
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–19.
Published online in International Academic Press (www.IAPress.org)

An Extended Grendel approach applied to blockchain signature as an
alternative to Keccak permutation

Abdelkarim LKOAIZA 1,*, Seddik ABDELALIM 1, Asmaa CHERKAOUI 1, Ilias ELMOUKI 2

1 Laboratory of Mathematical Analysis, Algebra and Applications (LAM2A), Faculty of Sciences Ain Chock (FSAC),
University Hassan II of Casablanca, Casablanca, Morocco.

2 MoNum, EHTP, Casablanca, Morocco

Abstract In this paper, we present our own developed programming which helps to generate a sponge-based function
while avoiding any call from hashing libraries. Then, we try to implement it in a blockchain signature by getting inspired
from Keccak methods such as the recently inextinguishable Secure Hash Algorithm 3 (SHA-3) , but before this, we note
that our main contribution here, is about introducing the Grendel permutation instead of the Keccak one as they both rely
on sponge-based procedures, but the shuffling step is different. In fact, even our Legendre symbol considered here, extends
the Euler criterion that is restricted to prime field, to the cases of the group of invertible elements Z/pqZ. To the best of our
knowledge, this is the first time that such an approach is used in blockchain signature.

Keywords Grendel hashing, Blockchain signature, Keccak family, Quadratic reciprocity, Rescue-prime, Sponge function.

AMS 2010 subject classifications 94A60, 68M25, 68P25

DOI: 10.19139/soic-2310-5070-2755

1. Introduction

The iterative sponge construction method and permutation functions used by the Keccak family play a crucial
role in converting inputs into output values of constant size, forming the fundamental basis of this construction
[4]. Contrary to the conventional Keccak methodology, we suggest adopting a new technique called the Grendel
permutation [13]. This innovative strategy incorporates arithmetization [10] as basic gates in the design of
encryption, specifically designed for application in cryptographic proof systems [14]. The integration of this
permutation strategy represents a variant of arithmetization, leveraging mathematical frameworks to enhance
cryptographic protocols and strengthen their resistance to potential attacks. By introducing the Grendel permutation
as an alternative to the traditional Keccak approach, we aim to explore new avenues in encryption design
that may improve the security and efficiency of cryptographic systems. This evolution towards arithmetization-
based techniques highlights a paradigm shift in cryptographic research, emphasizing the importance of utilizing
mathematical structures to advance the field and address emerging security challenges.

∗Correspondence to: Abdelkarim Lkoaiza (Email: karimlkoaiza6@gmail.com). Laboratory of Mathematical Analysis, Algebra and
Applications (LAM2A), Faculty of Sciences Ain Chock (FSAC), University Hassan II of Casablanca, Casablanca, Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 1

2. Blockchain

Blockchain is an innovative technology for creating and utilizing a distributed ledger. Data is recorded on a
decentralized node called a block. No third party is required to use this technology, which improves its reliability
[8]. While blockchain represents a database or a new way of organizing data, its method of processing differs from
centralized systems, it is an electronic recording system. It enables the processing and recording of transactions,
allowing all parties to track information through a secure network. Its key characteristics include decentralization,
it does not belong to any single entity but rather is owned by its users. It is also open-source and offers high levels
of security and protection, as it is nearly impossible to penetrate the system [9]. Blockchain provides its users with
a great degree of confidentiality and privacy protection, users are represented by encrypted codes, which prevents
the identification of other users personal data [15].

2.1. Blockchain architecture

In a decentralized blockchain, a node creates a transaction using an electronic signature with a private key. These
transactions are collected and broadcasted across the network for validation by peers, who check for sufficient
balance and the absence of double spending [5]. Validated transactions are grouped into blocks, verified through
a consensus mechanism, and then added to the chain. Each new block connects to the previous ones, updating the
copies held by all network participants. The process heavily relies on hash functions to ensure data integrity and
security.

2.2. Secure blockchain hashing

Blockchain technology relies on robust algorithms such as SHA-1, SHA-2, SHA-256, and SHA-3 to ensure
security and reliability [1]. Our innovative approach draws inspiration from the permutation function used in the
sponges of the Rescue-prime family [14], integrating the arithmetic on rings of invertible elements over Zpq,
while remaining faithful to the overall framework of sponges seen in SHA-3 of the Keccak family[10]. Our
main contribution focuses on the mixing step, given the similarities between sponge functions in both families.
By introducing a new sponge function that incorporates the Modified Grendel permutation [13], our goal is to
provide a secure and optimized solution for validating blocks and digitally signing transactions within the realm
of blockchain technology. Leveraging the properties of the Legendre symbol Lpq, this function is meticulously
designed to enhance security measures and deliver efficient performance, akin to the advancements brought about
by SHA-3 within the Keccak family. This innovative approach promises to strengthen security and operational
efficiency within blockchain technology, thus paving the way for revolutionary advancements in the field.

The algorithm used to generate the hash must have the following properties [6]:

• Deterministic: The Grendel hash function always produces the same output for the same input, ensuring
consistency and predictability.

• Fast computation: The Grendel hash function is designed to be computed quickly, ensuring efficiency in its
use.

• Resistance to preimage attacks: It is difficult to retrieve the original input from the resulting hash, ensuring
data integrity.

• Hash change with small input modification: Even slight changes in the input result in significant changes
in the resulting hash, ensuring sensitivity to modifications.

• Collision resistance: The probability of two different inputs producing the same hash is very low, ensuring
hash uniqueness.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

2 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

• Non-modifiability of hashes: Hashes generated by the Grendel hash function cannot be modified once
calculated, ensuring their integrity and authenticity.

• No correlation between input and output bits: Input bits are not directly linked to output bits of the hash,
making it difficult to deduce the input from the output.

• Random behavior: The Grendel hash function incorporates elements of random behavior, rendering any
attempt to predict the output associated with a given input futile.

3. Grendel sponge construction

The sponge construction is a framework for specifying functions on binary data with arbitrary output length [3]. It
employs three main components: the Grendel permutation, the Grendel sponge, and the Grendel hash. Internally,
the Grendel hash function utilizes the Grendel sponge as illustrated in Figure 1, with a fixed output length. The
absorbing and squeezing phases will be explained thereafter in subsection of the Grendel Hashing. Additionally, a
padding rule may be applied to the input. If the input length is fixed by the context, no padding rule is necessary.
However, if the input length is variable, it is padded as follows: a single 1 bit is appended first, followed by zero
padding until the input length is a multiple of the padding rate denoted by r.

