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Abstract Cloud detection and segmentation play a critical role in satellite imagery analysis and environmental monitoring.
This paper presents a novel hybrid approach that integrates traditional computer vision techniques with advanced machine
learning algorithms to enhance both accuracy and efficiency in cloud detection systems. The hybrid methods incorporate
image processing techniques such as HSV thresholding, morphological operations, histogram equalization, and Canny edge
detection, alongside ensemble learning models like Random Forest, SVM, K-Means clustering, and XGBoost. These hybrid
approaches outperform standard methods both in terms of accuracy and computational efficiency, with some hybrid methods
offering up to 15% higher accuracy and 70% faster processing times compared to their standard counterparts. These findings
highlight the potential of hybrid techniques to significantly improve real-time cloud detection performance.
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1. Introduction

Cloud detection and segmentation are crucial tasks in remote sensing, particularly in environmental monitoring,
weather forecasting, and satellite imagery analysis. Accurate identification of cloud regions in satellite images
is essential for improving the quality of data used in climate models, atmospheric studies, and other geospatial
applications. However, achieving precise cloud detection is a challenging task due to several factors, including
the variability in cloud formations, non-uniform illumination, atmospheric distortions, and sensor noise. These
complexities often degrade the performance of traditional detection methods.
Over the years, cloud detection has evolved from basic image processing techniques to more sophisticated machine
learning-based approaches. Early methods relied heavily on techniques such as thresholding and morphological
operations, which performed reasonably well in controlled environments but struggled in dynamic and complex
scenarios. With the rise of machine learning, algorithms such as Random Forest and Support Vector Machines
(SVM) have been employed to improve classification accuracy by learning discriminative features from cloud and
non-cloud regions. Despite these advancements, challenges remain, particularly when dealing with diverse cloud
morphologies and varying atmospheric conditions.
In response to these challenges, hybrid approaches that combine the strengths of computer vision and machine
learning have emerged as promising solutions. Hybrid methods aim to integrate the robust feature extraction
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capabilities of computer vision techniques with the predictive power of machine learning algorithms to provide
a more adaptable and accurate cloud detection system. For instance, techniques like HSV color segmentation can
effectively isolate cloud regions based on hue and brightness, while Canny edge detection can highlight cloud
boundaries, making segmentation more precise. When these methods are combined with machine learning models
like K-Means clustering, XGBoost, and Random Forest, the system is better equipped to handle the variability in
cloud images, leading to improved performance.
The novelty of hybrid approaches lies in their ability to address the limitations of standalone methods. Traditional
image processing techniques often rely on fixed thresholds or predefined rules, making them less adaptable to
diverse environmental conditions. Machine learning models, on the other hand, can be computationally intensive
and prone to overfitting if not carefully optimized. By combining these two approaches, hybrid methods leverage
the adaptability of machine learning with the efficiency and feature richness of image processing techniques,
offering a balance between accuracy and computational efficiency.
This paper explores a set of innovative hybrid techniques that integrate traditional image processing methods
such as HSV thresholding, morphological operations, and edge detection with machine learning algorithms like
Random Forest, SVM, K-Means clustering, and XGBoost. Through a comparative analysis of standard and hybrid
methods, we demonstrate significant improvements in key performance metrics, including accuracy, precision,
recall, and computational efficiency. For example, the hybrid XGBoost method achieves higher accuracy and
reduces processing time significantly compared to its standard counterpart, making it a viable solution for real-
time cloud detection applications.
The motivation behind this study lies in the urgent need for robust and real-time cloud detection solutions for
environmental monitoring, climate modeling, and satellite-based weather forecasting. Traditional approaches suffer
from low adaptability and high computational costs, while purely deep learning approaches often require extensive
computational resources and large annotated datasets, which are not always available.
The main contributions of this paper are:

• We propose a novel hybrid cloud detection framework that combines computer vision and machine learning
in a unified pipeline.

• We introduce a probabilistic mask fusion strategy that integrates multiple detection methods for robust
segmentation.

• We provide an extensive comparative analysis of standard vs. hybrid approaches on the CloudCast dataset,
highlighting significant gains in both accuracy and computational efficiency.

• We align the proposed methodology with reproducible open-source implementations to ensure replicability
of results.

The remainder of this paper is organized as follows: Section 2 reviews related work in cloud detection and
segmentation. Section 3 presents the mathematical formulation and hybrid framework combining computer vision
and machine learning. Section 4 details the methodology, datasets, and implementation workflow. Section 5
describes the standard and hybrid detection methods with illustrative block diagrams. Section 6 reports and
discusses experimental results and performance metrics. Finally, Section 7 concludes the paper and outlines future
research directions.

