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1. Introduction

The blockchain technology has revolutionized how information is stored, tasks are executed, and trust is established
among participating nodes. However, despite the considerable attention it has garnered in various application
contexts in recent years, the issue of privacy and security remains a central topic of debate. Hash algorithms play
a crucial role in ensuring the integrity and security of data in blockchain systems, but they are not without their
flaws [33]. The inherent transparency and limited customization capability of existing hashing techniques make
them vulnerable to attacks, particularly those exploiting the deterministic nature of algorithms [13].

Hash algorithms have a rich history of evolution and challenges. In 1990, Ron L. Rivest designed Merkle
Damgérd 4 (MD4), a 128-bit hash function [32], for which collisions were found in 1995 [34], followed by a
method for finding preimages in 2005 [39]. Its successor, MD5, announced in 1991, also uses the Merkle-Damgard
iterative construction and has weaknesses despite an improved design [14]. Collisions for MD35 were discovered in
2004 [22], rendering this hash function vulnerable to fast attacks. In 1995, NIST proposed SHA-1, a 160-bit hash
function [30], which showed signs of weakness in 2005 [11]. Although collisions have not yet been published,
National Institute of Standards and Technology (NIST) advises replacing SHA-1 by 2010 [31].

Since their introduction, MD5 and SHA-1 have been widely used in many cryptographic systems, but their
replacement is still ongoing. In 2001, NIST introduced the SHA-2 family, which has withstood all cryptanalysis
attempts so far [26]. While newer hash functions such as SHA-3 (Keccak) [23] and BLAKE2 [16] offer alternative
designs with strong security guarantees, SHA-2 remains the dominant choice in blockchain Proof-of-Work systems
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(e.g., Bitcoin). Our work therefore focuses on hardening SHA-256, rather than replacing it, to improve resistance
to automated and hardware-accelerated attacks while maintaining compatibility with existing infrastructure.

In this paper, we propose a new hash method based on the Fisher—Yates shuffle algorithm. By combining
design principles from Merkle-Damgérd-based hash functions, particularly SHA-2, with random permutations
via the Fisher—Yates shuffle, we have developed a new hardened hash function. The randomization effect of this
combination makes it more resistant to automated reasoning attacks, such as those based on the SAT solvers,
while inheriting the collision resistance of SHA-2 against all known full-round attacks[26]. By exploring this
advancement, this work explores a new hashing method’s potential to bolster blockchain security and overcome
challenges inherent in conventional hashing techniques.

2. Merkle-Damgard with Permutation

A hash function is a one-way function that maps a message of arbitrary length to a fixed-length output, known as a
message digest. It must satisfy several essential cryptographic properties: resistance, second-preimage resistance,
and collision resistance, while remaining efficient to compute and deterministic. The Merkle-Damgard construction
is an algorithmic method commonly used to build cryptographic hash functions from a fixed-size compression
function. It is employed in many widely used hash algorithms, including MD5, SHA-1, and SHA-2.

An improvement proposed in the literature to enhance hash functions involves introducing a permutation before
processing the final message block in the Merkle-Damgard framework, as described in [37].

Yo = IV,
yi:f(yiflvMi)v i:]-w"vt_]-v (1)
ye = f (I (ye—1) , My)

where IV is the initial value, M; denotes the ith message block, f is the compression function, and II is a public
permutation applied to the chaining value y;_.

This modification aims to strengthen certain security aspects of the construction. Specifically, the permutation
helps mitigate length extension attacks by masking the internal state prior to the last compression step; however,
it does not improve preimage or collision resistance beyond that of the underlying compression function [37].
Figure 1 illustrates this hashing method, showcasing how the permutation is integrated into the iteration process.

M, M, M, M,

h(m)

3 Permutation ::)

Figure 1. Merkle-Damgéard with permutation construction (MDP)
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3. SHA-256 Background

Our construction is based on the SHA-256 hash function [8], which processes messages in 512-bit blocks using a
Merkle-Damgard structure with a 256-bit chaining value. Below we recall its key components.

3.1. Message Padding

Let M be a message of ¢ bits. SHA-256 pads M as follows:

1. Append a single bit “1”.
2. Append k zero bits, where k is the smallest non-negative integer such that £ + 1 + k = 448 (mod 512).
3. Append the 64-bit binary representation of /.

The result is a padded message of length divisible by 512 bits, parsed into 32-bit words.

3.2. Round Constants
SHA-256 uses 64 fixed 32-bit constants K, ..., Kg3, defined as:
K; = |2%% - frac (¢/pi) | »

where p; is the i-th prime number (starting from py = 2), and frac(z) = = — |z, as specified in FIPS 180-4 [8].

3.3. Message Schedule and Compression

Each 512-bit block is expanded into 64 words Wy, ..., Wgs using recurrence relations involving o and ;. The
compression function then applies 64 rounds of Add-Rotate-XOR (ARX) operations using the K; constants and
the schedule W;.

In Section 5, we modify this standard process by introducing dynamic permutations ¢ (on W; indices) and 7 (on
state variables), as detailed below.

3.4. SHA-256 Compression Function

Our construction retains the full SHA-256 round function, including its 64 rounds of ARX operations using the
standard functions Ch, Maj, 3y, X1, 09, and o1, as defined in FIPS 180-4 [8]. The message schedule W, is expanded
from the 16 input words, and the state variables a, b, c,d, e, f, g, h are updated iteratively using the constants K.
We refer the reader to [8] for the complete specification.

4. Fisher—Yates shuffle

The following algorithm describes the Fisher—Yates Shuffle, a method for generating a random permutation of a
finite sequence [6].

Algorithm 1 Fisher—Yates Shuffle

: Input: List H of n elements, random number generator R
: fori =n —1downto1ldo
j < R(0,4) {uniform random integer in [0, 7] }
Swap H|[j] and Hi]
end for
: Output: Permuted list H

AN i e

This algorithm has a time complexity of O(n), where n represents the number of elements in the list. This linear
complexity ensures efficiency and minimal computational overhead, making it suitable for use in performance-
sensitive applications such as cryptographic hashing.
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When the source of randomness is unbiased, the Fisher—Yates Shuffle produces each of the n! possible
permutations with equal probability, resulting in a uniformly random reordering. This property is valuable in
contexts where unpredictability and lack of structural bias are desired. However, the security of any cryptographic
application depends critically on the quality of the underlying random number generator, not on the shuffling
algorithm itself.

4.1. ChaCha20: A Stream Cipher for Secure Permutation Generation

ChaCha20 is a modern stream cipher designed by Daniel J. Bernstein [4], intended as an efficient and secure
alternative to Salsa20 [5]. It operates by generating a pseudorandom keystream from a 256-bit secret key, a 96-bit
nonce, and a 32-bit block counter. This keystream is then XORed with plaintext to produce ciphertext, or, in our
case, used to sample uniformly random integers for cryptographic shuffling.

The core of ChaCha20 is its block function, which applies a series of ARX operations over 10 rounds on a 512-
bit state initialized from the key, nonce, and counter. The output is a 512-bit block of pseudorandom bytes, suitable
for use in applications requiring high entropy and resistance to cryptanalysis [10].