Figure 1. Grendel sponge steps

3.1. Lpq symbol

We propose a new S-box design specifically crafted for arithmetic-oriented ciphers, incorporating the Lpq symbol
as a key element. An in-depth analysis is conducted on the differential and algebraic characteristics intrinsic to
this particular implementation. Considering prime numbers represented as p, q = 3 mod 4, and an integer a ∈ Z
that is not divisible by either p or q. By invoking Bezout’s theorem, it is established that there exist u, v such that
up+ vq = 1. The Lpq notation is formally introduced as part of this discussion. In fact, Lpq is defined by:

Lpq(a) = a
(p−1)(q−1)

4 =


1 if a has a square root mod p and q ,

vq − up if a has a square root mod p and does not have a square root mod q,

up− vq if a has a square root mod q and does not have a square root mod p,

−1 if a does not have a square root mod p and q ,

(1)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 3

We could observe that the Legendre symbol considered here, extends the Euler criterion, by adding the cases when
a has either a square root mod p while not having a square root mod q, or when a has a square root mod q while
not having a square root mod p.

3.2. Extended Grendel permutation

We note that no Grendel approach has been applied to blockchain digital signature. This is to say that the word
extended concerns the explanation stated just above. The extended Grendel permutation is carried out as follows:
Substitution: Every element within the list undergoes replacement with a novel numerical value based on a
prescribed rule.
Permutation: The components of the list undergo rearrangement in a particular sequence utilizing a method of
matrix multiplication.
Injection of round constants: Throughout each cycle of the permutation process, distinctive numerical values are
incorporated to strengthen the security measures.

1 Algorithm 1.
2

3 def Extended_Grendel _Permutation(a):
4 for i=0 to n-1 do:
5 for j=0 to m-1 do:
6 x_j =x_jˆr*L_pq(x_j)
7 y=M_1x
8 z=M_2x
9 for j=0 to m-1 do:

10 x_j = z_j*u*p + y_j*v*q
11 for j=0 to m-1 do:
12 x_j=x_j+C_{im+j}
13 return x

Grendel permutation applied to x ∈ U(Zpq)
m

The pseudocode of Algorithm 1 formally describes this operation as it mutates a registered x in place.

Figure 2. Grendel permutation steps. MDS: Diffusion Matrix

Figure 2 illustrates a single-round diagram for the specific case where m = 3.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

4 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

3.3. Construction and Verification of an MDS Linear Layer

Setting and notation. Let p be a prime number, Fp the finite field of order p, and g ∈ F∗
p a primitive element. Fix

m ≥ 1 such that 2m ≤ p− 1, and set

αj := gj (0 ≤ j ≤ 2m− 1), Vi,j := (αj)
i (0 ≤ i ≤ m− 1, 0 ≤ j ≤ 2m− 1).

In other words, V ∈ Fm×2m
p is a Vandermonde matrix evaluated at the 2m pairwise distinct points 1, g, . . . , g2m−1.

Proposition 3.1. For every subset J = {j1 < · · · < jm} ⊂ {0, . . . , 2m− 1}, the submatrix V [:, J] is invertible. In
particular, V has rank m and generates a Reed–Solomon [2m,m] code over Fp, hence it is MDS.

Proof
The submatrix V [:, J] is a square Vandermonde matrix of size m on the nodes αj1 , . . . , αjm , which are pairwise
distinct because g is primitive and 2m ≤ p− 1. Its determinant is

det(V [:, J]) =
∏

1≤a<b≤m

(αjb − αja) ̸= 0 in Fp,

hence V [:, J] is invertible. Since every choice of m columns is independent, the code generated by the rows of V
is a Reed–Solomon [2m,m] code, thus MDS.

Proposition 3.2. There exists a matrix U ∈ GLm(Fp) such that

U V = [Im | M],

where M ∈ Fm×m
p . Consequently, [Im | M] is MDS, and every square submatrix of M is invertible.

Proof

Write V = [A |B] where A := V [:, 0:m] ∈ Fm×m
p and B := V [:,m :2m] ∈ Fm×m

p . By Proposition 3.1, A is
invertible. Set U := A−1 and M := A−1B. Then

UV = [Im |M].

Left multiplication by U ∈ GLm(Fp) preserves column independence, hence [Im |M] is MDS.

Remark. In particular, for any 1 ≤ r ≤ m, every r × r square submatrix of M is nonsingular: pick those r

columns in M and complete them with m− r columns from Im; since [Im |M] is MDS, any m columns are
independent, hence the corresponding r × r minor is nonzero.

Lemma 3.3. For the linear layer ℓ(u) = (u,Mu) over Fm
p , if the m× 2m matrix [Im |M] generates an MDS code

(hence an [2m,m] code with minimum distance dmin = m+ 1), then

B(M) = min
u̸=0

(
wt(u) + wt(Mu)

)
= m+ 1.

Proof

Every vector of the form (u, uM) with u ̸= 0 is a nonzero codeword of the linear code generated by
[Im |M]. Since this code is MDS with parameters [2m,m], its minimum distance is dmin = 2m−m+ 1 = m+ 1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 5

Therefore, for all u ̸= 0,

wt(u) + wt(uM) = wt
(
(u, uM)

)
≥ dmin = m+ 1,

so B(M) ≥ m+ 1. By the definition of dmin, there exists u⋆ ̸= 0 such that wt
(
(u⋆, u⋆M)

)
= dmin = m+ 1, hence

B(M) ≤ m+ 1. Combining both inequalities yields B(M) = m+ 1.

Under the assumption 2m ≤ p− 1 and g is primitive, Algorithm 2 returns a matrix M ∈ Fm×m
p such that

[Im | M] is a systematic generator of a Reed–Solomon [2m,m] code over Fp (hence MDS) [7], and the associated
linear layer ℓ(x) = (x,Mx) achieves a branch number B(M) = m+ 1.

1 Algorithm 2.
2

3 def get_mds_matrix(p, m):
4 assert 2*m <= p-1
5 Fp = FiniteField(p)
6 g = Fp(2)
7 while g.multiplicative_order() != p - 1:
8 g = g + 1
9 V = matrix([[gˆ(i*j) for j in range(0, 2*m)] for i in range(0, m)])

10 V_ech = V.echelon_form()
11 MDS = V_ech[:, m:].transpose()
12 return MDS

3.4. Round constants

The round constants are generated deterministically by expanding a short seed phrase using SHAKE256.
This method ensures a nothing-up-my-sleeve construction and prevents the intentional introduction of hidden
weaknesses, assuming SHAKE256 is secure.

