaging, a direct comparison for this application
represents a significant research gap. Our work is motivated by findings in the medical field where TransUNet’s
transformer-based design often gives it a performance edge over U-Net. Therefore, we seek to verify whether this
performance advantage is maintained when these architectures are applied to the complex task of identifying safe
landing zones from above.

3. Proposed Methodology

This section details the methodology we designed to evaluate the selected models. We will first give a brief
introduction of the Unet and TransUnet architectures, then present the dataset that was used for this study and
detail the evaluation metrics that were implemented to evaluate the performance of both models.

3.1. Models

For this study, we have chosen the Unet and TransUnet architectures for multiple reasons. Both models have
demonstrated great potential in various image processing fields. In particular, in medical imaging, the models
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2 U-NET VS TRANSUNET FOR AIRCRAFT EMERGENCY LANDING SITE DETECTION

exhibited exceptional performance. In fact, a previous study [2] compared these models in the context of medical
images and demonstrated the superiority of TransUnet. Through our study, we examine whether this superiority
holds in the task of segmenting emergency aircraft landing areas.

- Unet is a type of convolutional neural network with two main parts: a contracting path and an expansive path.

The contracting path works like a standard convolutional network, gradually shrinking the data. On the other hand,
the expansive path grows the data back up, with each step involving upsampling the feature map and then passing
it through an up-convolution layer.
The U-shaped structure of UNet (see figure 1) comprises a succession of contraction layers followed by expansion
layers, allowing for the progressive capture of features at different spatial scales. The skip connections between
the contraction and expansion layers facilitate the merging of information at different resolutions for precise
segmentation.
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Figure 1. Unet model architecture [12].

- TransUnet blends the strengths of Transformers and U-Net. The Transformer takes image patches from
a convolutional neural network (CNN) feature map, turning them into a sequence to capture global context.
Meanwhile, the decoder expands these encoded features and merges them with high-resolution CNN feature maps
to pinpoint precise locations.
The architecture of TransUnet (see figure 2) follows a hybrid structure, merging vision transformer blocks with
U-Net contraction-expansion blocks, thereby harnessing the power of attention and the detail-capturing capability
of U-Net for precise segmentation at different scales.

3.2. Data description

We used our own dataset [7] of manually annotated images (see sample in figure 3) for the segmentation of
emergency aircraft landing sites to distinguish between two main categories: safe and unsafe landing sites.
Through manual annotation, each image was labeled to identify areas considered safe for emergency landing from
potentially hazardous areas. This large dataset provides invaluable ground truth data for training and evaluating
machine learning models aimed at automatically estimating aircraft landing areas during emergency situations.
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Figure 2. TransUnet model architecture [3].

This dataset contains 4180 images divided into raw google map image and annotation masks. The dataset provides
comprehensive coverage across a diverse range of environments, including urban, rural, forest, grassland, and
mountainous terrains. We acknowledge that the exclusion of snow-covered landscapes represents a limitation of
this study.

Safe to land

Figure 3. Sample of the dataset used [7].

We employed a comprehensive data augmentation strategy to improve model robustness and generalization.
During training, we applied random transformations—including rotations, flips, scaling, and brightness/contrast
adjustments—to simulate diverse, real-world viewing conditions. This process ensures the model learns to
effectively manage the variability inherent in aerial imagery.

3.3. Evaluation metrics

Given the critical safety implications of this task, the choice of evaluation metrics is essential for validating a
model’s effectiveness. Accordingly, we assessed the performance of our segmentation algorithms against ground
truth annotations using the following metrics:

* Mean Intersection over Union (mlIoU) is a standard metric for judging the accuracy of a segmentation
model. It measures how well the predicted segmentation mask (A) overlaps with the actual ground truth

mask (B). Conceptually, it calculates the ratio of the correctly identified area (the intersection of the two
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masks) to the total area covered by both masks combined (their union).

ANB

I —
U=20B

(D

* Dice similarity coefficient (DSC) measures the overlap or similarity between two sets. In the context of
image segmentation it is frequently used when evaluating the similarity of two binary masks, for example a
ground truth mask A and a prediction mask B.

|AN B

DSC =2x ———
|Al + |B|

2

where |.| denotes the cardinality of a set
* Accuracy provides a straightforward measure of how well a model performs in the segmentation task. it
represents the ratio of correctly predicted instances to the total number of instances in the dataset.

