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Abstract The effect of correlation between covariates on the proportionality test results of a specific covariate in the
Cox model is well documented problem by several authors. The first solution has been proposed for the Kolmogorov-
Smirnov (KS) test, the Cramér-von Mises (CvM) test, and the Anderson-Darling (AD) test. It consists of simulating the null
distribution of these test statistics, since this is only known if the covariates are uncorrelated. The results of the simulations
carried out by the proponents of this solution have not proved its effectiveness in all studied cases. The second solution is
based on the fact that the score function used in the tests mentioned above, and in the construction of the score tests, assumes
that all other covariates are proportional, which is not always true. The idea is therefore to introduce temporal parameters to
these covariates whose meanings match their proportionalities. Such a change in the score function requires estimation of
the new parameters introduced for each tested covariate.
In this article, we propose a simple technique to eliminate such an effect. The technique involves changing the covariate to
be tested by the residual of its linear regression against the other covariates in the model. This change retains the same null
hypothesis to be tested with a new covariate that is uncorrelated with the others. A simulation comparison of these techniques
is considered.

Keywords Anderson-Darling test, Kolmogorov-Smirnov test, Linear regression, Monte Carlo method, Partial likelihood,
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1. Introduction

The Cox model [1] is an essential tool in survival analysis, describing the link between survival time and the
covariates in a data set. It expresses the death rate of an individual i in the following form:

λi(t) = λ0(t) exp
{
βTX(i)

}
, (1)

where β = (β1, ..., βm)T is the vector of unknown parameters, X(i) = (X
(i)
1 , ..., X

(i)
m )T is the covariates vector for

i-th individual, and λ0(t) is an unknown baseline death rate.
The main hypothesis in this model is that the death rates ratio remains constant over time and depends only on

the covariates values. This hypothesis may not be verified in several cases. In this context, several tests have been
proposed for validation. They are divided into two classes,

Class of global tests or Cox model validation tests. We cite the work of [1, 5, 6, 7, 8, 11, 13, 14]
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Class of partial tests. They are used to test the proportionality hypothesis for each covariate separetely (see
[2, 3, 4, 12]).

The main tools used in the construction of the most proportionality tests are the following m score functions:

Uj(β, t) =

n∑
i=1

∫ t

0

X(i)
j −

n∑
k=1

Yk(u)X
(k)
j exp

{
βTX(k)

}
n∑
k=1

Yk(u) exp
{
βTX(k)

}
 dNi(u), j = 1, ...,m,

where n is the number of individuals,Ni(t) and Yi(t) are respectively the indicator of death and the indicator of risk
at time t of the i-th individual. We denote Ij(β, t) the inverse derivative of Uj(β, t) for j = 1, ...,m. The unknown
parameters estimators in the (1) model are obtained by solving the system of equations Uj(β,∞) = 0, j = 1, ...,m.
We denote β̂ = (β̂1, ..., β̂m) the vector of these estimators.

The tests proposed by [2] to test the proportionality of a specific covariate Xp (1 ≤ p ≤ m) in the (1) model are
the classic tests, namely the Kolmogorov-Smirnov (KS), the Cramér-von Mises (CvM) and the Anderson-Darling
(AD):

KS =

√
Jp(β̂) sup

t

∣∣∣Up(β̂, t)∣∣∣ , CV = Jp(β̂)

∫ ∞

0

Up(β̂, t)
2 dq̂p(t),

AD = Jp(β̂)

∫ ∞

0

Up(β̂, t)
2

q̂p(t) (1− q̂p(t))
dq̂p(t). (2)

where Jp(β̂) is the p-th diagonal elements of the Fischer information matrix and q̂p(t) =
Ip(β̂,t)

Jp(β̂)
.

The asymptotic distributions of the statistics of these tests are well determined in condition that the covariates are
independent. In the case of correlated covariates, [2] used the Monte Carlo method to simulate these distributions
under the null hypothesis. The simulation results showed that this technique does not perform well if the covariates
are strongly correlated (Tables 3 and 4 in [2]).