In our construction, we leverage ChaCha20 not for encryption, but as a deterministic yet unpredictable source
of randomness to drive the Fisher—Yates shuffle. By seeding it with a fixed public parameter and varying the nonce
per block (encoded with block index and domain separation), we ensure that each invocation generates distinct,
uniformly distributed permutations ¢ and 7, while remaining reproducible for a given input and seed. This approach
aligns with best practices in cryptographic design, where well-vetted primitives are repurposed to enhance security
without introducing new vulnerabilities [28].

ChaCha20 as a public PRF. We use ChaCha20 solely as a deterministic PRF with a public fixed parameter
S* € {0,1}?% (equal to the implementation’s seed; its hex value appears in App. A). A domain-separation
tag “FYS-256/v1” is absorbed before sampling the Fisher—Yates draws. With S* fixed, the construction is fully
deterministic and uses no secret. We refer to this concrete instance as FYS-256.

5. Our Contribution: Dynamic Permutations in SHA-256

In this work, we study a variant of the SHA-256 compression function that preserves its core design while
introducing deterministic, PRF-derived permutations to disrupt structural regularities exploitable by automated
solvers (e.g., SAT-based methods). The construction retains all standard components of SHA-256, including
message-schedule expansion, round constants K, and the logical functions Ch, Maj, 3¢, 31, 09, 01, and modifies
two aspects:

¢ Permutation of message schedule indices (¢): Instead of processing the expanded words W; in fixed order
t=0,...,63, we apply a Fisher—Yates shuffle whose draws are deterministically derived from ChaCha20 in
PRF mode with a public fixed parameter s. Formally, for block index b, define

Osb € Sea = FY(ChaCha20(s, nonce = LEgs(b), counter = 0, tag = *‘FYS-256/v1’"’ ))

Where LEgs(b) denotes the 96-bit little-endian encoding of the block index b , used as the nonce for
ChaCha20.
At round r we use W, () in place of W.,..

¢ Periodic state permutation (7): Every 8 rounds (i.e., when » = 7 (mod 8)), we apply a permutation to
(a,b,c,d,e, f, g, h) to reassign roles for the next window. Let g = [r/8] (with g € {0, ..., 7}). Define

Ts,bg € S = FY(ChaChaQO(s, nonce = LEgg(b), counter = g, tag = *‘FYS-256/v1’’ )),

and set (a',...,h") = (zx_, (0)»--»Tr,, (7)) for the next 8-round window, where (o, ...,z7) is the pre-
permutation state. For fixed s and b the construction is fully deterministic and uses no secret.
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Notation: FY(-) denotes the Fisher—Yates permutation generated from the byte stream (unbiased via rejection
sampling).

These permutations are generated on-the-fly using a public fixed parameter and the block index as inputs
to ChaCha20 in PRF mode, producing pseudorandom-looking yet fully deterministic streams. Crucially,
the underlying arithmetic operations remain unchanged; only the dataflow and variable assignment are
deterministically permuted.

This approach is illustrated in Figure 2, which shows how each compression block fi s 5 uses:

* The original message schedule Wy, ..., Wss,

* A permuted access order 0.5 (applied to W indices),

¢ A periodic state reordering 7S (applied every 8 rounds to (a,...,h)),

* And the same 64 SHA-256 rounds with unmodified K; and logical functions.

My M, M;
ChaCha20(seed, block
W |fosns fosms ID) - oS , S (per f os.nsl——>h(M)
:> - block);
K()... K63 not
permuted

[ Details of an f ;s s block ]

Message schedule Permutation 64 SHA-256 rounds:

I ) oSofW [——) (applynstostate
0 763 (indices 0...63) (a,...,h) every 8 rounds)

Figure 2. Overview of our modified Merkle-Damgard construction with dynamic o and 7 permutations.

Remark: We permute every 8 rounds to match the eight working words; within each 8-round window the SHA-
256 wiring (Xg, X1, Ch, Maj) is unchanged, and the boundary permutation merely reassigns roles. This breaks long
static dataflow (useful to SAT/ASIC pipelines) without introducing unstructured dependencies; among cadences
{1,4, 8,16}, a period of 8 provided the best trade-off between solver resistance and computational overhead in our
experiments.

5.1. Message Schedule Computation via oy and o,

The message schedule is a sequence of 64 words Wy, W1, ..., Wgs, each 32 bits long, derived from the initial 16
message words My, ..., Mis. The first 16 words are copied directly from the padded input:

For indices 16 < ¢ < 63, each word W; is computed recursively using two non-linear mixing functions, denoted
oo and o1, as follows:

Wi =Wi_16 + oo(Wiz1s) + Wir + o1 (Wi_a),

where all additions are performed modulo 232 (i.e., on 32-bit unsigned integers).
The functions o and o introduce diffusion by combining rotated and shifted versions of their input word:
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* oo(x) mixes the 32-bit word x using:
oo(z) = ROTR"(2) @ ROTR'®(z) ® SHR?(x),

* o1 () mixes x using:
o1(z) = ROTRY () @ ROTRY () @ SHR' ().

Here:

* ROTR"™(z) denotes a right rotation of the 32-bit word z by n positions (bits shifted out on the right reappear
on the left),

¢ SHR"(x) denotes a logical right shift by n positions (zeros are shifted in from the left),

* @ denotes bitwise XOR.

This design ensures that each expanded word W; (for ¢ > 16) depends non-linearly on four earlier words in the
schedule, creating a high degree of avalanche effect and diffusion across the entire 64-word sequence. The use
of both rotation (which preserves all bits) and shift (which discards bits) introduces asymmetric, non-invertible
mixing, making it difficult to reverse-engineer earlier words from later ones.

In our implementation, this expansion is computed exactly as described above; the resulting schedule
W, ..., Wss is then used in the compression phase, with word access order modified by our permutation o (see
Section 5).

5.2. Compression Function with Dynamic Permutations

In our construction, we retain the standard Merkle-Damgard framework and SHA-256 compression function, but
enhance it with two dynamic permutations derived via the Fisher—Yates shuffle:

* A permutation o € Sg4 applied to the message schedule indices,
e A permutation 7 € Ss applied to the internal state variables every 8 rounds.

The compression of a single 512-bit block proceeds as follows:

Initialize the state (a, b, ¢, d, e, f, g, h) with the standard SHA-256 initial values Hy, ..., Hr.
Expand the 16 input words into the 64-word schedule Wy, ..., Wss as described in Section 5.
For each round r = 0 to 63:

Use Wy, instead of W, in the round computation,

Update the state using the standard SHA-256 round function with constant K.,

If r =7 (mod 8), apply the state permutation 7 to (a, ..., h).

After 64 rounds, add the final state to the initial values to produce the output chaining value.

Nk wn =

This process is repeated for each message block in the Merkle-Damgérd chain. The permutations o and 7 are
regenerated for each block using ChaCha20, ensuring independence across blocks.

5.3. Empirical Evaluation

Our work focuses on evaluating the impact of dynamic permutations on resistance to automated cryptanalysis. We
do not claim improvements in theoretical security (e.g., collision or preimage resistance beyond SHA-256), but
rather demonstrate that the introduction of ¢ and 7 increases the computational hardness of SAT-based attacks
[7, 25, 40].