2. Related Work

Cloud detection and segmentation in remote sensing imagery have advanced significantly with the integration
of machine learning and computer vision techniques. Numerous studies have aimed to enhance accuracy and
efficiency in distinguishing clouds from other atmospheric and surface features in satellite and aerial imagery.
Early approaches primarily relied on traditional image processing methods, including thresholding and
morphological operations. For example, Zhu and Bamler proposed a framework for detecting moving objects
in airborne video sequences using advanced image processing techniques [Zhu and Bamler, 2005], which laid the
foundation for subsequent developments in cloud detection.
With the advent of deep learning, researchers have shifted toward more data-driven methods. Chen and Liu

Stat., Optim. Inf. Comput. Vol. x, Month 202x



2

applied deep neural networks to satellite imagery, achieving superior performance over traditional techniques
[Chen and Liu, 2019]. Their work demonstrated the power of convolutional neural networks (CNNs) in
automatically extracting discriminative features for accurate cloud identification.
Hybrid methodologies have also emerged, combining multiple modalities to enhance robustness and adaptability.
Nguyen et al. integrated multimodal data sources and machine learning models to improve cloud detection
under diverse environmental conditions [Nguyen et al., 2020]. Similarly, segmentation methods based on dynamic
HSV color spaces have been effective for cloud delineation in aerial imagery, as shown by Smith et al.
[Smith et al., 2018].
Further progress has been driven by hyperspectral imaging, where spectral–spatial feature extraction enhances
cloud discrimination. Zhang and Zhang demonstrated that spectral–spatial techniques significantly improve
detection accuracy in complex atmospheric settings [Zhang and Zhang, 2021].
Deep learning architectures such as DenseNet and U-Net have proven particularly effective for this task. Grosjean
et al. used deep CNNs to detect clouds and cloud shadows in optical satellite images, achieving high accuracy
and robustness [Grosjean et al., 2016]. These models effectively learn hierarchical spatial features critical for
distinguishing clouds from underlying terrain or water bodies.
Comprehensive reviews by Wang and Smith [Wang and Smith, 2018] and Gao and Zhang [Gao and Zhang, 2020]
summarized the transition from traditional image-based techniques to modern learning-based frameworks,
underscoring the transformative role of deep learning and large annotated datasets in cloud detection. Li and Liu
[Li and Liu, 2019] additionally focused on computational efficiency and scalability, crucial for operational satellite
data processing.
Similarly, the Thin-Cloud Modeling and Enhancement (TCME) framework proposed by Dai et al. (2024), along
with related studies on thin-cloud removal [Shang et al., 2024, Dai et al., 2024], emphasized that combining
physical priors with data-driven learning improves the treatment of semi-transparent cloud layers. This
hybridization bridges the gap between radiometric correction and deep representation learning, enhancing
generalization under variable atmospheric conditions.
Recent hybrid frameworks have further strengthened this synergy between physics-based modeling and AI-driven
feature extraction. Luo et al. (2025) and Tan and Huang (2025) showed that integrating spectral indices with
attention-based networks improves cloud–shadow separation and preserves spectral fidelity. Zhao et al. (2024)
advanced this direction using lightweight Transformer architectures capable of real-time segmentation, achieving
an optimal balance between inference speed and accuracy for onboard satellite applications.
Collectively, these works indicate a growing trend toward hybridization—combining physics-inspired priors,
spectral–spatial fusion, and adaptive learning—as the most promising paradigm for robust cloud detection and
segmentation in dynamic meteorological contexts.
Further studies (2024–2025) have extended this direction. Singh, Biswas, and Pal (2025) provided a comprehensive
review of cloud detection in optical satellite imagery, highlighting the move toward hybrid and adaptive fusion
strategies that combine spectral, spatial, and temporal cues [Singh et al., 2025]. Their findings align closely with
the hybrid integration approach proposed in this paper.
Tan and Huang (2025) also demonstrated the benefits of combining Vision Transformers (ViTs) with traditional
feature extractors, confirming that hybridization between deep architectures and handcrafted features remains
effective, especially under limited-data scenarios [Tan and Huang, 2025].
In addition, multimodal frameworks leveraging Sentinel-2 and Landsat-8 imagery have achieved strong cross-
sensor generalization. Luo et al. (2025) proposed a dual-branch architecture combining spectral indices with
CNN-based spatial features, resulting in more consistent performance across varying illumination and sensor
characteristics [Luo et al., 2025].
Finally, ensemble-based hybrid optimization strategies (e.g., Random Forest + CNN, XGBoost + Vision
Transformer) have enhanced cloud–shadow discrimination and temporal consistency in dynamic weather systems
(Zhou et al., 2024) [Zhou et al., 2024].
In summary, cloud detection and segmentation continue to evolve rapidly, propelled by advances in machine
learning, deep learning, and multispectral imaging. Hybrid frameworks that integrate classical vision pipelines
with data-driven learning models, as explored in this work, represent a natural and powerful evolution toward
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robust, efficient, and adaptive cloud detection systems. These developments expand the potential of remote sensing
applications in environmental monitoring, weather forecasting, and climate research.

3. Hybrid Methodology: Mathematical and Algorithmic Formulation

This section presents a rigorous, code-consistent mathematical formulation of the proposed hybrid cloud detection
framework. The methodology integrates deterministic computer vision (CV) preprocessing with supervised and
unsupervised machine learning (ML) classifiers, followed by weighted probabilistic fusion and final classification.
Each stage builds upon the previous, forming a coherent pipeline from raw input image to final cloud mask.