To test the proportionality of Xp, [3] proposed a score test based on the following alternative:

λi(t) = λ0(t) exp
{
βTX(i) + θTp ξp

(
F̂0(t)/F̂0(τ)

)
X(i)
p

}
, (3)

where τ is the maximum time of the experiment, ξp = (φ1, ..., φdp)
T , φk for k = 1, ..., dp are a smooth functions,

bounded in L2[0, 1] and linearly independent, θp = (θ
(p)
1 , ..., θ

(p)
dp

) is a parameters vector, and F̂0 = 1− exp{−Λ̂0}
with Λ̂0 is the Breslow estimator of the baseline death rate under (1).
[3] also noted that this test score misjudges the proportionality of a proportional covariate if it is highly correlated
with another non-proportional one. [4] returns this fact to the formulation of the score test and the classic tests
above, which assumes that all the other covariates not concerned by the test are proportional, which is not always
the case. To remedy a such behaviour, he introduced a time parameters to these covariates in (3). Their introduction
serves to express the actual state of proportionality of each covariate other than the one being tested. The new
alternative is written as follows:

λi(t) = λ0(t) exp

{
βTX(i) +

m∑
j=1

θTj ξj

(
F̂0(t)/F̂0(τ)

)
X

(i)
j

}
, (4)

where θj = (θ
(j)
1 , ..., θ

(j)
dj

)T and ξj = (φ1, ..., φdj )
T for j = 1, ...,m.

The null hypothesis to be tested becomes
H0 : θp = (0, ..., 0). (5)
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2 PROPORTIONALITY TEST IN THE COX MODEL WITH CORRELATED COVARIATES

Under H0, the vector of the corresponding (m+ d)-score functions (with d =
m∑
j=1

dj) is written:

Uj0(β, θ, t) =
n∑
i=1

∫ t
0

X(i)
j −

n∑
k=1

Yk(u)X
(k)
j exp

βTX(k)+
m∑

j=1
j ̸=p

θTj ψj(t)X
(k)
j


n∑

k=1

Yk(u) exp

βTX(k)+
m∑

j=1
j ̸=p

θTj ψj(t)X
(k)
j



 dNi(u)

Ujl(β, θ, t) =
n∑
i=1

∫ t
0
ψl(t)

X(i)
j −

n∑
k=1

Yk(u)X
(k)
j exp

βTX(k)+
m∑

j=1
j ̸=p

θTj ψj(t)X
(k)
j


n∑

k=1

Yk(u) exp

βTX(k)+
m∑

j=1
j ̸=p

θTj ψj(t)X
(k)
j



 dNi(u)

, (6)

with ψj(t) = ξj

(
F̂0(t)/F̂0(τ)

)
for l = 1, ..., dj and j = 1, ...,m.

The resolution of the sub-system extracted from (6){
Uj0(β, θ, τ) = 0,
Ujl(β, θ, τ) = 0, for j ̸= p and l = 1, ..., dj

, for j = 1, ...,m

allows the parameters estimation of the model (4) under H0. We denote β̂∗ and θ̂ the vectors of the obtained
estimators. Note that their estimation is necessary for each proportionality test of each covariate. On the other hand
the remaining sub-system from (6) with replacing the vectors β and θ by their estimators β̂∗ and θ̂ respectively:

Upl(β̂
∗, θ̂, τ), for l = 1, ..., dp

presents the essential part in the test statistic of H0. The test, which we denote (Kr.score), is a chi-square with
dp degrees of freedom. The classical tests (2) adapted to the alternative (4), are denoted (Kr.KS), (Kr.CV) et (Kr.AD).

In this article, we propose a reformulation of the score tests, in particular that of [3], using a simple technique
that eliminate the effect of correlation between the covariates on the test result. This technique consists of replacing
the covariate under the test by its residual from its linear regression as a function of the other covariates. It will
also be applied to the classic tests mentioned above. The structure of the paper will be as follows: in section 2, we
present this proposed reformulation in detail. In Section 3, a simulation study will be carried out to examine the
results of this test reformulation application in the presence of correlation between covariates and to compare them
with those of the [4] test. We finish with a conclusion

2. Proposed reformulation

The score tests which are the subject of the proposed reformulation are based on the following general alternative:

λi(t) = λ0(t) exp
{
βTX(i) +Ψ(t, θp)X

(i)
p

}
, i ∈ {1, ..., n} (7)

such that Ψ is a real function which verifies Ψ(t, 0) = 0 and θp = (θ
(1)
p , ..., θ

(dp)
p ). It is clear that the alternative (3)

is part of the class (7).
As mentioned at the beginning of this article, the presence of the correlation between the covariate Xp and the
others, especially if one of them is non-proportional, falsifies the results of the score tests. To remedy this problem,
and before proceeding with the test score construction, we propose a change in the covariates space. We express
the covariate Xp as a function of the other covariates using the following linear model:

Xp =

m∑
j=1
j ̸=p

ajXj + Zp,
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where Zp is the residual of this adjustment. With this change, the alternative (7) becomes

λi(t) = λ0(t) exp
{
β̃T X̃(i) +Ψ(t, θp)X̃

(i)
p

}
, i ∈ {1, ..., n}, (8)

such that X̃(i) = (X̃
(i)
1 , ..., X̃

(i)
m ) and β̃ = (β̃1, ..., β̃m) are, respectively, the new covariate vector of the i-th

individual and the vector of new parameters with{
X̃

(i)
j = X

(i)
j and β̃j = βj + βpaj , if j ̸= p

X̃
(i)
p = X

(i)
p and β̃p = βp.