Specifically, we start from the string: "Grendel-Modified-%i-%i-%i-%i" where the parameters
p, q,m, λ replace the placeholders. SHAKE256 expands this string into a stream of nm×

(
1 +

⌈
log2(pq)

8

⌉)
bytes.

Each block of w = 1 +
⌈
log2(pq)

8

⌉
bytes is interpreted in big-endian order, then reduced modulo pq to obtain the

corresponding round constant.

1 Algorithm 3.
2

3 def get_round_constants(p, q, m, n, lam):
4 w = 1 + math.ceil(math.log2(p*q) / 8)
5 seed = f"Grendel-Modified-{p}-{q}-{m}-{lam}"
6 shake = hashlib.shake_256(seed.encode())
7 out_len = n * m * w
8 buf = shake.digest(out_len)
9 C = []

10 for i in range(n * m):
11 acc = 0
12 off = i * w
13 for b in buf[off:off + w]:
14 acc = (acc << 8) | b
15 x = acc % pq
16 C.append(x)
17 return C # Index: k = i*m + j

Stat., Optim. Inf. Comput. Vol. x, Month 202x

6 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

3.5. Grendel hash

In practical implementations, the output is always truncated to a specified number of elements, with the output
length provided as an argument to the function. The evaluation of the sponge function on a computer involves
two phases: absorbing and squeezing as also introduced in Algorithm 4. Functions like Keccak (used in SHA-3)
and Grendel hashing utilize these steps internally. In the absorbing phase, a chunk of r elements from the input is
added to the top, r elements of the state, followed by applying the permutation to the entire state. In the squeezing
phase, the top r elements of the state are appended to the output, and the permutation is applied to the entire
state again. This process repeats until the output buffer accumulates the required number of elements specified
by the output length, after which the result is returned and the algorithm terminates. The Grendel hash function
employs the Grendel sponge internally, with a fixed output length. Additionally, an input padding mechanism
may be applied. Specifically, if the input length is predetermined within the context, no padding rule is necessary.
However, for variable input lengths, padding follows this protocol: appending a single 1 initially, then padding
with zeros until the input length becomes a multiple of r.

1 Algorithm 4
2

3 def Extended_Grendel_sponge(m,len_output):
4 satate=(0,...,0)
5 ### absorbing
6 for i=0 to [len(m)/r] do:
7 for j=0 to min(r,len(m)-ir)do:
8 state_j =state_j+m_{ir+j}
9 state=Extended_Grendel_Permutation(state)

10 ### squeezing
11 output="" ### empty string
12 for i=0 to [len_output/r] do:
13 for j=0 to min(r,len_output-ir)do:
14 output = output + state_j
15 state=Extended_Grendel_Permutation(state)
16 return(output)

The extended Grendel hash function in Algorithm 5, incorporates the extended Grendel sponge internally.
Furthermore, a padding scheme may be implemented on the input data: initially, add a solitary 1, followed by
the addition of zeros to extend the input length to a factor of r. The subsequent algorithm delineates this process in
a structured manner

1 Algorithm 5
2

3 def Grendel_Modified _Hash(m):
4

5 if padding do:
6 m=m+1
7 while len(m)!= r do :
8 m=m+0
9 output=Grendel_Modified_sponge(m,len_output)

10 return(output)

4. Mathematical results

Lemma 4.1. Let p and q be two prime numbers. An integer a is a quadratic residue in U(Z/pqZ) if and only if a
is a quadratic residue in Z/pZ and in Z/qZ.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 7

Proof
⇒ Let a be a quadratic residue in U(Z/pqZ). Then there exists b ∈ U(Z/pqZ) such that a = b2. This implies that
pq | (b2 − a), so we can write b2 − a = k · pq for some integer k.

In particular, we have:
b2 − a = k · pq

which implies:
p | (b2 − a) and q | (b2 − a).

Thus, a is a quadratic residue in Z/pZ and Z/qZ.
⇐ Conversely, suppose that a is a quadratic residue in Z/pZ and Z/qZ for distinct prime numbers p and q. Then,

there exist b1 and b2 such that: {
a ≡ b21 (mod p)

a ≡ b22 (mod q).

By the Chinese Remainder Theorem, there exists t ∈ U(Z/pqZ) such that:

{
t ≡ b1 (mod p)

t ≡ b2 (mod q)
Thus, we have :

{
a ≡ t2 (mod p)

a ≡ t2 (mod q)

This implies:
p | (a− t2) and q | (a− t2).

Therefore, the least common multiple of p and q divides a− t2, i.e.:

pq | (a− t2).

Hence, a is a quadratic residue in U(Z/pqZ).

Lemma 4.2. Let p and q be two prime numbers strictly superior than 2. The following result is verified:
1- For all a ∈ U(Z/pqZ), a

(p−1)(q−1)
2 ≡ 1 (mod pq).

2- The cardinality of the quadratic residues in U(Z/pqZ) is equal to (p−1)(q−1)
4 .

Proof
1- Since a is invertible in Z/pqZ, it follows that a is relatively prime to both p and q. Therefore, a ̸= 0 (mod p)

and a ̸= 0 (mod q). Consequently, we have:{
a(p−1)/2 ≡ ±1 (mod p)

a(q−1)/2 ≡ ±1 (mod q).

From these congruences, we can deduce:{
a

(p−1)(q−1)
2 ≡ (±1)(q−1) ≡ 1 (mod p)

a
(p−1)(q−1)

2 ≡ (±1)(q−1) ≡ 1 (mod q)..

Therefore: {
p | a

(p−1)(q−1)
2 − 1

q | a
(p−1)(q−1)

2 − 1
Thus, we have: pq | a

(p−1)(q−1)
2 − 1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

8 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

In conclusion:

a
(p−1)(q−1)

2 ≡ 1 (mod pq).

2- According to the Chinese Remainder Theorem, U(Z/pqZ) is isomorphic to U(Z/pZ)× U(Z/qZ). An
element a ̸= 0 in U(Z/pqZ) is a square if and only if it is a square in Z/pZ and Z/qZ.
We have the number of squares in Z/pZ is p−1

2 and in Z/qZ is q−1
2 . Therefore, the number of squares in U(Z/pqZ)

is (p−1)
2 · (q−1)

2 = (p−1)(q−1)
4 .