3.1. Feature Extraction via Computer Vision

Let I : Ω → R3 denote an input RGB image defined on a discrete pixel grid Ω ⊂ Z2. CV-based preprocessing
extracts features that capture spectral, structural, and morphological information:

IHSV = C(I), I ′V = H(IVHSV), E = G(I ′V ), M = R(E),

where C is RGB-to-HSV conversion, H histogram equalization on the value channel, G Canny edge detection, and
R morphological filtering (dilation/erosion).
An additional threshold-based mask is defined from HSV:

FHSV(x) =

{
1, H(x) ∈ [h1, h2] and S(x) < s0,

0, otherwise.

The resulting CV feature tensor is:

FCV = [FHSV, E,M ] ∈ RH×W×3.

These features provide a rich representation of the image, which is then used as input to both supervised and
unsupervised classifiers.

3.2. ML-Based Prediction

Each pixel i ∈ Ω is mapped to a feature vector fi = ϕ(FCV
i ) ∈ Rd, where ϕ denotes flattening/concatenation of CV

features. The supervised classifiers produce pixel-wise cloud probability maps:

MRF(i) =
1

T

T∑
t=1

ht(fi), MSVM(i) = σ
(
w⊤φ(fi) + b

)
, MXGB(i) = σ

(
K∑

k=1

ηfk(fi)

)
,

where ht is the output of the t-th RF tree, φ is the SVM kernel mapping, fk is the k-th XGBoost weak learner, η
the learning rate, and σ the logistic function.

These probability maps quantify the likelihood of each pixel belonging to a cloud, providing complementary
information to the unsupervised segmentation.

Unsupervised methods capture structural patterns that may not be fully represented in supervised learning:

MKM(i) = ⊮{fi ∈ cloud cluster from KMeans},

MHSV(i) = FHSV(i),

where ⊮{·} is the indicator function.
At this stage, both supervised and unsupervised masks are aligned spatially, enabling a consistent fusion strategy.
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3.3. Weighted Probabilistic Fusion

The soft masks Mm(i) ∈ [0, 1] from all methods m ∈ {RF, SVM, XGB, KM, HSV} are combined via a weighted
average:

Mhybrid(i) =
∑
m

αmMm(i),
∑
m

αm = 1, αm ≥ 0.

This fusion leverages complementary strengths of different methods, increasing robustness and reducing the
impact of individual model errors.

3.4. Final Binary Mask

A binary cloud mask is obtained by thresholding:

B(i) = ⊮{Mhybrid(i) > τ}.

This final mask represents the detected cloud regions and serves as the primary output for evaluation or
downstream applications.

3.5. Evaluation Metrics

The performance of the proposed cloud detection approach is quantitatively assessed by comparing the predicted
binary masks B(i) with the corresponding reference masks Bref(i). Both masks are represented in a pixel-wise
manner, where each pixel i is assigned one of two values:

B(i), Bref(i) ∈ {0, 255}

with 255 denoting a cloud pixel (positive class) and 0 a non-cloud pixel (negative class).
Based on this pixel-level comparison, we define the following quantities:

• True Positive (TP): number of pixels where B(i) = 255 and Bref(i) = 255.
• False Positive (FP): number of pixels where B(i) = 255 and Bref(i) = 0.
• True Negative (TN): number of pixels where B(i) = 0 and Bref(i) = 0.
• False Negative (FN): number of pixels where B(i) = 0 and Bref(i) = 255.

From these counts, the following standard evaluation metrics are computed:

Accuracy =
TP + TN

TP + FP + TN + FN
, Precision =

TP

TP + FP

Recall =
TP

TP + FN
, F1-score =

2 · Precision · Recall
Precision + Recall

, IoU =
TP

TP + FP + FN

where Accuracy reflects the overall pixel-wise correctness, Precision indicates the proportion of predicted cloud
pixels that are truly clouds, Recall measures the fraction of actual cloud pixels correctly detected, the F1-score
provides the harmonic mean of Precision and Recall, and the Intersection-over-Union (IoU) quantifies the overlap
between predicted and reference masks.

Remark : It is important to note that in our implementation, the reference masks Bref are obtained by combining
multiple intermediate detections, which serve as a proxy ground truth in the absence of manually annotated
reference images.

3.6. Annotated Hybrid Pipeline

Figure 1 illustrates the workflow:

• Raw input image undergoes CV preprocessing to generate spectral, structural, and morphological features.
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• Features are supplied to both supervised and unsupervised classifiers, producing probability masks.
• Weighted fusion consolidates all masks into a single hybrid probability map.
• Thresholding generates the final binary cloud mask.
• The binary mask is compared pixel-wise with the reference mask Bref, yielding evaluation metrics (Accuracy,

Precision, Recall, F1-score, IoU).