We note that Xp and X̃p have the same parameter βp. So testing the propotionality of Xp is equivalent to checking
that of X̃p which is uncorrelated with X̃j , j = 1, ...,m and j ̸= p. The proportionality of the covariate X̃p, according
to the alternative (8), is equivalent to the hypothesis H0 in (5).
Now we turn to the test score construction. The partial likelihood function, according to [9], under the alternative
(8) is written as follows

L(β̃, θp) =

n∏
i=1

∫ ∞

0

g
(
X̃(i), X̃

(i)
p , β̃, θp, u

)
n∑
j=1

Yj(u)g
(
X̃(j), X̃

(j)
p , β̃, θp, u

)dNi(u)

δi

(9)

such that g(X,Z, β, θ, t) = exp
{
βTX +Ψ(t, θ)Z

}
and δi = 1 if the i-th individual is deceased (0 otherwise).

Then the k-components of the score function obtained by deriving (9) are

Uθp(β̃, θp) =
∂

∂θp
log(L(β̃, θp))

=

n∑
i=1

∫ ∞

0

 ∂

∂θp
log

(
g(X̃(i), X̃(i)

p , β̃, θp, u)
)
−

n∑
j=1

Yj(u)
∂
∂θp

g(X̃(j), X̃
(j)
p , β̃, θp, u)

n∑
j=1

Yj(u)g(X̃(j), X̃
(j)
p , β̃, θp, u)

 dNi(u).

Under the hypothesis H0, these functions depend on the parameters vector β̃ = (β̃1, ..., β̃m) which is unknown. We
will therefore replace it by its estimator ˆ̃

β = (
ˆ̃
β1, ...,

ˆ̃
βm) calculated according to the expression

ˆ̃
βj =

{
β̂j + β̂paj , if j ̸= p

β̂p, if j = p
, j = 1, ...,m.

Then the test statistic will be

Ûj = Uθp(
ˆ̃
β, (0, ..., 0))

=

n∑
i=1

∫ ∞

0

(
ŵ(i)(u)− Ẽ(u,

ˆ̃
β)
)
dNi(u),

where

ŵ(i)(u) =
∂Ψ(u, 0)

∂θp
X̃(i)
p , Ẽ(t, β) =

S̃(1)(t, β)

S(0)(t, β)
,

S(0)(t, β) =

n∑
i=1

Yi(t) exp
{
βT X̃(i)

}
, S̃(1)(t, β) =

n∑
i=1

Yi(t)ŵ
(i)(t) exp

{
βT X̃(i)

}
.
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4 PROPORTIONALITY TEST IN THE COX MODEL WITH CORRELATED COVARIATES

To complete the construction of this test, we need to look for the asymptotic distribution of Ûj under H0.
We pose

E(t, β) =
S(1)(t, β)

S(0)(t, β)
, S(1)(t, β) =

n∑
i=1

X̃(i)Yi(t) exp
{
βT X̃(i)

}
,

S(2)(t, β) =

n∑
i=1

X̃(i)⊗2

Yi(t) exp
{
βT X̃(i)

}
,

S̃(2)(t, β) =

n∑
i=1

ŵ(i)(t)X̃(i)TYi(t) exp
{
βT X̃(i)

}
,

˜̃S
(2)

(t, β) =

n∑
i=1

(̂w(i)(t))⊗2Yi(t) exp
{
βT X̃(i)

}
,

such that the notation A⊗2 means AAT . We denote by β̃0 the true value of β̃. The Taylor expansion around β̃0
allows us to write:

n1/2(
ˆ̃
β − β̃0) =

(
Σ(β̃0)

)−1
n∑
i=1

∫ τ

0

{X̃(i) − E(u, β̃0)}dMi(u) + op(1),

where Σ(β̃0) is the Fisher information matrix under H0.
Under usual regularity conditions, the Doob-Meier decomposition, and the delta method, we can write

n−1/2Ûj = n−1/2
n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u,
ˆ̃
β)}dNi(u) =

n−1/2
n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u,
ˆ̃
β)}dMi(u)+

n−1/2

∫ ∞

0

{Ẽ(u, β̃0)− Ẽ(u,
ˆ̃
β)}S(0)(u, β̃0)dΛ0(u).

