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Abstract Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM),
Retinal Artery Occlusion (RAO), Retinal Vein Occlusion (RVO), and Vitreomacular Interface Disease (VID) are prevalent
eye conditions that can lead to partial or complete vision impairment and blindness. Addressing these challenges in eye
care necessitates advanced imaging technologies like Optical Coherence Tomography (OCT). The evolution of OCT from
time-domain to frequency-domain techniques has significantly enhanced its utility in routine clinical procedures. This paper
introduces a novel R50-CapsNet architecture designed to classify retinal diseases more accurately and reliably. Our approach
aims to improve diagnostic accuracy for the OCTDL and Kermany datasets.
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1. Introduction

An estimated 1.1 billion individuals had vision impairment in 2020. Of this total, about 43 million (M) are blind,
295 M have moderate to severe disability, 258 M have mild disability, and 510 M with near vision impairment [1].
In 2023, the world has 2.2 billion vision-impaired individuals, according to WHO [2]. These issues can
lead to conditions of blurry or distorted vision and perceiving shadow or spots. Vision problems are due to
conditions such as Age-Related Macular Degeneration (AMD) [3] that lead to central vision loss in older people.
Diabetic Macular Edema (DME) is macular edema due to diabetes [4]. Epiretinal Membrane (ERM) is the
development of fibrous tissue over the retina [5]. Retinal Artery Occlusion (RAO) results from artery blockage
and subsequent instantaneous blindness [6]. Retinal Vein Occlusion (RVO) is occlusion and inflammation of veins
[7]. Vitreomacular Interface Disease (VID) is macula traction by vitreous [8]. Choroidal Neovascularization (CNV)
is defined as the formation of blood vessels outside the retina beneath the retina [9] and Drusen are yellow material
deposited under the retina [10]. Eye care is severely threatened throughout the globe, characterized by disparities
in the number and quality of preventive, curative, and rehabilitation services [2]. To overcome such threats,
advanced imaging devices have gained popularity. Because the medium in the eye is transparent, Optical Coherence
Tomography (OCT) is an essential imaging modality that produces high-resolution cross-sectional pictures [11, 12]
and it is particularly useful in the field of ophthalmology [13]. OCT technology has come a long way in the last 25
years, moving from time-domain to frequency-domain techniques. This modification has improved tissue contrast
and image capture speed, allowing OCT to be used in routine clinical procedures [14].

The paper is organized as follows: Section 2 provides a review of relevant research and current work in the field,
encompassing several Deep Learning models founded on OCT classification method. Datasets and pre-processing

*Correspondence to: Kawtar NAIM (Email:k.naim.ced @uca.ac.ma). Department of Computer Science, FST, Cadi Ayyad University. Bd.
Abdelkrim El Khattabi , B.P. 549 Guéliz, Marrakech (40000), Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



K. NAIM AND A. DAROUICHI 1

techniques used in our study are explained in the third section 3. Section 4 presents our suggested R50-CapsNet
model. Section 5 presents experimental results on 2 OCT datasets. Section 6 concludes this paper.

2. Literature Review

In 2024, a recent article [8] introduces a newly established dataset featuring retinal images obtained through
Optical Coherence Tomography (OCT), a pivotal medical imaging technology for detailed retinal visualization.
This dataset, OCTDL, encompasses over 2,000 images sourced from patients with diverse retinal ailments such
as AMD and DME. The primary aim is to leverage this dataset to advance artificial intelligence methods in OCT
image analysis, thereby enhancing diagnostic capabilities in ophthalmology [15, 8]. In this article [8], the authors
evaluated the effectiveness of the deep learning architectures VGG16 and ResNet50 using their dataset named
OCTDL. VGG16 and ResNet50 are standard CNN architectures that have been used and assessed across multiple
OCT datasets, thereby providing a robust benchmark for analyzing the performance of the OCTDL dataset with
these models. Although VGG and ResNet are regarded as traditional architectures, they continue to demonstrate
exceptional performance in numerous image classification tasks [8]. VGG16 [16] is a 16-layer architecture known
for its simplicity, the architecture comprises thirteen convolutional blocks followed by 3 fully connected layers,
as arranged in thirteen convolutional and three fully connected layers. The activation function for every layer
is ReLU, and there are five max-pooling layers in the architecture. A softmax classification layer concludes the
network. ResNet, the extension of the VGG architecture, introduced residual connections to solve the problem of
the vanishing gradient. ResNet50 model [17] consisting of a total of 50 layers has 48 convolutional layers and one
max-pooling layer and one average pooling layer (Figure 1).