Proposition 4.3. Let p and q be two prime numbers congruent to 3 modulo 4. There exists a b ∈ U(Z/pqZ) such
that a = b2 if and only if a

(p−1)(q−1)
4 ≡ 1 (mod pq). Moreover, there exist Bezout coefficients u and v such that

up+ vq = 1. Then, we get (1).

Proof
⇒ We have a = b2, thus a(p−1)(q−1)/4 = b(p−1)(q−1)/2 = 1 according to a 4.2.
⇐ We have a(p−1)(q−1)/2 = 1, then a(p−1)(q−1)/4 = 1 is a root of the equation x2 = 1 mod pq. Hence, we have 4
cases. {

x = 1 mod p

x = 1 mod q
⇒ x = 1 mod pq

{
x = 1 mod p

x = −1 mod q
⇒ x = vq − up mod pq

{
x = −1 mod p

x = 1 mod q
⇒ x = up− vq mod pq

{
x = −1 mod p

x = −1 mod q
⇒ x = −1 mod pq

Lemma 4.4. Let p and q be prime numbers congruent to 3 modulo 4, and let u and v be the Bezout coefficients
such that up+ vq = 1. Consider the set H = {1,−1,−up+ vq, up− vq} ⊆ U(Z/pqZ).
We claim that H is a subgroup of U(Z/pqZ). Moreover, the map f : U(Z/pqZ) → {1,−1,−up+ vq, up− vq}
defined by f(a) = a

(p−1)(q−1)
4 is a group homomorphism.

Proof
Given that up+ vq = 1, it follows that up = 1− vq. Squaring both sides, we get:
(up)

2
= up− (vq)up mod pq = up. Therefore, (up)2 = up. Similarly, we have (vq)

2
= vq.

We now show that {1,−1,−up+ vq, up− vq} is a subgroup of U(Z/pqZ) by using the observation that this set is
closed under multiplication and that each element is its own inverse.
Moreover, f(xy) = (xy)

(p−1)(q−1)
4 = x

(p−1)(q−1)
4 y

(p−1)(q−1)
4 = f(x)f(y) .

5. Security of the Lpq symbols

Statistical attacks, such as linear and differential cryptanalysis, analyze the non-random propagation of patterns in
the values processed by a cipher. These patterns may manifest as linear relations or differential relations between
internal variables, which can be exploited to distinguish the cipher from a random permutation. To quantify a
function’s resistance to such attacks, two standard metrics are used: the maximum expected linear probability
(MELP) and the maximum expected differential probability (MEDP). These measures respectively express the
highest expected probability that a given linear or differential approximation holds, averaged over all possible
keys.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 9

In our setting, we study the security of the symbol Lpq, with p and q two prime numbers congruent to 3 mod 4.
By applying our analysis to linear approximations, we establish an analytical bound for the MELP associated
with Lpq. This result quantifies the maximum probability with which a given linear approximation can hold, thus
providing a direct measure of the resistance of Lpq to linear cryptanalysis.

Theorem 5.1. Let p, q be two prime numbers ≡ 3 (mod 4), and u, v such that up+ vq = 1, then:

MELPLpq
= max

a,b,c
E [Px [a · x+ b · (Lpq(x)) = c]]

MELPLpq
=

1

4
− p+ q − 1

4pq

Proof

We first show that the MELP reaches its maximum value when a = 0.
Let the function f(x) = ax+ b · Lpq(x). We have:

f(x) = ax+ b · Lpq(x) = c ⇒ Lpq(x) =
c− ax

b
∈ {1,−1, vq − up, up− vq}

This expression attains its maximum when a = 0.

In this case, we simply have:

b · Lpq(x) = c ⇒ Lpq(x) =
c

b
∈ {1,−1, vq − up, up− vq}

Since x is chosen uniformly at random from U(Zpq), for any α ∈ {1,−1, vq − up, up− vq}, we have:

|{x ∈ U(Zpq) | Lpq(x) = α}| = (p− 1)(q − 1)

4
(see 4.2)

Therefore, the probability is:

Px∈Zpq
[Lpq(x) = α] =

(p− 1)(q − 1)

4pq
=

1

4
− p+ q − 1

4pq

Similarly, we analyze the differential resistance of the symbol Lpq by computing the MEDP, which measures the
maximum probability that a given input difference produces a specific output difference. By adapting the structure
of our MELP proof to the differential setting, we derive an exact expression for the MEDP of Lpq. This result
complements our statistical analysis, allowing us to simultaneously characterize the security of Lpq against the two
primary types of statistical attacks: linear and differential cryptanalysis.

Theorem 5.2. Let p, q be two prime numbers such that p ≡ q ≡ 3 (mod 4), and let u, v be integers such that
up+ vq = 1, then:

MEDPLpq
= max

∆x,∆y
E [Px [Lpq(x+∆x)− Lpq(x) = ∆y]] .

MEDPLpq =
1

4
− p+ q − 1

4pq
.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

10 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

Proof

For all x, the value Lpq(x) belongs to the set

V = {−1, 1, vq − up, up− vq}.

Since Lpq(x) and Lpq(x+∆x) are independent and uniformly distributed over V , the possible values of

∆y = Lpq(x+∆x)− Lpq(x)

are
V ′ = {0,±2,±2up,±2vq,±(u− v)(p+ q)}.

For each δ ∈ V ′, we define
Nδ =

∣∣{(a, b) ∈ V 2 | b− a = δ}
∣∣ .

We then obtain:

• For δ = 0, the possible pairs are (1, 1), (−1,−1), (vq − up, vq − up), (up− vq, up− vq), hence N0 = 4.
• For δ = ±2, the pairs are (−1, 1) and (1,−1), hence N2 = N−2 = 1.
• For δ = ±2up: {

2up : (−1, up− vq), (vq − up, 1),

−2up : (1, vq − up), (up− vq,−1),

hence N2up = N−2up = 2.
• For δ = ±2vq: {

2vq : (−1, vq − up), (up− vq, 1),

−2vq : (vq − up,−1), (1, up− vq),

hence N2vq = N−2vq = 2.
• For δ = ±(u− v)(p+ q), we have (vq − up, up− vq) and (up− vq, vq − up), hence N(u−v)(p+q) =

N−(u−v)(p+q) = 1.