The Taylor expansion applied to the function β̃ −→ Ẽ(u, β̃) leads to

Ẽ(u,
ˆ̃
β)− Ẽ(u, β̃0) =

∂Ẽ(u, β̃0)

∂β̃

(
ˆ̃
β − β̃0

)
.

Therefore

n−1/2Ûj = n−1/2
n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u, β̃0)}dMi(u)−

n−1

∫ ∞

0

∂Ẽ(u, β̃0)

∂β̃
S(0)(u, β̃0)dΛ0(u)n

1/2(
ˆ̃
β − β̃0) + op(1) =

n−1/2
n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u, β̃0)}dMi(u)−

Σ1Σ
−1n−1/2

n∑
i=1

∫ ∞

0

{X(i) − E(u, β̃0)}dMi(u) + op(1),
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where Σ and Σ1 are respectively the probability limits of the random matrices,

Σ̂ = n−1

∫ ∞

0

V (u,
ˆ̃
β)dN(u), Σ̂1 = n−1

∫ ∞

0

Ṽ (u,
ˆ̃
β)dN(u),

V (t, β̃) =
S(2)(t, β̃)

S(0)(t, β̃)
−
(
E(t, β̃)

)⊗2
, Ṽ (t, β̃) =

S̃(2)(t, β̃)

S(0)(t, β̃)
− Ẽ(t, β̃)ET (t, β̃).

This implies

< n−1/2Ûj >= n−1
n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u, β̃0)}⊗2 exp
{
βT0 X̃

(i)
}
Yi(u)dΛ0(u)−

2Σ1Σ
−1n−1

n∑
i=1

∫ ∞

0

{ŵ(i)(u)− Ẽ(u, β̃0)}{X(i) − E(u, β̃0)}T exp
{
βT0 X̃

(i)
}
×

Yi(u)dΛ0(u) + Σ1Σ
−1n−1

n∑
i=1

∫ ∞

0

{X(i) − E(u, β0)}⊗2 exp
{
βT0 X̃

(i)
}
×

Yi(u)dΛ0(u)Σ
−1(Σ1)

T + op(1) = Σ2 − Σ1Σ
−1(Σ1)

T + op(1),

where Σ2 is the probability limit of

Σ̂2 = n−1

∫ ∞

0

˜̃V (u,
ˆ̃
β)dN(u),

with

˜̃V (u, β) =
˜̃S
(2)

(t, β)

S(0)(t, β)
−
(
Ẽ(t, β)

)⊗2
.

Similarly, the Lindeberg condition (see [9])

n−1
n∑
i=1

∫ ∞

0

{ŵ(i)
j (u)− Ẽj(u, β0)}21{|ŵ(i)

j (u)−Ẽj(u,β0|≥
√
nε}e

βT
0 X

(i)

Yi(u)dΛ0(u)
P→ 0.

is satisfied. This implies that the stochastic process n−1/2Ûj converges to the Gaussian distribution with mean 0.
In particular,

n−1/2Ûj
D−→ N(0,W ),

where W = Σ2 − Σ1Σ
−1(Σ1)

T .
Finally, to test the null hypothesis H0, the score test statistic, which we denote (Re.score), is

Tsc = Û2
j /Ŵ ,

where Ŵ = n
(
Σ̂2 − Σ̂1Σ̂

−1(Σ̂1)
T
)

. Tsc is asymptotically χ2
dp

distributed when n tends towards ∞. Consequently,

H0 is rejected with a significance level α if Tsc > χ2
1−α(dp) where χ2

1−α(dp) is the (1− α) critical value of the
χ2
dp

distribution.

By replacing β̂ and X , respectively by ˆ̃
β and X̃ , in (2), we obtain the classical tests statistics under the proposed

reformulation. We denote them by (Re.KS), (Re.CV) and (Re.AD).
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6 PROPORTIONALITY TEST IN THE COX MODEL WITH CORRELATED COVARIATES

3. Simulation study

In this section, we conduct a simulation study to examine the performance of the proposed reformulation. We
compare the results obtained with those of the application of the technique proposed by [4]. Thus the function Ψ
in (8) must take the following form:

Ψ(t, θp) = θTp ξp

(
F̂0(t)/F̂0(τ)

)
for the alternative used for this comparison to be the same.