In data preparation, the OCTDL dataset was divided into 3 sets: train, validation, and test such that images of
a single patient were assigned to only one set. In all experiments, the authors employed the cross-entropy loss
function and the Adam optimizer, utilizing a learning rate of 0.0005. Various data augmentation techniques were
implemented, like random cropping, flipping (horizontal and vertical), rotation, translation, and Gaussian blur
were applied [8]. In addition to detailing OCTDL, [8] offers a comparison between several widely used public
OCT datasets. Notably, the Kermany dataset, also known as OCT2017, remains the largest, established in 2017
[18], encompassing over 200,000 OCT images categories such as CNV, DME, Drusen, and Normal cases. Other
datasets like RETOUCH [19], OPTIMA [20], and Duke [21] contribute uniquely to retinal fluid classification and
segmentation studies, collectively advancing OCT imaging techniques [8]. In addition, the OCTDL was integrated
with the OCT2017 dataset for experimental purposes. The outcomes of training neural networks solely on OCTDL,
as well as the results from merging it with the OCTID and OCT2017 datasets to address the classification challenge,
were discussed. Confusion matrices illustrating the training of ResNet50 and VGG16 using the proposed dataset
were included. Various metrics, including Accuracy (ACC), F1-score, and Area Precision (P), were employed,
indicating strong and consistent performance across all classes in the OCTDL dataset (see Table 1).
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Figure 1. ResNet50 architecture [17]
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2 DEEP LEARNING-BASED CLASSIFICATION OF RETINAL PATHOLOGIES

Table 1. Performance Evaluation of Models [8]

. ACC | F1 Score | Precision (P)
Models Dataset Categories (%) (%) (%)
ResNet50 [8] | OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 84.6 | 86.6 89.8
VGG16 [8] | OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 859 | 86.9 88.8
ResNet50 [8] | OCT2017 + OCTDL | CNV, DME, Drusen, NO 83.3 | 80.5 82.3
VGG16 [8] | OCT2017 + OCTDL | CNV, DME, Drusen, NO 81.8 | 79.8 82.3

3. Dataset and Preprocessing

3.1. Dataset

The OCT is a method of imaging that does not require any invasive procedure and is commonly used in clinical
practices by ophthalmologists. The early identification and ongoing assessment of retinal diseases are crucial
because it shows different layers of the retina. The OCT uses light wave interference to produce microscopic
images of the retinal layer and thus it can be useful in diagnosis for various ocular conditions. The OCTDL is
Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods [15], consists of sample 2064
images where are categorized and annotated based on disease groups and retinal pathologies (see Figure 2 and
Table 2). Between 2013 and 2017, kermany and his team undertook the gathering of a significant dataset [18]. This

Table 2. Number of images per disease category in the OCTDL
dataset [15].

Disease Images
AMD - Age-related central vision loss. 1231
DME - Retinal swelling from diabetes. 147
ERM - Thin membrane on retina surface. 155
NO - Healthy retinal scan. 332
RAO - Arterial blockage causing sudden vision loss. 22
RVO - Vein blockage with retinal bleeding/swelling. 101
VID - Vitreous pulling on the macula. 76
Total 2,064

Figure 2. Visualization of retinal disease from the
OCTDL dataset [15].

dataset, known as the OCT2017 dataset and OCT images Balanced version comprises 33,032 OCT B-scan images.
Its purpose is to classify various Categories such as CNV, DME, Drusen, and Normal scans. Examples are shown
in Figure 3, with the per-class counts summarized in Table 3.