Since x is sampled from Zpq and non-units do not contribute, we multiply by the proportion of units (p−1)(q−1)
pq .

Thus:

P[Lpq(x+∆x)− Lpq(x) = δ] =
(p− 1)(q − 1)

pq
· Nδ

16
.

The maximum value is reached for ∆y = 0 since N0 = 4. Therefore:

MEDP(Lpq) =
(p− 1)(q − 1)

pq
· 4

16
=

(p− 1)(q − 1)

4pq
=

1

4
− p+ q − 1

4pq
.

6. Security of the S-Box Function

This section establishes explicit formulas for the linearity probability (MELP) and the differential probability
(MEDP) of f(x) = xdLpq(x), under the assumptions p, q ≡ 3 (mod 4) and gcd(d, (p− 1)(q − 1)) = 1.
Leveraging the Chinese Remainder Theorem (CRT) factorization of (Z/pqZ)× and a zero-counting argument via

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 11

the Schwartz–Zippel lemma over F×
p and F×

q , we obtain

MELPf =
4d2

(p− 1)(q − 1)
and MEDPf =

(4d− 2)2

(p− 1)(q − 1)
.

These formulas make explicit the dependence on d and on the domain size, and provide parameter-selection
guidelines to calibrate pseudo-linearity and differential resistance.

Lemma 6.1 (Schwartz–Zippel [12],[16]). Let F be a field and let P ∈ F[X1, . . . , Xn] be a nonzero polynomial of
degree ≤ d. Let S ⊆ F be a finite subset and let v1, . . . , vn ∈ S be chosen uniformly and independently. Then:

P
[
P (v1, . . . , vn) = 0

]
≤ d

|S|
.

Lemma 6.2. Let p, q be two distinct primes, U = U(Z/pqZ). Let g ∈ Z/pqZ[x1, . . . , xm] be nonzero. Denote by
gp, gq its reductions in Fp[x1, . . . , xm] and Fq[x1, . . . , xm], with total degrees dp = deg gp and dq = deg gq (with
dp, dq ≤ deg g). If x = (x1, . . . , xm) is drawn uniformly and independently from Um, then

P
[
g(x) ≡ 0 (mod pq)

]
≤



dp
p− 1

· dq
q − 1

, if gp ̸≡ 0 and gq ̸≡ 0,

dq
q − 1

, if gp ≡ 0 and gq ̸≡ 0,

dp
p− 1

, if gq ≡ 0 and gp ̸≡ 0.

Proof
By the Chinese Remainder Theorem,

Π : U =
∼−−→ F×

p × F×
q .

In particular, for m ≥ 1,

Πm : Um −→ (F×
p)

m × (F×
q)

m, x 7−→ (u, v) = (πp(x), πq(x)).

Drawing x independently and identically distributed from Um, we obtain by the above isomorphism (coordinate-
wise). Since x is drawn uniformly and independently from Um, then, by the isomorphism above, u and v are as
well over (F×

p)
m and (F×

q)
m.

Let gp and gq be the reductions of g in Fp[X1, . . . , Xm] and Fq[X1, . . . , Xm]; we have

g(x) ≡ 0 (mod pq) ⇐⇒ gp(u) = 0 in Fp and gq(v) = 0 in Fq.

Since u and v are drawn independently, the events {gp(u) = 0} and {gq(v) = 0} are independent. Thus

P
[
g(x) ≡ 0 (mod pq)

]
= P

[
gp(u) = 0

]
· P

[
gq(v) = 0

]
. (∗)

If gp = 0, then P
[
gp(u) = 0

]
= 1 (resp. for gq).

Applying Schwartz–Zippel on (F×
p)

m and (F×
q)

m of respective sizes p− 1 and q − 1, we obtain:

• if gp ̸= 0 and gq ̸= 0, then

P
[
g(x) ≡ 0 (mod pq)

]
≤ dp

p− 1
· dq
q − 1

;

Stat., Optim. Inf. Comput. Vol. x, Month 202x

12 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

• if gp = 0 and gq ̸= 0, then

P
[
g(x) ≡ 0 (mod pq)

]
≤ dq

q − 1
;

• if gp ̸= 0 and gq = 0, then

P
[
g(x) ≡ 0 (mod pq)

]
≤ dp

p− 1
.

Theorem 6.3. Let p, q be two primes ≡ 3 (mod 4), and let u, v be such that up+ vq = 1.
Let f(x) = xd · Lpq(x) with gcd(d, (p− 1)(q − 1)) = 1. Then:

MELPf = maxa,b,c E
[
Px

[
a · x+ b ·

(
xd · Lpq(x)

)
= c

]]
MELPf =

4d2

(p− 1)(q − 1)

Proof
We have

f(x) = xd · Lpq(x) = xd · x
(p−1)(q−1)

4 = x d+
(p−1)(q−1)

4 (see 4.3).

a · x + b · f(x) = c ⇐⇒ a · x + b · x d+
(p−1)(q−1)

4 = c

⇐⇒ b · x d+
(p−1)(q−1)

4 = c− a · x

=⇒ b2x 2d+
(p−1)(q−1)

2 = c2 − 2acx+ a2x2 (by 4.2)

⇐⇒ b2x2d − c2 − a2x2 + 2acx = 0 .

For all a, b, c, this is a polynomial in x of degree 2d. By Lemma 6.2,

MELPf ≤ 4d2

(p− 1)(q − 1)
.

Theorem 6.4. Let p, q be two primes ≡ 3 (mod 4), and let u, v satisfy up+ vq = 1.
Let f(x) = xd · Lpq(x) with gcd(d, (p− 1)(q − 1)) = 1. Then:

MEDPf = max
∆x,∆y

E[Px [f(x+∆x)− f(x) = ∆y]] .

MEDPf =
(4d− 2)2

(p− 1)(q − 1)

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 13

Proof

We have f(x+∆x)− f(x) = ∆y ⇐⇒ (x+∆x)d+
(p−1)(q−1)

4 − xd+
(p−1)(q−1)

4 = ∆y

⇐⇒ (x+∆x)d+
(p−1)(q−1)

4 = ∆y + xd+
(p−1)(q−1)

4

⇒ (x+∆x)2d+
(p−1)(q−1)

2 = (∆y)2 + 2(∆y)xd+
(p−1)(q−1)

4 + x2d+
(p−1)(q−1)

2

⇐⇒ (x+∆x)2d = (∆y)2 + 2(∆y)xd+
(p−1)(q−1)

4 + x2d (by 4.2)

⇐⇒ (x+∆x)2d − (∆y)2 − x2d = 2(∆y)xd+
(p−1)(q−1)

4

⇒
(
(x+∆x)2d − (∆y)2 − x2d

)2
= 4(∆y)2x2d+

(p−1)(q−1)
2

⇐⇒ ((x+∆x)2d − (∆y)2 − x2d)2 − 4(∆y)2x2d = 0 (by 4.2).