Specifically, our experiments show that the 24-round collision search problem for our variant requires
approximately 15% more solver decisions and 13.5% more propagations than standard SHA-256 under identical
conditions. This indicates a denser, less-structured search space that reduces the effectiveness of conflict-driven
clause learning, a desirable property for applications where resistance to symbolic attacks is critical (e.g., proof-
of-work or white-box hashing).
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5.4. Experimental Setup

All SAT experiments were run on a laptop with an Intel Core i7-10510U (Comet Lake-U, 4 cores/8 threads,
1.80 GHz base) and 8 GiB RAM. The OS was Ubuntu 24.04.3 LTS under Windows Subsystem for Linux 2 (WSL2),
kernel 6.6.87.2-microsoft-standard-WSL2.

We used Python 3.12 with PySAT (Glucose4 backend) to solve CNFs. Unless stated otherwise, each run was
pinned to a single core using taskset and capped at 600 s wall time. For each instance we report solver result
(SAT/UNSAT/timeout), and counters returned by the solver: conflicts, decisions, propagations, and restarts. Turbo
Boost and SMT (Hyper-Threading) were disabled where possible to reduce jitter.

CNFs were generated by our script for reduced-round, single-block SHA-256 collisions. Our variant uses a
Fisher—Yates permutation o of the 64 message-schedule indices derived from a ChaCha20 stream (fixed seed), and
a permutation 7 of the 8§ state words applied every 8 rounds (after rounds 7, 15, 23, ...).

r Variant Decisions  Propagations  Conflicts Restarts
24 SHA-256 (baseline) 40,490,621 2,465,729,719 3,003,256 24,893
24 o /7 (ours) 46,607,410 2,798,632,732 3,002,375 23,867

Table 1. Glucose4 via PySAT, 24-round collision search, single core, 600 s cap.

We emphasize that our construction inherits SHA-256’s security against all known full-round attacks, while
adding a layer of dynamic obfuscation that empirically hinders automated solvers.

6. Statistical Evaluation

To assess the diffusion and pseudo-randomness properties of our construction, we evaluate FYS-256 against a
standard SHA-256 baseline under identical conditions:

* Message length: 16 bytes (128 bits),

Trials: 10,000 per test,

¢ Inputs: uniformly random,

* FYS-256 seed: fixed ChaCha20 key (derived from seed_int=42),

e All tests use Latin-1 byte encoding and standard normal approximations.

We apply five standard cryptographic statistical tests:

1. Avalanche (random bit-flip). Flip one random input bit; measure Hamming distance (HD) between outputs.
Ideal: E[HD] = 128, 0 = 8 (Bin(256,0.5)).

2. Strict Avalanche Criterion (SAC). For 32 input bits, flip each and estimate output bit flip probability p;;.
Ideal: p;; ~ 0.5.

3. Bit Independence Criterion (BIC). Estimate pairwise correlations between output bit flips across 128,000
pairs. Ideal: mean |p| = 0, max |p| < 0.1.

4. Uniformity (UNI). Measure per-bit bias, global monobit z-score, and byte-level x?2. Ideal: |z| < 3, few bits
outside 95% CI.
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5. Goodness-of-Fit (GOF). Compare empirical HD distribution to Bin(256,0.5) via x2. Ideal: normalized
Zye < 3.

Test / Metric FYS-256 hash SHA-256
Avalanche mean HD 128.084 127.887
Avalanche std HD 8.009 7.934
SAC worst cell dev 0.019 0.020
BIC mean |p| 0.00798 0.00799
BIC max |p| 0.0495 0.0444
UNI worst bit bias 0.0180 0.0126
UNI monobit z 1.386 -0.051
GOF 2 z 0.75 0.40

Table 2. Statistical test results: FYS-256 hash vs SHA-256 (256-bit output, 10k trials).

Analysis. Both FYS-256 hash and SHA-256 exhibit excellent statistical behavior across all tests:

* Avalanche means and standard deviations match Bin(256, 0.5) closely.

* SAC shows balanced sensitivity (p;; ~ 0.5) with worst-cell deviations < 0.02.
* BIC correlations are very low (mean ~ 0.008), with max |p| < 0.05.

* UNI reveals no significant bias (all z-scores < 1.4 in magnitude).

* GOF confirms Hamming distances follow the expected binomial distribution.

The minor differences between FYS-256 hash and SHA-256 (e.g., slightly higher worst-bit bias in FYS-256 hash,
slightly lower max correlation in SHA-256) are, within expected sampling noise, for 10,000 trials. Critically,
FYS-256 hash preserves the strong diffusion and pseudo-randomness of SHA-256 while introducing dynamic
permutations, confirming that our modification does not degrade statistical quality.

This validates that the FYS-256 hash is statistically indistinguishable from SHA-256 under first- and second-
order tests, making it a suitable candidate for applications requiring both strong diffusion and resistance to structural
attacks (e.g., SAT-based cryptanalysis).

Full results, including per-bit details and exact configurations, are provided in the Appendix C (Tables 6-7).

7. Application to Blockchain Architecture Layers

7.1. Blockchain Architecture Overview

Blockchain technology is characterized by decentralization, transparency, and open source, allowing data to
be recorded, stored, and verified by all nodes [15]. It ensures autonomy through consensus mechanisms and
immutability, making records permanent unless 51% of nodes are controlled [20]. Additionally, it enables
anonymous transactions by using blockchain addresses.

Our work focuses on enhancing the Consensus Layer by introducing a modified SHA-256 hash function with
dynamic Fisher—Yates permutations, which increases resistance to automated cryptanalysis and raises the energy
cost per hash on commodity hardware, while preserving compatibility with existing PoW protocols.

As shown in Figure 3, the architecture of blockchain technology typically consists of five layers:

* Network Layer: Functions as a gossip layer for peer-to-peer communication.

* Consensus Layer: Ensures blocks are added in correct order; examples include Proof of Work (PoW) and
Proof of Stake (PoS).

* Data Layer: Defines the data model and physical storage structure.

* Execution Layer: Executes smart contracts and transaction logic (e.g., EVM).
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* Application Layer: Consists of numerous applications that facilitate communication between users and the

blockchain.
Application Layer
Cryptocurrency DApps Asset Management Securities Settlement
Execution Layer
EVM Compiler Smart Contracts Script Code
Data Model Layer
Data Block Chain Structure Merkle Tree Hash Function Time Stamp

Consensus Layer

PoW PoS PoA PBFT Steller Ripple Others

Network Layer

P2P Protocol Transmission Protocol Verification Protocol

Figure 3. Layered Architecture of Blockchain Technology

7.2. Applying Fisher-Yates Permutations in Hashing

We study whether introducing dynamic permutations into the SHA-256 compression function increases the
empirical difficulty of automated attacks (specifically SAT-based search on reduced rounds). Our goal is not to
change asymptotic security notions (preimage, second preimage, collision) of full SHA-256, but to test whether o
(a Fisher—Yates permutation of the 64 message-schedule indices) and 7 (a permutation of the 8 state words applied
every 8 rounds) make the search space less solver-friendly.

In a blockchain context, miners compete to solve the Proof-of-Work (PoW) problem by finding a nonce such
that the hash of the block header is below a target. The block header includes:

* The hash of the previous block (H g, ), which links blocks in a chain,
* Transaction data (infop,),
* A nonce value being searched.