Input Image I

HSV Thresholding FHSV

Canny Edges E

Morphological Operations M

CV Feature Tensor FCV = [FHSV, E,M ]

Supervised ML
MRF,MSVM,MXGB

Unsupervised ML
MKM

Unsupervised ML
MHSV = FHSV

Weighted Fusion Mhybrid =
∑

αmMm

Final Binary Mask B(i)

Evaluation vs. Reference Mask Bref(i)
Metrics: Accuracy, Precision, Recall, F1, IoU

Figure 1. Hybrid CV–ML cloud detection pipeline. CV preprocessing (yellow) feeds ML modules (gray); outputs are fused
and evaluated

This Figure 1 presents the complete hybrid pipeline linking Computer Vision (CV) preprocessing and Machine
Learning (ML) modules. The CV stage performs RGB→HSV conversion, histogram equalization on the V-channel,
and edge/morphological feature extraction. The resulting feature tensor feeds multiple classifiers (SVM, Random
Forest, XGBoost, KMeans, HSV-based). Outputs are fused probabilistically and thresholded to produce the final
binary cloud mask.

4. Methodology

4.1. Data Preprocessing

We used the CloudCast dataset from Kaggle, which provides diverse cloud images under various conditions,
serving as a robust benchmark for evaluating cloud detection and classification methods. The preprocessing steps
include converting images to the HSV color space for better segmentation, applying filters to minimize noise, and
normalizing image intensity levels for uniformity.
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Dataset coverage :
While CloudCast provides a convenient benchmark, it lacks broader geographical/seasonal diversity and

multispectral channels. As future work, we will evaluate on Landsat-8 and Sentinel-2 to assess generalization
across sensors and climates.

4.2. Cloud Segmentation Techniques

4.2.1. Computer Vision techniques Cloud segmentation employs various computer vision techniques, notably
HSV (Hue, Saturation, Value) thresholding, morphological operations, and contour detection. HSV thresholding
effectively adapts to varying lighting conditions, enabling robust separation of clouds from the background by
isolating pixels with specific hue and brightness values. Morphological operations, such as dilation and erosion,
are used to refine the detected cloud regions by removing noise and filling small gaps in the masks. These operations
enhance the overall shape and connectivity of cloud structures, leading to more accurate segmentation results.
Coupled with these techniques, contour detection utilizes edge detection algorithms, such as the Canny edge
detector, to delineate cloud boundaries, providing detailed segmentation of cloud structures. Together, these
methods improve the accuracy of cloud detection across diverse atmospheric conditions, resulting in more reliable
outcomes for environmental monitoring and analysis.

4.2.2. Machine Learning Algorithms Machine learning algorithms significantly improve cloud segmentation
accuracy. Support Vector Machines (SVM) are favored for their high classification precision, as they identify the
optimal hyperplane to separate cloud pixels from non-cloud pixels based on derived features. K-Means clustering
groups similar pixels based on their RGB values, allowing for effective segmentation without requiring labeled data.
Random Forest employs ensemble learning to combine multiple decision trees, enhancing classification robustness
and reducing overfitting. XGBoost is another powerful tool, known for its speed and accuracy in creating strong
predictive models through gradient boosting. Together, these algorithms contribute to more accurate and efficient
cloud detection.

4.2.3. Hybrid Approach The hybrid approach merges computer vision techniques with machine learning
algorithms to enhance segmentation performance. Initially, computer vision methods like HSV thresholding
may isolate potential cloud regions, which are then refined and classified using machine learning models.
This integration addresses the limitations of each method when used alone, leading to improved accuracy and
computational efficiency. By leveraging both methodologies, the hybrid approach is well-suited for large-scale
environmental monitoring and real-time applications, significantly advancing cloud detection capabilities.

4.3. Implementation Details: Hyperparameters and Hardware

All experiments were performed on a MacBook Pro running macOS 13.10 (High Sierra), equipped with an Intel
Core i7 processor (2.8 GHz, 4 cores) and 16 GB of RAM. The implementation was carried out in Python 3.9, using
OpenCV 4.8 for image processing, Scikit-learn 1.3 and XGBoost 1.7 for machine learning, and Matplotlib 3.7 for
visualization. All computations were executed on the CPU, without GPU acceleration.
The developed framework integrated classical computer vision techniques with machine learning pipelines for
cloud segmentation. Hyperparameters were empirically optimized to ensure stability and generalization across
video frames. For the Random Forest (RF) classifier, the number of estimators was set to 50 in the hybrid
configuration and 100 in the standard version, with a maximum depth of 10 and a fixed random seed (42) for
reproducibility. The Support Vector Machine (SVM) employed a radial basis function (RBF) kernel, a termination
criterion of 100 iterations, and an accuracy tolerance of 10−6. The K-Means clustering algorithm was configured
with k = 2, 10 iterations, and random centroid initialization. The XGBoost classifier was trained with a maximum
tree depth of 3, a learning rate of η = 0.1, and 100 boosting rounds using the logistic loss objective function.
HSV-based segmentation methods utilized adaptive thresholds adjusted interactively via OpenCV trackbars. All
hybrid variants incorporated a preprocessing stage consisting of histogram equalization, Canny edge enhancement,
and morphological filtering. For each method, the execution time per frame (CPU time) was recorded and averaged
over multiple runs to evaluate computational efficiency and scalability.
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HSV Thresholding and Morphological Parameters : Dynamic HSV thresholding is initialized with empirically
chosen ranges for cloud detection: Hue (H) 0–50, Saturation (S) 0–60, and Value (V) 180–255. These thresholds
can be interactively adjusted using OpenCV trackbars for dataset-specific tuning. Binary masks generated from
HSV segmentation are processed with morphological operations using a 5×5 kernel. The structuring element is
either rectangular or elliptical, applied in opening and closing operations to remove noise and fill holes. Contours
extracted from the masks are filtered based on area, with a minimum contour size of 5000 pixels to exclude
insignificant regions. These settings reflect the exact parameters used in the code, ensuring full reproducibility.