We now show that the degree in x of the polynomial is 4d− 2.

(x+∆x)2d =

2d∑
k=0

(
2d

k

)
x 2d−k(∆x)k = x2d +

2d∑
k=1

(
2d

k

)
x 2d−k(∆x)k.

Thus,

(x+∆x)2d − x2d −∆y =

2d∑
k=1

(
2d

k

)
x 2d−k(∆x)k −∆y

= 2d (∆x)x 2d−1 +

2d∑
k=2

(
2d

k

)
(∆x)kx 2d−k −∆y .

Hence, (x+∆x)2d − (∆y)2 − x2d has degree 2d− 1 in x, squaring it yields a polynomial of degree 4d− 2. By
Lemma 6.2,

MEDPf ≤ (4d− 2)2

(p− 1)(q − 1)
.

7. Comparative Analysis of the Classical and Generalized Models

To make the benefit of our approach explicit, Table 1 contrasts the classical construction with our CRT-based
generalization at two levels.

Symbol level.
MEDP/MELP move from 1

2 − 1
2p to 1

4 − p+q−1
4pq : the central term is halved and a 1/(pq) correction appears.

S-box level.
The bounds shift from MEDPf ≤ 4α−2

p and MELPf ≤ 2α
p to MEDPf ≤ (4d−2)2

(p−1)(q−1) and MELPf ≤ 4d2

(p−1)(q−1) .

Consequences.
(i) dual-modulus balancing: worst-case bias improves from order 1/p to order 1/(pq)
(ii) stronger diffusion via cross-modulus interaction

Stat., Optim. Inf. Comput. Vol. x, Month 202x

14 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

(iii) higher nonlinearity through the tunable parameter d
(iv) tighter analytic bounds, hence more predictable guarantees. These shifts explain the generalized design’s
systematic advantage at both levels.

Table 1. Comparison of MEDP/MELP at symbol level and S-box level

Classical (over Fp) Generalized (mod pq)

Symbol level (Legendre vs. Lpq)
Domain Fp Fp × Fq

Symbol
(
x

p

)
Lpq(x)

MEDP (symbol) 1

2
− 1

2p

1

4
− p+ q − 1

4pq

MELP (symbol) 1

2
− 1

2p

1

4
− p+ q − 1

4pq

S-box level
Construction From quadratic residues mod p CRT combination of residues mod p and q

MEDPf (S-box) 4α− 2

p

(4d− 2)2

(p− 1)(q − 1)

MELPf (S-box) 2α

p

4d2

(p− 1)(q − 1)

Qualitative Single-modulus balance; residual bias ∼ 1/p Dual-modulus balance; reduced bias ∼ 1/(pq)

8. A Step-by-Step Example

8.1. Inputs

The hash function takes as main parameters:

• two prime numbers p, q such that p ≡ q ≡ 3 (mod 4) ;
• the size of the internal state m and the number of words absorbed per round r ;
• the number of rounds n ;
• the parameter constants λ and d ;
• the desired output length (by default 256 bits) ;
• a message M ∈ {0, 1}⋆, padded to comply with the sponge interface.

Example of parameters.

p = 239, q = 271, m = 8, r = 4, n = 6, λ = 12, d = 5.

Message.
M = "crypto".

8.2. Internal steps

The construction relies on an arithmetic-and-linear permutation applied n times :

• MDS matrices. For each branch mod p and mod q, we build a matrix M ∈ Fm×m
p (resp. Fm×m

q) from a
primitive root of order p− 1 (resp. q − 1). These matrices ensure diffusion among the m words of the state.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 15

For p = 239:

M1 =



19 145 109 165 52 84 182 140

31 4 109 26 36 101 230 184

150 182 223 116 34 196 129 178

36 148 225 196 51 168 88 193

82 58 153 44 194 11 161 101

7 148 73 88 38 74 229 200

215 88 199 91 211 108 146 27

35 67 163 113 61 89 3 102


For q = 271:

M2 =



30 110 13 250 174 113 232 111

78 45 198 121 52 251 120 87

171 163 92 268 83 127 110 21

88 42 165 193 128 17 121 2

60 37 68 123 270 83 210 72

263 121 160 182 185 5 256 72

263 53 244 3 244 191 178 118

17 235 232 205 210 28 196 268


• Round constants. They are generated deterministically by SHAKE256 from the seed

Grendel-Modified-(p, q,m, λ).

We obtain n×m constants; each row below corresponds to the m constants injected in the corresponding
round:

42701 30871 61978 32920 21679 36767 11808 46089

46200 51515 14583 23964 11334 6618 11730 41137

63228 51244 41263 13936 42301 26721 1811 32943

15408 64456 60287 17460 16573 12913 36389 45306

27528 28637 10254 38566 42113 4524 24758 51088

25880 37303 44133 30950 28689 27983 41900 35303

• Permutation (per round). At each round:

1. branch-wise S-box ;
2. linear mixing via M1 and M2 ;
3. nonlinear mixing with exponents coprime to p− 1 and q − 1 ;
4. addition of the round constants.

The two branches are recombined via the (CRT).

8.3. Outputs

After complete absorption of the message and the squeezing phase, the final digest is obtained.
Hexadecimal output (256 bits):

aa675b2bb1f87f52b95b3700979d631927c954e8dfdabab6242371d9f1f30508

9. Experimental Results

Objective. We empirically evaluate the statistical quality and diffusion of GRENDEL MODIFIED HASH. The
tests target: (i) output uniformity, (ii) strict avalanche (sensitivity of each output bit to flipping a single input

Stat., Optim. Inf. Comput. Vol. x, Month 202x

16 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

bit), and (iii) near-independence of output bits. We also measure a Goodness-of-Fit (GOF) of Hamming distances
to the binomial law, as well as a random-avalanche test (uniform flips).

Parameters and protocol. Unless otherwise stated: MSG LEN = 16 bytes (128 bits), output = 256 bits.