3.1. Simulation setting

In this study, we consider two cases to examine the power and significance level of the tests presented in the
previous sections. In the first case, the ratio of death rates is monotonic as a function of time, while in the second,
it is non-monotonic.
The number of repetitions is 5000. For the number of individuals, two values are considered: n = 100, 200. We
denote by X = (X1, X2) the pair of covariates generated from the multinormal distribution with mean (4.4) and
variance-covariance matrix (

1 ρ
ρ 1

)
such that ρ is the correlation between X1 and X2. For ρ, we took the following values: 0.3, 0.5, 0.7, 0.8, and 0.9.
The simulations were carried out using the R language [15]. Now, we present the two cases used to generate the
data.

3.1.1. Case 1: In this first case, we consider the following model :

λx(t) = exp{0.6tX1 − 0.5X2}. (10)

The ratio of death rates under (10), is clearly monotonic as a function of time.
To generate the times of death from (10), we use the following expression

Ti = log (1− 0.6X1 exp{0.5X2} log(Ui)) , for i = 1, ..., n,

where Ui is the i-th element of a n-values sequence generated from the Uniform[0,1].
The censoring times are generated from the Exponential distribution with parameter 0.28, which gives an average
percentage of censoring over the 5000 repetitions equal to 19.82%.

3.1.2. Case 2: To generate the death times, in this case we use the following model:

λX(t) = exp{(0.2 + 0.75× 1[0.7,1](t))X1 − 0.5X2}. (11)

This is done using the expression

Ti =

 − log(Ui)/A1, si Ui > A3

− log(Ui)/A1 + 0.7A2, si A3 ≤ u ≤ A4

− log(Ui)/A1 + 0.3A2, si u < A4

, for i = 1, ..., n

with Ui, i = 1, ..., n, is a sequence of values generated according to the Uniform[0,1] and
A1 = exp{0.2X1 − 0.5X2}
A2 = 1− exp{−0.75X1}
A3 = exp{−0.7A1}
A4 = exp{−A1 (0.7 + 0.3 exp{0.75X1})}

.

We note that the ratio of death rates under the (11) model is non-monotonic as a function of time. The censoring
times are generated from the Exponential distribution with parameter 0.53. The average censoring percentage over
the 5000 repetitions is equal to 38.47%. censoring probability p and different sample sizes n

Stat., Optim. Inf. Comput. Vol. 14, September 2025
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3.2. Simulation results

n ρ covar. Kr.Score Kr.KS Kr.CV Kr.AD Re.Score Re.KS Re.CV Re.AD

100

0.3 X1 0.2658 0.2748 0.3686 0.3808 0.2630 0.2852 0.4082 0.4186
X2 0.0578 0.0428 0.0536 0.0586 0.0540 0.0384 0.0534 0.0570

0.5 X1 0.2290 0.2664 0.3204 0.3388 0.2322 0.2380 0.3486 0.3606
X2 0.0592 0.0542 0.0568 0.0674 0.0586 0.0358 0.0516 0.0564

0.7 X1 0.1682 0.2790 0.2668 0.3086 0.1730 0.1742 0.2558 0.2642
X2 0.0508 0.0890 0.0606 0.0926 0.0474 0.0320 0.0464 0.0458

0.8 X1 0.1308 0.3038 0.2260 0.3050 0.1288 0.1218 0.1836 0.1916
X2 0.0604 0.1600 0.0852 0.1494 0.0552 0.0362 0.0512 0.0542

0.9 X1 0.0960 0.4846 0.2734 0.4544 0.0930 0.0822 0.1278 0.1318
X2 0.0604 0.3944 0.1712 0.3628 0.0570 0.0324 0.0508 0.0518

200

0.3 X1 0.5060 0.5506 0.6594 0.6736 0.5372 0.5742 0.6986 0.7142
X2 0.0544 0.0406 0.0478 0.0466 0.0600 0.0424 0.0554 0.0560

0.5 X1 0.4424 0.5302 0.5910 0.6096 0.4692 0.5116 0.6294 0.6434
X2 0.0664 0.0650 0.0584 0.0650 0.0624 0.0422 0.0554 0.0580

0.7 X1 0.3076 0.4746 0.4612 0.4980 0.3166 0.3450 0.4550 0.4654
X2 0.0510 0.0958 0.0620 0.0708 0.0600 0.0364 0.0504 0.0506