5. Cloud Detection and Segmentation Methods

We employ a variety of methods for cloud detection, each utilizing distinct techniques to achieve its goals. These
methods include both standard algorithms and their hybrid counterparts, which combine multiple approaches to
enhance performance and accuracy. Here, we describe each method used, focusing on the differences between
standard and hybrid methods, and detailing the image processing and computer vision techniques combined in
each hybrid method.

5.1. Random Forest

Standard Method : Figure 2 (No yellow blocks), The standard Random Forest method utilizes an ensemble of
decision trees to classify each pixel in the image as either cloud or non-cloud based on features derived from the
pixel values. This machine learning approach is effective in handling complex patterns due to its ensemble nature,
which reduces overfitting and improves generalization. The standard Random Forest method for cloud detection is
a straightforward machine learning approach that combines K-Means clustering with a Random Forest classifier to
segment and classify the clouds in an image. Initially, the input image is reshaped into a 2D array of pixel values,
where each pixel is represented by its RGB color channels. K-Means clustering is applied to divide the image into
two clusters, broadly representing clouds and non-clouds. The Random Forest classifier is then trained on these
clusters, learning to predict whether each pixel belongs to a cloud or background. Once the classifier has been
trained, it generates a prediction for the entire image, which is then converted into a binary mask using Otsu’s
thresholding technique. Finally, cloud regions are identified using contour detection, and only those with areas
greater than a specified threshold are extracted as detected clouds. This method, while effective, does not include
any additional preprocessing or enhancement of the input image.

Input Image

Reshape Image

K-Means Clustering

Random Forest Classifier

Output Mask

HSV Conversion

Histogram Equalization (V)

Edge Detection (Canny)

Combine with Original Image

Figure 2. Standard Random Forest Architecture (No yellow blocks) and Hybrid Random Forest Architecture (With yellow
blocks).

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8

Hybrid Method : Figure 2 (With yellow blocks), The hybrid Random Forest method introduces additional
image processing techniques to enhance cloud detection by providing more robust feature information to the
classifier. This approach begins with the conversion of the input image into the HSV color space, where
histogram equalization is applied to the brightness channel (V) to improve contrast, making cloud regions
more distinguishable. Following this, edge detection using the Canny algorithm is performed to highlight cloud
boundaries, which are then combined with the original image for a more textured input. This enhanced image
is reshaped and segmented using K-Means clustering, similar to the standard method, but with improved input
features. The Random Forest classifier in the hybrid approach is further optimized with fewer trees and a limited
depth, leading to a more computationally efficient and focused training process. The predictions from the classifier
are then converted into a binary mask, and cloud contours are extracted. By integrating contrast enhancement and
edge detection, the hybrid method provides a more sophisticated approach, potentially yielding better accuracy in
detecting cloud structures.

5.2. HSV Color Segmentation

Standard Method : Figure 3 (No yellow blocks), the standard HSV color segmentation method is a
straightforward approach to identifying specific colors in an image using the HSV (Hue, Saturation, Value) color
space. This method begins by converting the input image from the BGR color space (commonly used in OpenCV)
to the HSV color space, which separates color information (hue) from intensity (value) and saturation. By defining
minimum and maximum HSV values for the target color—in this case, bright white clouds—this method generates
a binary mask that highlights the pixels within the specified color range. Contour detection is then applied to
the resulting mask to identify distinct cloud shapes, which are filtered based on a specified minimum area to
exclude small, irrelevant contours. The extracted contours represent the detected clouds in the image, allowing for
straightforward analysis.

Input Image

HSV Segmentation

Output Mask

Dynamic Filtering (Mask)

Morphological Operations

Figure 3. Standard HSV Color Segmentation Architecture (No yellow blocks) and Hybrid HSV Color Segmentation
Architecture (With yellow blocks)

Hybrid Method : Figure 3 (With yellow blocks), the hybrid dynamic HSV segmentation method enhances the
standard approach by incorporating additional image processing techniques to improve accuracy and reduce noise.
Similar to the standard method, it starts with converting the input frame to the HSV color space. However, after
applying dynamic filtering based on adjustable HSV minimum and maximum values, a more refined mask is
generated, allowing real-time tuning to adapt to varying lighting conditions or image characteristics. Following the
creation of this mask, morphological operations, such as closing, are performed to eliminate small holes and noise,
resulting in a cleaner representation of the target areas. This step is crucial for improving the accuracy of contour
detection. The contours are further filtered based on size to exclude smaller areas, ensuring that only significant
cloud formations are considered. The combination of dynamic filtering and morphological operations in this hybrid
method results in improved contour detection and extraction of clouds, making it more robust against noise and
other artifacts in the image.
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5.3. K-Means Clustering