TP+ TN
TP+TN+FP+FN

Accuracy = 3)
Where:

TP = True Positives

TN = True Negatives

FP = False Positives

FN = False Negatives

» Precision evaluates the degree to which a model recognizes relevant pixels. It is the proportion of accurately
separated true positive pixels to all pixels that the algorithm recognized as positive including the false
positives. Higher precision means that the method tends to be accurate when it classifies a pixel as associated
with the target class.

TP
Precision = m (4)
* Recall measures a model’s ability to precisely identify all relevant pixels in an image. It is sometimes referred
to as sensitivity or true positive rate. It is the proportion of true positive pixels to all the pixels that make up
the real target object including the false negatives. A higher recall value means that the model returns most
of the relevant results.
TP
Recall = ———— 5

= TPLFN )
« False Positive Ratio (FPR) quantifies the proportion of actual negative cases that are incorrectly classified
as positive. A high FPR means the segmentation model frequently mislabels unsafe areas as safe, which can
be hazardous by suggesting unsuitable landing zones. A low FPR indicates that the model rarely produces

such false alarms, contributing to safer landing site identification.

FpP

FPR= ———
R=5pyTN

(6)

These metrics provide a comprehensive view of segmentation success, enabling a thorough performance analysis
of the two models. By examining recall, precision, accuracy, DSC, IoU and FPR, we can identify the strengths and
weaknesses of Unet and TransUnet in the specific context of emergency aircraft landing area segmentation. This
detailed evaluation helps in understanding not only which model performs better overall but also in what specific
aspects one model may outperform the other.
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4. Experimental results and discussion

4.1. Training

We trained both models using the same dataset, previously introduced, during training we noticed that Unet reachs
the minimum validation loss much faster than TransUnet. This is due to it’s ability to generalize well even with
limited data. Table 1 details the training parameters implemented for both models.

Table 1. Unet and TransUnet training parameters.

Model Unet TransUnet
Number of parameters | 6,667,639 | 91,718,993
Input image size 256x256
Optimizer adam
Learning Rate 0.01
Batch size 8
Max epochs 100

In Figure 4 below, we present the loss history graphs for the training and validation subsets. We observe that
Unet reaches the lowest loss value of 0.26 faster than TransUnet, where the lowest loss value is 0.48. Both models
show signs of overfitting after these points. To mitigate this, we applied TensorFlow’s “save best only” option
in the ModelCheckpoint callback, which stores the model weights corresponding to the lowest validation loss
encountered during training, rather than the final epoch. This approach does not constitute early stopping; instead,
it ensures that evaluation is performed on the model state with the best generalization performance, thus preventing
the degradation caused by overfitting.

Transunet Unet

Figure 4. Training loss for testing and validation subsets.

4.2. Evaluation

To start our analysis, we created confusion matrices for both models, shown in Figure 5 below. These matrices
break down each model’s performance by detailing the counts of true positives, true negatives, false positives, and
false negatives. Looking at these matrices helps us understand what each model does well and where it struggles
in making accurate predictions.

An analysis of the confusion matrices reveals a nuanced, class-dependent performance difference between the
models. The UNet architecture demonstrates a clear and significant advantage in the classification of safe pixels.
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This is evidenced by its higher true positive and true negative rates, which suggests a more robust feature-learning
mechanism for identifying viable landing areas.

Conversely, this superiority does not extend to the detection of unsafe pixels. In this more challenging context,
both models perform comparably, with neither showing a distinct edge. This performance parity suggests that
identifying the complex features associated with hazardous terrain is an inherent difficulty for both architectures.

This analysis underscores the importance of moving beyond global accuracy metrics. While UNet is
demonstrably more reliable for confirming safe zones, the shared struggle to detect unsafe areas highlights a critical
avenue for future research. Understanding these specific strengths and weaknesses is paramount for developing
truly trustworthy systems for safety-critical applications.

1e7 1e7
14 14
12 12
0 1.5e+07 04 1.5e+07
1.0 10
0.8 08
0.6 0.6
1 1
0.4 0.4
0.2
0.2
o 1 0 1

Predicted label Predicted label

True label
True label

Figure 5. Confusion matrices for TransUnet (on the left) and Unet model (on the right).

Then we calculated the metrics’ values for the testing subset for both model, as shown in table 2. While both
gave acceptable results, Unet clearly surpasses TransUnet on all our selected metrics. Given that our dataset is
relatively small, UNet perform better because of its ability to generalize well with less information. UNet’s superior
performance may be explained by TransUNet’s incorporation of transformer-based attention mechanisms, which
aren’t always necessary or beneficial, especially for tasks with simple structures or limited spatial dependencies.
For these kind of tasks, UNet’s architecture which relies on skip connections and feature concatenation seems more
adequate.