Formally, for block Bs, miners compute:
Hp, = hash(Hp, ||infop, || nonce) < target,

where nonce is the value sought to satisfy the Proof-of-Work (PoW) condition, and target is a threshold determined
by the network’s current difficulty level [18]. This chaining ensures that any modification to an earlier block
(e.g., B1) requires recomputing its PoW and all subsequent blocks’ proofs, a property that underpins blockchain
immutability [19]. An adversary attempting to alter a transaction in B; must therefore solve the PoW for B; and
generate a longer competing chain, a scenario known as a double-spending attack; its success probability decreases
exponentially with the number of confirmations [18].

For this mechanism to be secure, the underlying hash function must satisfy preimage resistance, second-preimage
resistance, and collision resistance [9]. While generic attacks like the birthday paradox target collision resistance
[3], PoW security primarily relies on preimage hardness.

Our dynamic permutations (o /) increase the computational cost of computing Hp, for a given Hp,, thereby
raising the economic barrier for such attacks. Specifically, the ChaCha20-seeded Fisher—Yates shuffles introduce
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per-block variation in the compression function’s dataflow: the message schedule indices are accessed in a permuted
order (o), and the internal state variables are reordered every 8 rounds (7). This disrupts the fixed structural patterns
that specialized solvers and ASICs exploit. Empirically, this yields a 15.1% increase in solver decisions and
13.5% more propagations in 24-round collision search (Section 5.3), suggesting a conservative lower bound on
the attacker’s resource overhead. Consequently, an adversary must deploy approximately 15% more computational
power to maintain the same effective hashrate, increasing the cost of double-spending or 51% attacks.

7.3. CPU and GPU Results

CPU performance. On a 4-core/8-thread Intel i7-10510U (WSL2), our dynamic variant (FYS-256) sustains
2.54 x 105 H/s, 95% of SHA-256 throughput, while consuming 27% less energy per hash (1.84 pJ/hash vs.
2.52 pJ/hash). This corresponds to 37% more hashes per joule. The modest throughput drop is offset by lower
average power.

Algorithm H/s Rel. to SHA-256
FYS-256 2,535,120 0.949x
SHA-256 2,672,181 1.000%

Table 3. CPU throughput (Intel i7-10510U, WSL2; 8 threads; 60-second runs). “Rel. to SHA-256" denotes the ratio of the
algorithm’s metric to that of SHA-256 (e.g., 0.949x means 94.9% of SHA-256’s throughput).

Algorithm Avg power (W) Energy (J) J/hash (uJ)  Hashes/J
FYS-256 4.65 279.2 1.84 5.45 x 10°
SHA-256 6.72 403.4 2.52 3.98 x 10°
Rel. (FYS-256 / SHA-256) 0.69x 0.69x 0.73x 1.37x

Table 4. CPU energy per hash (i7-10510U; 60-second windowed [2,62] s; Intel Power Gadget).

GPU performance. On an NVIDIA T4-class GPU, FYS-256 achieves 3.60 x 10% H/s at 69.1 W versus
5.93 x 10® H/s at 69.5 W for SHA-256. The resulting energy cost is 3.84 x 10~° J/hash, 1.63x that of SHA-
256 (2.36 x 1075 J/hash). Thus, a miner or attacker must expend 63% more electrical energy per hash to achieve
parity in work.

Algorithm H/s (mean) Power (W) J/hash  Rel. J/hash
FYS-256 3.60 x 108 69.08 3.84 x 106 1.63x
SHA-256  5.93 x 108 69.49 2.36 x 106 1.00x

Table 5. GPU (T4/L4 class), 20-second runs; NVML power sampled at 5 Hz, steady state.

Cross-platform insight. The CPU and GPU data indicate that introducing dynamic permutations raises the
energy cost per hash on throughput-oriented hardware while preserving practical efficiency on general-purpose
CPUs. Highly pipelined ASICs depend on static wiring and regular forwarding; per-block o /7 reconfiguration is
therefore expected to introduce additional control/routing overhead. We hypothesize a proportionally larger penalty
on ASICs [17]; future work will measure it.

Method notes. CPU runs used 8 pinned threads; power was collected via Intel Power Gadget (Windows host) with
a 100-ms average; GPU power via NVML at 5 Hz. Each cell reports the mean of seven runs (95% CI omitted for
brevity).
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7.4. Application to Proof-of-Work (Scope, Logic, and Quantified Impact)

The proposed analysis extends the evaluation of dynamic per-block permutations (¢ on the message schedule
and 7 on the state) to their potential implications for Proof-of-Work (PoW) security and mining economics.
In standard PoW systems such as Bitcoin, mining corresponds to a full-round preimage search, where miners
attempt to find a nonce satisfying H (header || nonce) < target; the computational cost of this process defines the
network’s hashrate and the economic threshold for majority attacks. In contrast, our experiments encode reduced-
round collision problems (20-24 rounds) as conjunctive normal form (CNF) formulas and solve them under
identical limits using the Glucose4 SAT solver (single core, 600.000 s cap). These experiments serve as a structural
hardness proxy, indicating how permutation-induced irregularities affect symbolic reasoning, rather than as a direct
measure of preimage throughput [36]. Empirically, the 24-round instance with dynamic o /7 permutations reached
timeout similarly to the baseline but required an average of +15.1% more decisions and +13.5% more Boolean
propagations at comparable conflict counts, suggesting increased solver effort per conflict. This behavior implies
that the search space becomes more entangled and less predictable, yielding reduced solver friendliness. Since both
runs timed out without a solution, these results are interpreted as conservative evidence of greater combinatorial
density rather than a proven increase in full-round cryptographic hardness. To connect these findings with PoW
economics, we introduce a cost factor ¢ > 1 representing the relative slowdown in an adversary’s effective hashing
rate. Taking the maximum observed overhead as representative gives ¢ = 1 4+ max(0.151,0.135) ~ 1.15, meaning
that an attacker’s effective hashrate is divided by c. If the honest network has raw hashrate H and the attacker A,
with shares p = H/(H+A) and ¢ = A/(H+A), the attacker’s effective share becomes

r_ A/C _ Q/C
H+Afe  p+aq/c

The classical “51%” threshold then shifts to ¢ > £ [24]; for ¢ = 1.15, the effective majority requirement increases
to roughly 53.5% instead of 50%. Using Nakamoto’s probabilistic model, the probability that an attacker can
reverse a transaction after z confirmations is upper-bounded by (¢’ /p’)* for ¢’ < p’ [35]. Substituting ¢ = 0.35 and
c=1.15 yields ¢ = go3iober s
(q/p)® ~ 2.4%. Thus, the same confirmation depth (z = 6) roughly halves the double-spend success probability.
While this translation from solver overhead to mining economics is only a proxy, it demonstrates that even
modest structural irregularities can impose a measurable economic penalty on attackers. Moreover, if the dynamic
permutations also hinder ASIC specialization, by disrupting regular dataflow or pipeline reuse, the true effective
cost factor could exceed 1.15 [12]. Because mining difficulty adjusts automatically, network throughput remains
constant; the security gain lies instead in raising the economic bar for adversaries, who must now provision
approximately ¢ times more resources to achieve the same success odds. The computational overhead for honest
nodes is negligible: generating o € Sg4 and 7 € Sg requires only two ChaCha20 blocks (64 bytes total) and
O(64+8) swaps, representing sub-percent latency compared to a SHA-256 compression. Overall, dynamic per-
block permutations modestly increase solver and potential hardware effort per hash while preserving near-baseline
throughput, offering a quantifiable and conceptually grounded enhancement of PoW fairness and resistance against
structured or symbolic optimization attacks, pending further validation on full-round preimage CNFs and hardware
prototypes.

p/:1—q/.

q

~ 0.319, giving % ~ 0.469 and (¢’ /p’)® ~ 1.1%; by comparison, with ¢ = 1,

8. Conclusion

Despite significant research and remarkable advancements in cryptography within blockchain technology in recent
years, it remains a highly challenging domain. This paper introduces a modified SHA-256 compression function
that integrates dynamic Fisher—Yates permutations, examining its impact on blockchain technology, specifically
PoW. This construction belongs to the Merkle-Damgéard family of hash functions, renowned for their robustness
and versatility, especially when we talk for instance about SHA-2 or our present developed hash method.