Standard Method : Figure 4 (No yellow blocks), the standard K-Means Clustering method groups pixels into
clusters based on their RGB values, identifying clouds as one of the clusters. This unsupervised learning technique
is useful for partitioning the image into distinct regions but can be sensitive to noise and outliers. The process
involves reshaping the input image into a 2D array where each pixel is represented by its RGB values, applying
k-means clustering to assign cluster labels, and then converting these labels into a segmented image.

Input Image

K-Means Clustering

Output Mask

HSV Thresholding

Post-Processing

Figure 4. Standard K-Means Clustering Architecture (No yellow blocks) and Hybrid K-Means Clustering Architecture (With
yellow blocks)

Hybrid Method Figure 4 (With yellow blocks), to address these limitations, the Hybrid K-Means Clustering
method incorporates HSV thresholding and post-processing steps. The process begins with preprocessing the input
image by converting it to the HSV color space and applying color thresholding to filter out non-cloud regions. This
highlights potential cloud areas before applying k-means clustering. After clustering, a binary mask is created using
thresholding techniques, and post-processing steps such as morphological operations refine the mask, improving
the accuracy of cloud detection.

5.4. XGBoost

Standard Method : Figure 5 (No yellow blocks), the standard XGBoost method is a gradient boosting
algorithm that combines multiple weak classifiers to form a strong classifier. This method is known for its high
prediction accuracy and robustness against overfitting. The standard XGBoost method for cloud detection utilizes
a straightforward approach based on color segmentation. Initially, the input image is converted from the BGR color
space to the HSV color space, which helps in distinguishing the hues associated with clouds more effectively.
By defining specific minimum and maximum HSV thresholds tailored for bright white clouds, a binary mask is
generated to isolate the cloud regions within the image. The contours of these identified regions are then extracted
and analyzed to calculate their mean color values. These values serve as input features for the XGBoost model,
which predicts the likelihood of cloud presence based on the trained data. While this method is effective for basic
detection, it may be susceptible to noise and inaccuracies in more complex or cluttered images, limiting its overall
robustness.

Hybrid Method : Figure 5 (With yellow blocks), the hybrid XGBoost method enhances cloud detection
by integrating additional image processing techniques with dynamic color thresholding, resulting in improved
accuracy and reliability. Initially, the input image is converted to the HSV color space, similar to the standard
approach. However, instead of using fixed HSV thresholds, this method employs dynamic color thresholds that
are adjustable via trackbars, allowing for real-time tuning of the minimum and maximum HSV values based on
the specific conditions of the input image. After generating a mask using these dynamic thresholds, morphological
operations, such as closing and opening, are applied to the mask to reduce noise and fill gaps, resulting in a cleaner
representation of potential cloud areas. Contours are then identified and filtered based on size to eliminate small,
insignificant regions. The mean color values within these contours serve as features for the XGBoost model. By
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Input Image

HSV Segmentation

Contour Detection

XGBoost Classifier

Output Mask

Dynamic Filtering (Mask)

Morphological Operations

Additional Features

Figure 5. Standard XGBoost Architecture (No yellow blocks) and Hybrid XGBoost Architecture (With yellow blocks).

combining dynamic color filtering with advanced image processing techniques, the hybrid method significantly
enhances cloud detection capabilities, allowing for improved predictions in diverse lighting and environmental
conditions.

5.5. SVM (Support Vector Machine)

Standard Method : Figure 6 (No yellow blocks), the standard SVM method finds the optimal hyperplane to
separate cloud and non-cloud pixels based on their features. SVM is effective in high-dimensional spaces and is
known for its robustness in classification tasks.

Input Image

SVM Classifier

Output Mask

Features

Ensemble Methods

Figure 6. Standard SVM Architecture (No yellow blocks) and Hybrid SVM Architecture (With yellow blocks)

Hybrid Method Figure 6 (With yellow blocks), the Hybrid SVM method enhances this by using advanced
feature extraction methods that capture edge and gradient structure information, which is particularly useful for
detecting cloud boundaries. Additionally, combining SVM with ensemble methods, such as integrating it with
other classifiers, enhances its robustness and accuracy by leveraging the strengths of multiple approaches.

5.6. Combining Masks Probabilistically

The probabilistic mask fusion method integrates outputs from multiple cloud detection algorithms into a single
unified mask, enhancing accuracy and robustness by leveraging the complementary strengths of each technique. It
operates by accepting binary or probabilistic masks from detectors such as HSV segmentation, K-Means clustering,
SVM, Random Forest, and XGBoost. Each mask is optionally weighted and thresholded to produce a probabilistic
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representation of cloud presence per pixel. These individual probabilistic maps are then aggregated to form an
ensemble estimate of cloud likelihood across the image.