Table 2. Evaluation metrics measurement for Unet and TransUnet.

Model Unet TransUnet
Accuracy | 90.66% 90.29%
Precision | 83.64% 82.38%

Recall 87.27% 87.00%

mloU 80.84% 80.27%

DSC 85.41% 85.00%
FPR 7.79% 8.56%

In addition to segmentation accuracy, we evaluated the inference time of both models to assess their suitability
for real-time and embedded applications. The results indicate that U-Net achieves an average inference time of
3 ms per image, compared to 26 ms per image for TransUNet, demonstrating significantly lower latency. This
improvement can be explained by U-Net’s smaller parameter count and reduced computational complexity, which
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make it more efficient for deployment on resource-constrained platforms. While training time and hardware-
specific optimizations were not the focus of this study, they represent important avenues for future investigation to
further assess operational feasibility.

4.3. Results

Finally, we present some test examples for segmentation using both models. These examples further confirm that
UNet is the best candidate for detecting the safe landing zones. In fact, UNet is better at predicting borderline
cases that may lead dangerous situations if they are marked as safe. In the last example of Figure 6, TransUNet
detected an unsafe area as safe, which does not align with the ground truth. This could be very dangerous in real-life
scenarios. However, UNet accurately segmented this boundary as unsafe for landing.

Image Ground truth  TransUnet Unet

Figure 6. Examples of testing images and models’ prediction.

4.4. Adverse Weather Simulation Results

To evaluate robustness, we tested both architectures under light fog, heavy fog, and rain simulations, conditions
that commonly degrade visibility in real-world flight scenarios. The adverse conditions were generated using the
publicly available framework by Yang [15], which provides realistic weather overlays for computer vision tasks.
Both models experienced a notable performance drop compared to clear-weather data. For U-Net, mloU decreased
from 79.28% (raw) to 61.26% in light fog, 13.55% in heavy fog, and 18.38% in rain, with accuracy falling to
76.24%, 25.37%, and 32.87%, respectively. U-Net’s recall remained relatively high at 96.13% (light fog), 65.40%
(heavy fog), and 80.15% (rain), but false positive ratios increased significantly to 33.82%, 94.88%, and 91.05%,
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8 U-NET VS TRANSUNET FOR AIRCRAFT EMERGENCY LANDING SITE DETECTION

respectively. TransUNet followed a similar trend, with mloU dropping from 80.20% (raw) to 56.42% in light fog,
16.83% in heavy fog, and 16.90% in rain, with accuracies of 72.24%, 33.63%, and 33.70%, respectively. TransUNet
maintained near-perfect recall (97.66% in light fog, 99.99% in heavy fog, and 99.96% in rain) but at the cost of
extremely high false positive ratios (40.63%, 99.94%, and 99.82%, respectively), making its predictions unsafe for
operational use. U-Net, while also affected, showed a more balanced trade-off across all conditions.

To visually illustrate these findings, we present Figure X, which shows representative examples from the testing
dataset under light fog, heavy fog, and rain simulations. Each row displays the raw image, its weather-simulated
counterpart, and the corresponding segmentation outputs from U-Net and TransUNet. Under all conditions,
TransUNet tends to over-segment safe areas, frequently misclassifying unsafe regions as safe, particularly in heavy
fog and rain. U-Net, despite reduced accuracy, demonstrates more conservative and reliable predictions across
all weather conditions. These qualitative results reinforce the quantitative findings, highlighting the significant
vulnerability of both models to weather artifacts, with U-Net exhibiting comparatively more robust behavior,
especially in light fog.

5. Conclusion

While our results indicate that U-Net currently outperforms TransUNet in segmenting emergency aircraft landing
sites, transformer-based architectures still hold significant potential for more complex or large-scale scenarios. U-
Net’s encoder-decoder structure effectively captures the fine-grained spatial details necessary for identifying safe
landing zones. TransUNet’s underperformance in our study may be attributed to factors such as limited pretraining
and insufficient data for fully leveraging attention mechanisms. We also note that aircraft-specific constraints,
such as minimum runway length, slope, and obstacle presence, were not incorporated in the current evaluation,
representing a limitation of this study. Future work should explore enhanced pretraining, larger and more diverse
datasets, multi-modal inputs, and real-time optimization to unlock the full capabilities of transformer-based models
for emergency landing site detection. The conclusion has been adjusted in the revised manuscript to reflect these
nuances. Future work could explore the integration of advanced transformer models, multi-modal data, and real-
time optimization techniques to enhance segmentation accuracy and deployability for emergency landing site
detection.
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