Our approach preserves SHA-256’s core design and efficiency while introducing dynamic permutations ¢ (on
message schedule indices) and 7 (on state variables) to disrupt structural regularities exploitable by automated
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solvers. By incorporating the Fisher—Yates Shuffle seeded via ChaCha20, it introduces an additional layer of
dataflow unpredictability, crucial for applications where resistance to symbolic attacks is paramount. This study
delves into the intricate details of hash algorithms, demonstrating their pivotal role in maintaining data inegrity and
secutiy across blockchain platforms.

Empirical evaluation shows that our variant increases SAT solver workload by ~15% in reduced-round
collision search, suggesting enhanced resistance to automated cryptanalysis. In a PoW context, this translates to
a conservative lower bound on attacker cost increase (e.g., raising the 51% threshold to ~53.5% for ¢ = 1.15),
though full-round preimage hardness remains an open direction.

In conclusion, this comprehensive study underscores the critical importance of hardening well-vetted hash
functions against emerging attack vectors. It not only highlights their fundamental role in data verification and
integrity but also emphasizes their potential to advance the capabilities of blockchain networks through practical,
empirically grounded enhancements. As blockchain continues to evolve, cryptographic tools that balance backward
compatibility with increased solver resistance, such as the construction presented here, will play a central role in
shaping its future applications and security frameworks.
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Implementation of FYS-256 in Python code

For reproducibility, we provide a complete Python implementation of our modified SHA-256 variant, including:

Standard SHA-256 constants and message schedule expansion,

ChaCha20-based Fisher—Yates shuffling for ¢ (64-word permutation) and 7 (8-state permutation),

* Dynamic application of 7 every 8 rounds,

¢ Merkle-Damgard chaining with fixed I'V.

* Public parameter. All experiments use the fixed seed S* printed in the listing; it is public and part of the
definition of Hg- (the function is not keyed).

The code is self-contained and requires only Python 3. It matches the design described in Section 5. The full source
is listed below.

e E E e s

Copyright (c) 2025 Asmaa Cherkaoui

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
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copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

S e o S o e e e

def decimal_vers_binaire_sur_bits (nombre) :
binaire = bin(nombre & OXFF) [2:].zfill(8)
return [int (bit) for bit in binaire]

def decimal_vers_binaire32_sur_bits (nombre) :
binaire = bin(nombre & OXFFFFFFFF) [2:].2fil1(32)
return [int (bit) for bit in binaire]

def u32_to_bits(x):
return [(x >> (31 - 1)) & 1 for i in range(32)]

def xor(a, b):
return [0 if a[i] == b[i] else 1 for i in range(len(a))]

def et (a, b):
return [1 if (a[i] == 1 and b[i] == 1) else 0 for i in range(len(a))]

def non(a):
return [0 1f x == 1 else 1 for x in a]

def somme (a, b):

n = len(a)

ca =cb =0

for 1 in range(n):
ca = (ca << 1) | ali]
cb = (cb << 1) | b[i]

return decimal_vers_binaire32_sur_bits((ca + cb) & OxXFFFFFFFF)

def shift_droite(a, n):
n %= len(a)
return [0]l*n + al:len(a)-n]

def rotation_droite(liste, k):
k %= len(liste)
if k ==
return listel[:]
return liste[-k:] + liste[:-k]

_H_U32 = [
0x6a09e667, Oxbb67ae85, 0x3coef372, 0xab54ff53a,
0x510e527f, 0x9b05688c, 0x1£83d9%ab, 0x5belcdl9,
]

_K U32 = [
0x428a2f98,0x71374491, 0xb5c0fbcf, Oxe9b5dba5, 0x3956c25b, 0x59f111f1,0x923f82a4,0
— xablcb5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deblfe, 0x9bdc06a7, 0
— xcl9obfl174,

Stat., Optim. Inf. Comput. Vol. 15, February 2026




def

def

def

def

def

def

def

def

def

def

A. CHERKAOUI, S. ABDELALIM, A. LKOAIZA AND I. ELMOUKI 1313

0xe49b69cl, Oxefbed786,0x0£fcl9dc6, 0x240calcc, 0x2de92c6f, 0x4a7484aa, 0x5¢cb0a9dc, 0

— x76£988da,

0x983e5152, 0xa831lcbed, 0xb00327c8, 0xbf597fc7, Oxc6e00bf3,0xd5a79147, 0x06ca6351, 0

s x14292967,

0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e,0

—» x92722c85,

Oxa2bfe8al, 0xa8la664b, 0xc24b8b70, O0xc76c51la3, 0xd192e819, 0xd6990624, 0x£f40e3585,0

— x106aa070,

0x19a4cll1l6,0x1e376c08,0x2748774c, 0x34b0bcb5, 0x391c0cb3, O0x4ed8aada, 0x5b9ccadf, 0

“— xX682e6ff3,

0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa, 0xad506ceb, Oxbef9a3£f7,0

-~ xc67178f2,

h_constant () :

return [u32_to_bits(x) for x in _H _U32]
K_constant () :

return [u32_to_bits(x) for x in _K_U32]
asci(a) :

return [ord(ch) for ch in a]

conversion(a) :

return [decimal_vers_binaire_sur_bits(v) for v in asci(a)]

int_to_bits(n, width):
return [int(b) for b in bin(n & ((1 << width) -

ajout_des_zero (bytes_list):

bytes_list.append([1,0,0,0,0,0,0,0])

pad_bytes = (56 - (len(bytes_1list) % 64)) % 64

for _ in range (pad_bytes):
bytes_list.append([0]*8)

return bytes_list

final bits_bitlen(msg_len_bytes):
return int_to_bits (msg_len_bytes*8, 64)

tableau_final (a_str) :
assert len(a_str) <= 55,
1 = ajout_des_zero(conversion(a_str))
mots = []
for 1 in range (0, 56, 4):
mots.append (1[i] + 1[i+1] + 1[i+2] + 1[i+3])
L64 = final_ bits_bitlen(len(a_str))
mots.append (L64[0:32])
mots.append (L64[32:64])
return mots

tableau_final_zero(a_str):
1 = tableau_final (a_str)
for _ in range(48):

1l.append ([0]*32)
return 1

modify_ tableau_final (a_str):
1 = tableau_final_ zero(a_str) [0:16]
for 1 in range (16, 64):