Formally, let Mm(x) ∈ {0, 1} denote the binary decision of method m for pixel x, obtained after thresholding at
a method-specific level tm. The final consensus mask is determined by a majority-based aggregation rule:

Mcomb(x) = ⊮

(
M∑

m=1

Mm(x) >
M

2

)
,

where M is the total number of detection methods. This unweighted ensemble approach assumes that each
detector contributes equally to the decision, favoring regions consistently identified as cloudy across methods
while suppressing isolated detections.
From a theoretical standpoint, this aggregation can be viewed as a discrete approximation of a Bayesian ensemble
model. If each detector m estimates a posterior probability pm(y=1 | x), and assuming approximate conditional
independence given the true class label y, the optimal Bayesian fusion would combine these posteriors as a convex
combination:

p(y=1 | x) ≈
M∑

m=1

αm pm(y=1 | x),

with uniform weights αm = 1
M . Our majority-vote implementation approximates this process, yielding a robust

probabilistic fusion without requiring explicit calibration or spatial modeling.
This probabilistic accumulation effectively balances sensitivity and specificity, reducing random false detections
and capturing the most consensual cloud regions. The final hybrid mask thus reflects a statistically grounded
consensus across heterogeneous classifiers, improving detection stability and reliability in varying atmospheric
and illumination conditions.

6. Synthetic Comparison of Hybrid Methods with Standard Methods

6.1. Results of Cloud Segmentation Methods

The results in the Figure 7 show that standard cloud detection methods, such as Random Forest, K-Means,
SVM, and XGBoost, often struggle with accuracy. These methods tend to produce incomplete cloud boundaries
or misclassifications, especially in complex scenes. The combined mask, though aggregating outputs from all
methods, still shows noise and inconsistencies, reflecting the limitations of using these approaches in isolation..
The results in the Figure 8 highlight the superior performance of hybrid methods, which combine computer vision
techniques with machine learning. The cloud boundaries are much clearer, with fewer errors and noise compared
to standard methods.

6.2. Comparative Evaluation of Hybrid and Standard Cloud Detection Methods

This section provides a comprehensive comparison between Hybrid and Standard (Std) cloud detection
approaches, including HSV thresholding, K-Means clustering, XGBoost, SVM, and Random Forest (RForest). Each
model was evaluated using six performance indicators—Accuracy, Precision, Recall, F1-score, Intersection-
over-Union (IoU), and CPU Time per frame. Table 1 summarizes the numerical results, while Figure 9
illustrates the relative trends in Accuracy, IoU, and computational cost. Both representations confirm the consistent
performance enhancement achieved through hybridization.
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Figure 7. Visual Examples of Cloud Segmentation : standard methods & combined mask

Table 1. Mean Metrics and Accuracy Gain Between Hybrid and Standard Methods

Method Accuracy Precision Recall F1-Score IoU CPU Time
(s/frame) Gain (%)

HSV-Hybrid 0.9737 0.9542 0.9663 0.9597 0.9233 0.0137 +16.6
HSV-Std 0.8350 0.9809 0.5058 0.6672 0.5006 0.0120 –

KMeans-Hybrid 0.9810 0.9683 0.9736 0.9704 0.9432 0.8368 +13.4
KMeans-Std 0.8650 0.7389 0.9116 0.8147 0.6889 1.2567 –

XGBoost-Hybrid 0.9550 0.9637 0.8981 0.9289 0.8684 0.0170 +11.9
XGBoost-Std 0.8536 0.9802 0.5638 0.7155 0.5573 3.1885 –

SVM-Hybrid 0.5910 0.4830 0.6096 0.5369 0.4506 4.0350 +1.1
SVM-Std 0.5847 0.4770 0.5949 0.5275 0.4418 660.2790 –

RForest-Hybrid 0.5135 0.3783 0.5153 0.4354 0.3535 5.0448 +41.0
RForest-Std 0.3644 0.2666 0.3612 0.3049 0.2447 15.3715 –
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Figure 8. Visual Examples of Cloud Segmentation : hybrid methods & combined mask
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Figure 9. Visualization of Accuracy, IoU, and CPU Time for Hybrid vs. Standard methods. The data correspond to Table 1.
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Figure 9 and Table 1 jointly confirm the superior performance of the Hybrid configurations across all models.
Hybridization systematically enhances both accuracy and spatial overlap, while often reducing computational
cost.

Quantitative Comparison: The relative gain in Accuracy between Hybrid and Standard variants is computed as:

Gain (%) = 100×
AccHybrid − AccStd

AccStd
.

Hybrid configurations yield significant improvements, ranging from modest (+1.1% for SVM) to substantial
(+41.0% for RForest). Notably, KMeans-Hybrid and HSV-Hybrid achieve IoU values exceeding 0.92, almost
doubling those of their standard counterparts. These gains confirm enhanced segmentation fidelity and
reduced boundary uncertainty.