0.8 X1 0.2156 0.4728 0.3828 0.4416 0.2228 0.2484 0.3386 0.3462
X2 0.0518 0.1678 0.0736 0.1138 0.0490 0.0332 0.0428 0.0464

0.9 X1 0.1448 0.6110 0.3480 0.5122 0.1348 0.1394 0.1918 0.1940
X2 0.0552 0.4136 0.1462 0.2978 0.0554 0.0388 0.0478 0.0528

Table 1. Estimated rejection probabilities of the proportionality hypothesis of X1 and X2 for different values of n and ρ in case 1

Figure 1. Empirical Power and Type I Error Rate Curves across ρ in case 1
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8 PROPORTIONALITY TEST IN THE COX MODEL WITH CORRELATED COVARIATES

n ρ covar. Kr.Score Kr.KS Kr.CV Kr.AD Re.Score Re.KS Re.CV Re.AD

100

0.3 X1 0.4176 0.4592 0.4888 0.4834 0.4076 0.4346 0.4994 0.4802
X2 0.0736 0.0458 0.0556 0.0620 0.0514 0.0376 0.0564 0.0580

0.5 X1 0.3540 0.4382 0.4380 0.4462 0.3472 0.3564 0.4228 0.4070
X2 0.0722 0.0620 0.0622 0.0702 0.0498 0.0330 0.0572 0.0558

0.7 X1 0.2646 0.4184 0.3626 0.3856 0.2410 0.2376 0.2926 0.2822
X2 0.0684 0.1034 0.0702 0.0986 0.0532 0.0330 0.0494 0.0502

0.8 X1 0.2084 0.4474 0.3480 0.3958 0.1788 0.1738 0.2228 0.2148
X2 0.0646 0.1896 0.1076 0.1534 0.0532 0.0378 0.0556 0.0608

0.9 X1 0.1418 0.5924 0.3996 0.5162 0.1104 0.0890 0.1278 0.1252
X2 0.0658 0.4400 0.2376 0.3714 0.0544 0.0350 0.0540 0.0542

200

0.3 X1 0.6910 0.7712 0.7546 0.7540 0.7084 0.7524 0.7652 0.7604
X2 0.0532 0.0440 0.0510 0.0520 0.0620 0.0388 0.0494 0.0502

0.5 X1 0.6206 0.7484 0.7018 0.7132 0.6270 0.6616 0.6870 0.6794
X2 0.0638 0.0756 0.0594 0.0628 0.0582 0.0416 0.0514 0.0508

0.7 X1 0.4560 0.6842 0.5844 0.6066 0.4400 0.4572 0.4970 0.4866
X2 0.0546 0.1348 0.0756 0.0922 0.0508 0.0402 0.0508 0.0508

0.8 X1 0.3508 0.6818 0.5194 0.5732 0.3184 0.3248 0.3612 0.3590
X2 0.0602 0.2384 0.1064 0.1532 0.0546 0.0382 0.0542 0.0576

0.9 X1 0.2168 0.7608 0.5226 0.6408 0.1876 0.1710 0.2068 0.2064
X2 0.0568 0.5408 0.2564 0.4118 0.0552 0.0372 0.0488 0.0504

Table 2. Estimated rejection probabilities of the proportionality hypothesis of X1 and X2 for different values of n and ρ in case 2

Figure 2. Empirical Power and Type I Error Rate Curves across ρ in case 2
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The results of Table 1 and Table 2 show clearly, by testing the proportionality of X1 and X2, that the proposed
reformulation works well for the different values of n and ρ in the case of the score test and the classical tests. We
also note that the technique of [4] led to results similar to those of the proposed reformulation in the case of the
score test. For the classical tests, it has difficulty detecting the proportionality of X2 for large values of ρ.

4. Conclusion

To test the proportionality hypothesis of a specific covariate in the Cox model, a major risk arises when the covariate
tested and another non-proportional covariate are correlated. To remedy this problem, a reformulation of the score
tests and the classical tests is proposed. The idea is to change the covariate to be tested by a new covariate, which is
uncorrelated with the others and has the same proportionality property as the changed covariate. It stands out for its
simplicity of implementation and speed of execution compared with the [4] technique, which requires parameter
estimation for each proportionality test for each covariate.
A simulation study is carried out to examine and compare the performance of the two techniques. The results
clearly show that the proposed reformulation is an effective solution for testing the proportionality of a covariate
correlated with the others in the Cox model.
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