• Uniformity (UNI). 10,000 independent outputs. For each bit j, we estimate the bias p̂j − 0.5 and the two-
sided 95% CI:

p̂j ± 1.96
√

p̂j(1− p̂j)/n, n = 10,000,

i.e., ±0.0098 at p = 0.5.
• SAC. A 256×m matrix with m tested input bits (typically m = 32). For each input i, we draw 10,000 pairs
(m, m⊕ ei) and estimate sj,i (the flip rate of output bit j). We report: global mean, row/column means,
worst deviations (cell/row/column), and per-cell CIs.

• BIC. We sample m = 128 input bits, use n = 2,000 trials, and evaluate 32,640 pairs (j, k) of output bits
per trial (about 4.18 million correlations in total). For each (i; j, k), we compute Pearson’s correlation ri;j,k
between flip vectors. We publish the absolute mean |r| and the absolute maximum.

• GOF (Hamming). Over 10,000 trials, we compare independent outputs. Theoretical targets (256 bits):
mean = 128, standard deviation = 8. We report (H̄, sH) and a χ2 (or z) statistic against Bin(256, 0.5).

• Random avalanche. Same as GOF, but between H(m) and H(m⊕ r) with r ∼ Bernoulli(0.5).

Statistical expectations (quick read).

• UNI. Over 256 bits and 10,000 trials, about 5%× 256 ≈ 13 bits outside the CI are expected (multiple-
comparisons effect). A worst bias between 0.01 and 0.02 is compatible with randomness.

• SAC. Row/column means near 0.5 (typically [0.49, 0.51] at n = 10,000). The worst cell may deviate by
0.015–0.02 given the total number of cells (e.g., 256× 32 = 8,192).

• BIC. At n = 2,000, the natural scale of sampling correlations is O(n−1/2) ≈ 0.022; the expectation for |r|
is

√
2/π/

√
n ≈ 0.0179. With millions of pairs, a maximum around 0.10–0.12 is common (extreme-value

effect).
• GOF/Random avalanche. (H̄, sH) close to (128, 8); a moderate, non-significant χ2/z confirms conformity.

Reproducibility. We publish the seeds (seed), the sampled input-bit subsets (SAC/BIC), the sample sizes
(TRIALS, PAIRS), and the code versions. Cryptographic parameters (p, q,m state, r words, n rounds, λ, d) and
the implementation are fixed for the entire campaign. The scripts produce tables with CIs and summaries to enable
exact replication.

How to read the tables 2. Each block (UNI, SAC, BIC, GOF, Avalanche) states the output size, the number of
trials, the parameters (seeds, subsets, pairs), and the results (biases, means/variances, CIs, correlations, extremes,
χ2/z). Occasional breaches of per-bit CIs are expected when many tests run in parallel and do not, by themselves,
constitute an anomaly.

10. Application to blockchain

10.1. Digital signature

A digital signature serves as a highly secure method for confirming the genuineness and unaltered state of electronic
messages and files. In this groundbreaking presentation regarding blockchain signatures, the initial step involves

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 17

Table 2. Statistical tests for GRENDEL MODIFIED HASH (256-bit output)..

Block / Metric Size Trials Parameters Result
Uniformity (UNI)
samples, Output bits 256 10 000 MSG LEN=16;out bits=256;TRIALS=10 000;

seed=42
Worst per-bit bias 256 10 000 – 0.0157 (IC95 ≈ 0.0098)
Bits outside the CI95 256 10 000 – 13
χ2
z (bytes.) 256 10 000 – −0.096

Strict Avalanche Criterion (SAC)
Config / Inputs 128→

256
10 000 BITS TO TEST=32; seed=42

global mean 256 10 000 MSG LEN=16;out bits=256;TRIALS=10 000 0.500001
row mean (min..max) 256 10 000 – 0.499 .. 0.501
column mean (min..max) 256 10 000 – 0.498 .. 0.503
worst cell deviation 256 10 000 – 0.020
worst row deviation 256 10 000 – 0.001
worst column deviation 256 10 000 – 0.003
IC95 Per-cell 256 10 000 – ≈ 0.5± 0.010

Bit Independence Criterion (BIC)
Config / Inputs 128→

256
2 000 BITS TO TEST=128; PAIRS=32 640; seed=4

Evaluated pairs 256 2 000 (= 32 640 × 128) 4 177 920
Mean absolute correlation 256 2 000 – 0.017839
Maximum absolute correlation 256 2 000 – 0.114233 (i=79, j=25,

k=222)
Goodness-of-Fit (GOF) Hamming
Output bits 256 10 000 MSG LEN=16;out bits=256;TRIALS=10 000;

seed=42
Mean Hamming distance 256 10 000 – 128.0648
Hamming standard deviation 256 10 000 – 8.2127
χ2, ddl, znorm 256 10 000 – 61.4768, 50, +1.1477

Avalanche (bit-flip aléatoire)
Output bits 256 10 000 MSG LEN=16;out bits=256;TRIALS=10 000;

seed=42
Mean Hamming distance 256 10 000 – 128.0405 (norm. 0.500158)
Hamming standard deviation 256 10 000 – 8.0185 (norm. 0.031323)
Min / Max Hamming distance 256 10 000 – 99 / 159

the computation of a hash value for the specified content utilizing the cutting-edge Grendel hashing algorithm. This
resulting hash serves as a distinctive digital representation of the document, subsequently undergoing computing a
digital signature with the private key of the signer. Following this encryption process, the digital signature is affixed
to the original message or file. Upon the recipient’s reception of the message, utilization of the signer’s public key
becomes necessary to verify the signature and authenticate its alignment with the hash of the content received,
as depicted in Figure 3. This crucial authentication process guarantees that the document has remained unaltered
since its signing and confirms the true identity of the sender. The foundation of digital signature security is firmly
rooted in robust cryptographic principles, notably the inclusion of dependable hash functions, which play a pivotal
role in upholding the integrity and authenticity of electronic communications.