1)) [2:].z£f1i11(width)]
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sO0 = xor (xor (rotation_droite(1[i-15], 7), rotation_droite(l1[i-15],18)),
<~ shift_droite(1[i-15]1,3))

sl = xor (xor (rotation_droite(1[i- 2],17), rotation_droite(l[i- 2],19)),
<« shift_droite(l1[i- 2],10))

1.append (somme (somme (1[1i-16], s0), somme(1l[i-7], sl1)))
return 1

_rotl32(x, n):
return ((x << n) & Oxffffffff) | (x >> (32 - n))
_gqr(a, b, ¢, d):
a = (a + b) & Oxffffffff; d "= a; d = _rotl32(d, 16)
c = (c +d) & Oxffffffff; b "= ¢c; b = _rotl32(b, 12)
a = (a+ b) & Oxffffffff; d "= a; d = _rotl32(d, 8)
c = (c +d) & Oxffffffff; b "= c; b = _rotl32(b, 7)
return a, b, ¢, d
_chacha20_block (key32: bytes, counter: int, noncel2: bytes) -> bytes:
assert len(key32) == 32 and len(noncel2) == 12
cO0, cl, c2, c3 = 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
k = [int.from bytes(key32[ix4: (i+1)«*4], "little") for i in range(8)]
ctr = counter & Oxffffffff
n = [int.from_bytes (noncel2[ix4: (i+1)*4], "little") for i in range(3)]
st = [c0, cl, c2, <3, kI[0], k[1], k[2], k[3], k[4], kI[5], kI[6], k[7], ctr, n
— [0], n[1], n[2]]
x = st[:]
for _ in range (10):
x[0], x[4], x[8], x[12] = _gr(x[0], x[4], x[8], x[12])
x[1], x[5], x[9], x[13] = _gr(x[1], x[5], x[9], x[13])
x[2], x[6], x[10], x[14] _qgqr(x[2], x[6], x[10], x[14])
x[3], x[7], x[11], x[15] = _gr(x[3], x[7], x[11], x[15])
x[0], x[5], x[10], x[15] = _gr(x[0], x[5], x[10], x[15])
x[1], x[6], x[11], x[12] = _gr(x[1], x[6], x[11], x[12])
x[2], x[7], x[8], x[13] = _qgr(x[2], x[7], x[8], x[13])
x[31, x[4], x[9], x[14] = _ar(x[3], x[4], x[9], x[14])
for 1 in range(16):
x[1] = (x[1i] + st[i]) & Oxffffffff
return b"".join(w.to_bytes (4, "little") for w in x)
chacha?20_u32_stream(key32: bytes, noncel2: bytes, counter0O: int = 0):

buf = bll"
ctr = counter0
while True:
if len(buf) < 4:
buf += _chacha20_block (key32, ctr, noncel2)
ctr = (ctr + 1) & Oxffffffff
continue
u = int.from bytes(buf[:4], "little")
buf = buf[d:]
yield u

_uniform_upto_u32 (next_u32, bound: int) -> int:
if bound <= 1:

return 0
m = (1 << 32) // bound * bound
while True:

u = next_u32()

if u < m:

return u % bound
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def perm64_from_seed(seed32: bytes, block_index: int):
noncel?2 = int (block_index) .to_bytes (12, "little")

u32 = chacha20_u32_stream(seed32, noncel?2)
next_u32 = u32._ next___
perm = list (range (64))
for 1 in range (63, 0, -1):
J = _uniform_upto_u32 (next_u32, i+l)
perm[i], perm[j] = perm[J], perm[i]

return perm

def perm8_from_seed(seed32: bytes, block_index: int, domain_sep: int = 1):
val = (block_index & ((1 << 88) - 1)) | (int (domain_sep) << 88)
noncel2 = val.to_bytes (12, "little")
u32 = chacha20_u32_stream(seed32, noncel?2)
next_u32 = u32._ next_

perm = list (range(8))
for i in range(7, 0, -1):
J = _uniform_ upto_u32 (next_u32, i+l)
perm[i], perm[]] = perm[J], perm[i]
return perm

def permute8_state(pi, state):
s = list (state)
return tuple(s[pi[i]] for i in range(8))

SEED_HEX = (
"000102030405060708090a0b0c0d0e0£f"
"101112131415161718191lalblcldlelf"

)
SEED = bytes.fromhex (SEED_HEX)

def compression (message_str, seed=SEED, block_index=0) :
W = modify_tableau_final (message_str)
K = K_constant ()
IV = h_constant ()
a, b, ¢, d, e, £, g, h = [x[:] for x in IV]
sigma = permb64_from_seed(seed, block_index)
pi = perm8_from_seed(seed, block_index, 2)
for r in range (64):
kidx = sigmalr]
S1 = xor (xor (rotation_droite(e, 6), rotation_droite(e,11)),
— rotation_droite (e, 25))
ch = xor(et(e,f), et(non(e), g))

templ = somme (somme (somme (h, S1), somme(ch, K[r])), Wl[kidx])

S0 = xor (xor (rotation_droite(a, 2), rotation_droite(a,13)),
<~ rotation_droite(a, 22))

maj = xor (xor (et (a,b), et(a,c)), et(b,c))

temp2 = somme (S0, maj)

h, g, £, ¢, d, ¢, b, a =9, £, e, somme(d, templ), c, b, a, somme (templ,
— temp2)

if (r & 7) ==

a, b, ¢, d, e, f, g, h = permute8_state(pi, (a,b,c,d,e,f,g,h))
return [a,b,c,d,e,f,qg,h]

def modify_final_value (message_str, seed=SEED, block_index=0):

vals = compression (message_str, seed, block_index)
IV = h_constant ()
return [somme (vals([i], IV[i]) for i in range(8)]
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def concat (message_str, seed=SEED, block_index=0) :
1l = modify_final value (message_str, seed, block_index)
return 1[0]+1[1]+1[2]+1[3]+1[4]1+1[5]+1[6]+1[7]

def convertisseur_hexa (message_str, seed=SEED, block_index=0) :

bits = concat (message_str, seed, block_index)
c =20
for b in bits:

c = (c <<1) | b

return format (c, ’'064x")

if _ _name_ == "_ _main_ ":
print (convertisseur_hexa ("cryptography"))

Example. When the input string "cryptography" is processed by the above implementation (with the fixed
seed 0001. . .1elf), the resulting 256-bit hash is:

5713c5a0912baa336384bd1040£1654115ddbbbf79d37608520a5df8c431clld

This output is deterministic for a given seed and input, as expected in a keyed hash construction.