Statistical Significance and Variability: Thirty independent realizations were used to assess robustness. Hybrid
models show lower variance in IoU and F1-score distributions. A paired Student’s t-test demonstrates
statistically significant differences (p < 0.05) for all methods except SVM, confirming that the observed
improvements are not random artifacts but consistent across datasets.

Probabilistic Interpretation of Fusion: The Hybrid decision rule can be understood as a convex combination of
posterior probabilities from each base classifier:

p(y|x) =
∑
m

αm pm(y|x),

with αm ≥ 0 and
∑

m αm = 1. This fusion approximates the Bayes-optimal decision rule under conditional
independence. In log space, this becomes:

log p(y|x) ≈
∑
m

wm log pm(y|x),

where wm denotes reliability weights derived from validation performance. The final decision threshold τ is
empirically optimized to maximize the F1-score. This probabilistic fusion explains the improved robustness:
it integrates complementary confidence sources, mitigating uncertainty in ambiguous cloud regions such as
haze, thin cirrus, or shadow transitions.

Error Analysis Across Metrics:

• Accuracy and F1-Score: Hybrid models significantly reduce both false positives and negatives,
yielding smoother and more coherent segmentation maps.

• Precision: Slight precision decreases (e.g., HSV-Hybrid) correspond to improved detection of faint
clouds—beneficial for complete coverage.

• Recall: Gains up to 10–15% indicate better sensitivity to subtle structures.
• IoU: Enhanced IoU values confirm reduced spatial fragmentation and improved consistency with

ground truth.
• CPU Time: Hybrid methods are computationally efficient; e.g., XGBoost-Hybrid and HSV-Hybrid

achieve near real-time inference while improving accuracy.

Overall Insights: The Hybrid architecture achieves:

• Higher segmentation fidelity (↑IoU, ↑F1-score);
• Improved balance between recall and precision;
• Lower variability and higher statistical reliability;
• Reduced computational overhead for comparable or better accuracy.
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Collectively, these results establish the Hybrid fusion framework as a statistically grounded, probabilistically
interpretable, and computationally scalable approach for real-time cloud detection in remote sensing
applications.

Summary: Hybrid methods consistently outperform their standard counterparts in both accuracy and efficiency.
KMeans-Hybrid achieves the highest accuracy (0.9810), followed closely by HSV-Hybrid (0.9737) and XGBoost-
Hybrid (0.9550). Standard methods such as KMeans-Std and HSV-Std remain below 0.87 in accuracy. Hybrid
variants also drastically reduce CPU time—for instance, HSV-Hybrid processes a frame in 0.0137 s, while SVM-
Std requires more than 660 s. This synergy between improved accuracy and computational efficiency highlights the
strong potential of hybrid approaches for scalable, real-time cloud segmentation pipelines.

7. Conclusion

This study highlights the significant advancements that hybrid cloud detection techniques offer over traditional
methods. By integrating computer vision techniques such as HSV thresholding, morphological operations, and
Canny edge detection with machine learning algorithms like Random Forest, K-Means clustering, SVM, and
XGBoost, the proposed hybrid approaches provide substantial improvements in both accuracy and computational
efficiency. Overall, hybrid configurations achieve accuracy improvements ranging from 1% to over 40% and
reduce CPU time by more than 70% compared to their standard counterparts, surpassing the previously reported
15% gain.

In particular, the hybrid methods show a strong capacity to handle the inherent variability and complexity of
cloud structures, adapting effectively to diverse conditions in satellite imagery. For instance, KMeans-Hybrid
achieved an accuracy of 98.10%, outperforming the standard KMeans by more than 11 percentage points.
Likewise, the XGBoost-Hybrid method demonstrated substantial improvements, reducing processing time from
3.19 seconds per frame to 0.017 seconds, demonstrating real-time suitability and superior computational
efficiency compared to earlier estimates.

These findings underscore the importance of combining the robustness of image processing with the predictive
power of machine learning. The hybrid approaches not only improve the detection of cloud boundaries and features
but also optimize computational efficiency, which is critical for large-scale, real-time environmental monitoring
systems. This enhanced framework effectively bridges the gap between interpretability and performance, providing
consistent segmentation accuracy even in complex cloud dynamics.

This hybrid strategy provides a promising path for future cloud detection models, as it addresses the limitations
of both standalone machine learning and traditional image processing methods.

Moving forward, this study paves the way for further exploration of more sophisticated hybrid frameworks
that can leverage deep learning architectures, additional spectral-spatial data, and larger datasets. By continuing
to refine and enhance these hybrid techniques, future research can extend the scope and applicability of cloud
detection systems, improving performance even further in more complex and dynamic environments. Ultimately,
these innovations hold significant potential for applications ranging from satellite-based environmental monitoring
to advanced weather forecasting systems.

Overall, our findings show that hybrid approaches not only outperform standard techniques but also
complement state-of-the-art deep learning models. They provide interpretable, scalable, and computationally
efficient alternatives, which is essential in operational contexts where annotated datasets and GPU resources are
limited. Future research will investigate hybrid integration with deep learning and transformer-based architectures,
ensuring robustness and efficiency in next-generation cloud detection systems.
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