Blockchain clarifications. We clarify the threat model: our proposal targets cryptographic robustness (preimage,
second-preimage, and collision resistance) and SUF-CMA security of the signature with context binding (tag,
chainID, epoch, header/Merkle root), without claiming protection against consensus-level attacks (51 %, selfish
mining), which belong to the protocol layer [2]. The signature workflow is completed: key derivation via a KDF,

Stat., Optim. Inf. Comput. Vol. x, Month 202x

18 AN EXTENDED GRENDEL APPROACH APPLIED TO BLOCKCHAIN

Figure 3. Our Grendel signature recommended process

deterministic nonce in the style of RFC 6979, domain separation in Grendel Modified Hash, and signing of
the block header to limit propagation latency. On the system side, the storage footprint remains unchanged and
verification is parallelizable, which bounds the impact on block propagation.

10.2. Signing a block

As illustrated in Figure 4, the blockchain, originally conceptualized as a sequential series of blocks, sets itself apart
by its systematic inclusion of transactional information, organized within consecutive blocks. Each block contains
a link to the previous one through a cryptographic hash function, consequently upholding the overall integrity of
the entire chain. It is of paramount importance to emphasize a specific strategy that involves employing a digital
signature based on the Grendel hash algorithm. This particular signature mechanism, which is deeply rooted in
a distinct hashing algorithm, enhances the security measures by ensuring both the genuineness and unchangeable
nature of the data. Consequently, the integration of this particular method reinforces the resilience of the blockchain
infrastructure by not only guaranteeing the confidentiality and integrity of the transactions, but also ensuring
non-repudiation. This multifaceted approach underscores the significance of employing advanced cryptographic
techniques to fortify the security and reliability of the blockchain system.

Figure 4. Our Grendel recommended signing process to blocks

Stat., Optim. Inf. Comput. Vol. x, Month 202x

A. LKOAIZA, S. ABDELALIM, A. CHERKAOUI AND I. ELMOUKI 19

11. Conclusion

In conclusion, the study at hand provides a comprehensive overview of a pioneering sponge-based function
that has been developed with the specific goal of operating independently of hashing libraries. Through a
careful examination of the Keccak techniques utilized in the SHA-3 algorithm and the integration of our unique
Grendel-based permutation strategy, we have effectively deployed this function within a blockchain signature
framework. The innovative combination of the Grendel permutation and Legendre symbols represents a significant
advancement in cryptographic protocols, with a primary focus on enhancing both the security and efficiency of
such systems. Our research outcomes strongly indicate that this novel approach holds considerable promise for
driving future advancements in blockchain technology, particularly in the realms of secure digital signatures and
the validation processes for blockchain blocks. Our findings from result 1 to result 4, were our main theoretical
contributions here, in addition to the introduction of an extended symbol instead of the Legendre one. As for our
experimental contribution, it has been presented through the novel idea to integrate our Grendel hash developed
process into the blockchain digital signature and which showed a promising potential that could reinforce the
security of blockchain technology.

Acknowledgement

We would like to thank all editors of the SOIC journal and their anonymous referees as well as members of the
organizating committee of CSAIA’2024 for their valuable advice and support during the submission period of this
project. We are especially grateful to our professors for their guidance and insightful advice. Lastly, we deeply
appreciate our families for their unwavering support.

REFERENCES

1. Abdelalim, S., Lkoiaza, A., Cherkaoui, A., Elmouki, I., and Abghour, N. A Python Programming Initiative for Hash Construction
through the Example of SHA-2. Finite Abelian Groups, Elliptic Curves, Blockchain With Hashing and Graphs (2025), 264–278. .

2. Abdelalim, S., Cherkaoui, A., Lkoiaza, A., Elmouki, I., and Abghour, N. Advancing Blockchain Security Using Graph Theory: A
Python Programming Perspective. Finite Abelian Groups, Elliptic Curves, Blockchain With Hashing and Graphs (2025), 279–293. .

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T. MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016, LNCS 10031, pp. 191–219,
Springer (2016).

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G. The KECCAK SHA-3 submission, Version 3 (Jan. 2011).
5. Gupta, S., Sadoghi, M. Blockchain transaction processing. arXiv:2107.11592 (2021).
6. Kamal, Z.A., Fareed, R. A proposed hash algorithm to use for blockchain-based transaction flow system. Periodicals of Engineering

and Natural Sciences 9(4), 657–673 (2021).
7. Mattoussi, F., Roca, V., Sayadi, B. Complexity comparison of the use of Vandermonde versus Hankel matrices to build systematic

MDS Reed–Solomon codes. In: 2012 IEEE 13th Int. Workshop on SPAWC, pp. 344–348. IEEE (2012).
8. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system (2008).
9. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive

Introduction. Princeton University Press (2016).
10. Parmar, M., Kaur, H.J. Comparative analysis of secured hash algorithms for blockchain technology and Internet of Things.

International Journal of Advanced Computer Science and Applications 12(3) (2021).
11. Sauer, J.F., Szepieniec, A. SoK: Gröbner basis algorithms for arithmetization-oriented ciphers. Cryptology ePrint Archive, Report

2021/870 (2021).
12. Schwartz, J.T. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(4), 701–717 (1980).
13. Szepieniec, A. On the use of the Legendre symbol in symmetric cipher design. Cryptology ePrint Archive (2021).
14. Szepieniec, A., Ashur, T., Dhooghe, S. Rescue-Prime: A standard specification (SoK). IACR Cryptology ePrint Archive 2020/1143

(2020).
15. Zhang, R., Xue, R., Liu, L. Security and privacy on blockchain. ACM Computing Surveys (CSUR) 52(3), 1–34 (2019).
16. Zippel, R. Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.), Symbolic and Algebraic Computation, EUROSAM ’79,

LNCS 72, pp. 216–226. Springer (1979).

Stat., Optim. Inf. Comput. Vol. x, Month 202x

https://doi.org/10.9734/bpi/mono/978-81-992493-9-4/CH8
https://doi.org/10.9734/bpi/mono/978-81-992493-9-4/CH9

	1 Introduction
	2 Blockchain
	2.1 Blockchain architecture
	2.2 Secure blockchain hashing

	3 Grendel sponge construction
	3.1 Lpq symbol
	3.2 Extended Grendel permutation
	3.3 Construction and Verification of an MDS Linear Layer
	3.4 Round constants
	3.5 Grendel hash

	4 Mathematical results
	5 Security of the Lpq symbols
	6 Security of the S-Box Function
	7 Comparative Analysis of the Classical and Generalized Models
	8 A Step-by-Step Example
	8.1 Inputs
	8.2 Internal steps
	8.3 Outputs

	9 Experimental Results
	10 Application to blockchain
	10.1 Digital signature
	10.2 Signing a block

	11 Conclusion