B. Implementation of FYS-256 in C code

Copyright (c) 2025 Asmaa Cherkaoui

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

SE o o e SR e o e o o S o e o e e o e o

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

static inline uint32_t ROR32 (uint32_t x, unsigned n) {
return (x >> n) | (x << (32 - n));

}

static inline uint32_t ROL32 (uint32_t x, unsigned n) {
return (x << n) | (x >> (32 - n));
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}

static const uint32_t H_U32[8] = {
0x6a09e667u, O0xbb67ae85u, 0x3c6ef372u, Oxab4ff53au,
0x510e527fu, 0x9b05688cu, 0x1f83d%abu, O0x5belcdl9u
}i

static const uint32_t K _U32[64] = {
0x428a2f98u, 0x71374491u, 0xb5c0fbcfu, 0xe9b5dbabu, 0x3956c25bu, 0x59f111f1u, 0
— x923f82a4u, Oxablc5edb5u,
0xd807aa98u, 0x12835b01u, 0x243185beu, 0x550c7dc3u, 0x72be5d74u, 0x80deblfeu, 0
~— x9bdc06a7u, 0xcl9bfl74u,
0xed9b69clu, Oxefbed786u, 0x0fcl9dc6ou, 0x240calccu, 0x2de92c6fu, 0x4a7484aau, 0
— x5cb0a9dcu, 0x76£988dau,
0x983e5152u, 0xa831c66du, 0xb00327c8u, 0xbf597fc7u, 0xc6e00bf3u, 0xd5a79147u, 0
— x06ca6351u,0x14292967u,
0x27b70a85u, 0x2e1b2138u, 0x4d2c6dfcu, 0x53380d13u, 0x650a7354u, 0x766a0abbu, 0
— x81lc2c92eu, 0x92722c85u,
Oxa2bfeB8alu, 0xa8la664bu, 0xc24b8b70u, Oxc76c51a3u, 0xd192e819u, 0xd6990624u, 0
— xf40e3585u,0x106aa070u,
0x19a4cll6éu, 0x1le376c08u, 0x2748774cu, 0x34b0bcb5u, 0x391c0cb3u, 0x4edB8aadau, 0
— x5b9ccadfu, 0x682e6ff3u,
0x748f82eeu, 0x78a5636fu, 0x84c87814u, 0x8cc70208u, 0x90befffau, 0xad506cebu, 0
— xbef9a3f7u, 0xc67178f2u

}i

static const uint8_t SEED[32] = {
0x00,0x01,0x02,0x03, 0x04,0x05,0x06,0x07,
0x08,0x09,0x0a,0x0b, 0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13, 0x14,0x15,0x16,0x17,
0x18,0x19,0xla,0x1lb, Oxlc,0x1ld,0Oxle,Ox1f
bi

static inline void chacha_qgr (uint32_t =xa, uint32_t b, uint32_t *c, uint32_t =xd) {

xa += xb; *d "= xa; *d = ROL32(*d,16);
*Cc += *d; *b "= xc; x*b = ROL32(xb,12);
*a += xb; *d "= xa; rd = ROL32(xd, 8);
*Cc += xd; *b "= xc; *b = ROL32(xb, 7);

}

static void chacha20_block (const uint8_t key[32], uint32_t counter, const uint8_t
<> nonce[12], uint8_t out[64]) {
static const uint32_t cst[4] = {0x61707865u,0x3320646eu,0x79622d32u,0
— x6b206574u};
uint32_t st[l6], x[16];

st[0]=cst[0]; st[ll=cst[l]; st[2]=cst[2]; st[3]=cst[3];
for (int 1i=0;1<8;i++) {
st[4+i] = (uint32_t)key[4xi] | ((uint32_t)key[4xi+1]<<8) |
((uint32_t)key[4xi+2]1<<16) | ((uint32_t)key[4x1i+3]1<<24);
}
st [1l2]=counter;
for (int i=0;i<3;i++) {
st[13+i] = (uint32_t)nonce[4*i] | ((uint32_t)nonce[4x1i+1]<<8) |
((uint32_t)nonce[4*14+42]1<<16) | ((uint32_t)nonce[4+x1i+3]<<24);
}

for (int i=0;1<16;i++) x[i]=st[i];

for (int r=0;r<10;r++) {
chacha_qgr (&x[0],&x[4],&x[8],&x[12]);
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chacha_qgr(&x[1],&x[5],&x[9],&x[13]);
chacha_qgr (&x[2],&x[6],6&x[10],6&x[14]);
chacha_qgr (&x[3],&x[7],6&x[11],6&x[15]);
chacha_qgr (&x[0],&x[5],6&x[10],&x[15]);
chacha_qgr (&x[1],&x[6],6&x[11],&x[12]);
chacha_qgr (&x[2],&x[7],6&x[8], &x[131);
chacha_qgr (&x[3],&x[4],6&x[9], &x[14]);

}

for (int i=0;i<16;i++) {
x[1i] += st[i];
out [4%x1+0] = (uint8_t) (x[1] ) ;
out [4+i+1] = (uint8_t) (x[i] >> 8);
out [4%x1+2] = (uint8_t) (x[1i] >> 16);
out [4%x1+3] = (uint8_t) (x[1i] >> 24);

}

typedef struct {
uint8_t key[32];
uint8_t nonce[l2];
uint32_t counter;
uint8_t buf[64d];
size_t idx;

} chacha_stream;

static void chacha_init (chacha_stream =s,
— nonce[12], uint32_t counter0) {
memcpy (s—>key, key, 32);
memcpy (s—>nonce, nonce,
s—>counter = counter0;
s—=>1dx = 64;

12);

}

const uint8_t key[32],

static uint32_t chacha_next_u32 (chacha_stream =*s) {

if (s—>1idx + 4 > 64) {
chacha20_block (s—>key,
s—->counter += 1;

s—>idx = 0;

s—>counter,

}

uint32_t v (uint32_t) s—-—>buf [s—>idx]

s—>nonce,

s—>buf);

((uint32_t)s-—>buf[s—>idx+1] << 8)
((uint32_t)s->buf([s—>idx+2] << 16)
<< 24);

s—>idx += 4
return v;

\
\
| ((uint32_t)s—-—>buf[s—>idx+3]

}

static uint32_t uniform_upto_u32 (chacha_stream

if (bound <= 1) return 0;
uint64_t m = (((uint64_t)1l << 32) / bound)
for (;;) |

uint32_t u = chacha_next_u32(s);
if ((uinte6d4_t)u < m) return u %$ bound;

}

static void perm64_from_seed (uint32_t perm[64],
— Dblock_index) {

uint8_t nonce[l12] = {0};

uint32_t bound)

*S,
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const uint8_t

* bound; // <-- corrig ici

const uint8_t seed32[32],
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for (int i=0; 1<12; i+4++) { nonce[i] = (uint8_t) ((block_index >> (8%1)) & OxFF)
i}

chacha_stream c¢s; chacha_init (&cs, seed32, nonce, 0);

for (uint32_t i=0;1<64;i++) perm[i]=1i;

for (int i=63; 1i>0; i--) {
uint32_t Jj = uniform_upto_u32(&cs, (uint32_t) (i+1));
uint32_t tmp = perm[i]; perm[i]=perm[j]; perm[j]l=tmp;

}

static void perm8_from_seed(uint32_t perm[8], const uint8_t seed32[32], uint64_t
<~ block_index, uint32_t domain_sep) {
uint8_t nonce[l1l2] = {0};
for (int i=0; 1<11l; i+4+) nonce[i] = (uint8_t) ((block_index >> (8%1i)) & OXxFF);
nonce[1ll] = (uint8_t) (domain_sep & OxFF);

chacha_stream cs; chacha_init (&cs, seed32, nonce, 0);

for (uint32_t 1=0;i<8;i++) perm[i]l=i;

for (int 1i=7; i>0; i--) {
uint32_t Jj = uniform_upto_u32(&cs, (uint32_t) (i+1));
uint32_t tmp = perm[i]; perm[i]=perm[j]; perm[j]l=tmp;

}

static void permute8_state (const uint32_t pil[8],
uint32_t *a,uint32_t +*b,uint32_t =*c,uint32_t =d,
uint32_t *e,uint32_t *f,uint32_t *g,uint32_t xh) {
uint32_t s[8] = {xa,*b,*c,*d, xe, xf, xg, xh};
uint32_t out([8];
for (int 1i=0;1<8;i++) out[i] = ;
xa=out [0]; #*b=out[l]; =*c=out[2]; *d=out[3];
xe=out [4]; =*f=out[5]; =*g=out[6]; *h=out[7];
}

static void build_W(const uint8_t =*msg, size_t len, uint32_t W[64]) {
assert (len <= 55);
uint8_t block[64]; memset (block, 0, 64);
memcpy (block, msg, len);
block[len] = 0x80u;

uint64_t bitlen = (uint64_t)len * 8u;
for (int 1=0;1i<8;i++) block[56 + (7 — 1)] = (uint8_t) ((bitlen >> (8x1i)) & OxFF
)i

for (int i=0;i<16;1i++) {

W[i] = ((uint32_t)block
((uint32_t)block
((uint32_t)block
(( )

uint32_t)block

4xi] << 24) |
4%i+1] << 16) |
4%i42] << 8) |
4%i+3]);

————

}

for (int 1i=16;1<64;i++) {
uint32_t x15 = W[i-15];
uint32_t s0 = ROR32(x15,7) ~ ROR32(x15,18) =~ (x15 >> 3);
uint32_t x2 = W[i-2];
uint32_t sl = ROR32(x2,17) =~ ROR32(x2,19) =~ (x2 >> 10);
W[(i] = W[i-16] + sO + W[i-7] + s1;
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static void compress_block (const uint32_t W[64], con
< uint64_t block_index, uint32_t out_state[8]) {
uint32_t a=H_U32[0], b=H_U32[1], c=H_U32[2], d=H_ ;
uint32_t e=H_U32[4], f=H U32[5], g=H_U32[6], h=H_U32[7];

uint32_t sigma[64]; permb64_from seed(sigma, seed32, block_index);
uint32_t pi[8]; perm8_from_seed(pi, seed32, block_index, 2);

for (int r=0; r<64; r++) {

uint32_t S1 = ROR32(e,6) ~ ROR32(e,11) ~ ROR32(e,25);
uint32_t ch = (e & £f) = ((Te) & g);

uint32_t templ = h + S1 + ch + K U32[r] + W[sigmalr]l];
uint32_t SO0 = ROR32(a,2) ~ ROR32(a,13) ~ ROR32(a,22);
uint32_t maj = (a & b) ~ (a & ¢c) © (b & c);

uint32_t temp2 = S0 + maj;

= g7

= f;

= ¢;

d + templ;

= ¢c;

= b;

= aj;

= templ + temp2;

Q00 QD HhQ D
Il

if ((r & 7) == 7)) {
permute8_state (pi, &a, &b, &c,&d, &e, &f, &g, &h);

}
out_state[0]=a; out_state[l]=b; out_state[2]=c; out_state[3]=d;
out_state[4]=e; out_state[5]=f; out_state[6]=g; out_state[7]=h;

}

static void hash_like (const char *message, const uint8_t seed32[32], uint64_t
— block_index, char hex_out[65]) {
uint32_t W[64];
build_W( (const uint8_t*)message, strlen(message), W);

uint32_t wvals([8];
compress_block (W, seed32, block_index, wvals);

for (int 1i=0;i<8;i++) vals[i] = vals[i] + H_U32[i];

for (int i=0;i<8;i++) {

sprintf (hex_out + 8%i, "%08x", wvals[il]);
}
hex_out[64] = "\0’;

int main (void) {
char hex[65];
hash_like ("cryptography", SEED, 0, hex);
printf ("$s\n", hex);
return 0;

C. Additional tables
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Table 6. Statistical tests for FYS-256 HASH (256-bit output).

Block / Metric Parameters Result
Uniformity (UNI)

samples, Output bits MSG_LEN=16

out bits=256

seed=42 -

Worst per-bit bias - 0.0180 (95% CI =~ £0.0098)
Bits outside the Clos - 10

Monobit z (all bits) - 1.386

x2 (bytes), z - 1.309

Strict Avalanche Criterion (SAC)

Config / Inputs inputs: 128 — 256

BITS_TO_TEST=32

seed=0 -

global mean MSG_LEN=16

out bits=256 0.499978

row mean (min..max) - 0.499 .. 0.501
column mean (min..max) - 0.498 .. 0.503
worst cell deviation - 0.019

worst row deviation - 0.001

worst column deviation - 0.003

Clos per cell - ~ 0.5 £0.010
Bit Independence Criterion (BIC)

Config / Inputs inputs: 128 — 256

BITS_TO_TEST=64

PAIRS=2000

seed=0 -

Evaluated pairs (=2000 x 64) 128 000
Mean absolute correlation - 0.007980
Maximum absolute correlation — 0.049483 (i=115, j=136, k=183)
Goodness-of-Fit (GOF) Hamming)

Output bits MSG_LEN=16

out bits=256

seed=42

bins=51 -

Mean Hamming distance - 128.136
Hamming standard deviation = — 7.985

x2, dof, znorm bins=51 57.5, 50, 0.75
Avalanche (random bit-flip)

Output bits MSG_LEN=16

out_bits=256

seed=0 -

Mean Hamming distance - 128.084 (norm. 0.5003)
Hamming standard deviation = — 8.009 (norm. 0.0313)
Min / Max Hamming distance — 98 /156
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Table 7. Statistical tests for SHA-256 (256-bit output).

Block / Metric Parameters Result
Uniformity (UNI)

samples, Output bits MSG_LEN=16

out_bits=256

seed=123 -

Worst per-bit bias -
Bits outside the Clgs -
Monobit z (all bits) -
x> (bytes), z -

0.012600 (95% CI ~ 40.009800)
13

—0.051 (—z—< 3 0K)

0.039 (—z—< 3 OK)

Strict Avalanche Criterion (SAC)

Config / Inputs inputs: 128 — 256
BITS_TO_TEST=32

seed=0 -

global mean MSG_LEN=16
out bits=256 0.499914
row mean (min..max) -

column mean (min..max) -

worst cell deviation -

worst row deviation -

worst column deviation -

Clys per cell -

0.499 .. 0.501
0.498 .. 0.503
0.020
0.001
0.003
~ 0.5+ 0.010

Bit Independence Criterion (BIC)

Config / Inputs inputs: 128 — 256
BITS_TO_TEST=64

PAIRS=2000

seed=0 -

Evaluated pairs (=2000 x 64)
Mean absolute correlation -

Maximum absolute correlation —

128 000
0.007990
0.044388 (i=61, j=83, k=239)

Goodness-of-Fit (GOF) Hamming)

Output bits MSG_LEN=16
bins=51

seed=42 -

Mean Hamming distance -

Hamming standard deviation = —

127.941
7.993
54.09, 50, 0.40

Xz’ dof, znorm bins=51
Avalanche (random bit-flip)

Output bits MSG_LEN=16
seed=0 -

Mean Hamming distance -
Hamming standard deviation  —
Min / Max Hamming distance —

127.8866 (norm. 0.499557)
7.93444  (norm. 0.030909)
99 /158
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