3.2. Pre-processing

To ensure optimal performance on the OCTDL dataset [15], combined with OCT2017, we applied a series
of preprocessing and augmentation steps. All images were resized to 112x225x3 pixels and normalized to
the [0, 255] range for consistency. To improve image quality, a bilateral filter was applied with parameters
d =9, sigmaColor = 75, and sigmaSpace = 75, which reduces noise while preserving retinal boundaries. Data
augmentation included horizontal flips (50% probability), small geometric transformations (shifts up to 5%, scaling
up to 10%, and rotations up to 10 degrees), brightness and contrast variations (£15%), and light blurring (Gaussian
or motion blur with kernel size up to 5), see Table 4. Finally, the dataset was divided into training (90%) and test
sets (10%), with the testing set additionally balanced to ensure an equal representation of all classes (see Table 5).
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Table 3. Number of images per disease category in OCT2017 dataset
[18].

Disease Training  Testing

Normal [18] 8,016 242

CNV [18] 8,016 242

DME [18] 8,016 242 CNV DME
Drusen [18] 8,016 242

Total 32,064 968

Table 4. Training-time preprocessing and augmentation settings.

Preprocessing & augmentation (training only)

Bilateral filter d = 9, ocolor = 75, Ospace = 75

Geometric H-flip (50%), shifts <5%, scale <10%, rot <10°, shear <5% DRUSEN NORMAL
Photometric ~ Brightness/contrast +15% . . L N

Blur Gaussian or motion (kernel <5) Figure 3. Visualization of OCT2017 classes:
Split 90% train / 10% test CNV, DME, Drusen, Normal [18].

Table 5. Data Splits Overview: OCTDL & OCT2017 Datasets [8].

Dataset Labels Training | Testing
OCTDL [8] AMD, DME, ERM, NO, RAO, RVO, VID 6621 826
OCT2017 + OCTDL [8] | CNV, DME, Drusen, NO 21942 2108

4. Methodology and Implementation

This work is being completed on Kaggle, where free use of NVIDIA TESLA P100 GPUs such as the Nvidia P100
GPU is available on its platform. This GPU supports HBM2 (High Bandwidth Memory) with 16 GB capacity and
a memory bus width of 4096 bits. The memory band of this GPU is 732 GB/s, and the per-image compute profile
are summarized in Table 6.

Table 6. Reproducibility & runtime environment (Kaggle) with per-image compute metrics.

Kaggle runtime environment

GPU (visible) NVIDIA Tesla P100 (16 GB HBM2)

CUDA home /usr/local/cuda

TensorFlow 2.18.0

CUDA/cuDNN (TF build) 12.5.1/9

TF CUDA compute capabilities? sm_60, sm.70, sm_80, sm_89, compute_90
OS / NVIDIA driver <from nvidia-smi>

Compute metrics (per image, forward pass)

FLOPs ~ 1.63 GFLOPs (=~ 0.82 GMACs)P

Latency (batch = 1, P100) ~ 33 ms

Profiler TF Profiler (order_ by = float_ops)

4 Capabilities compiled into the TF wheel (device here: P100, sm_60).
b Rule of thumb: 1 MAC ~ 2 FLOPs.

4.1. Capsule Network

Capsule network (CapsNet) is an image parsing network consisting of capsules, i.e., groups of neurons or any
operation that attempts to predict the instantiation presence and parameters (position, size, orientation, etc.) of
a given object in a given image region. We represent the entity presence probability using the length of the
activity vector and its direction representing instantiation parameters [22]. CapsNet enhances the image analysis by
employing a squash activation function that compresses capsule output to maintain orientation information within a
limited range. It uses a dynamic routing algorithm that allows capsules to communicate with each other, achieving
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4 DEEP LEARNING-BASED CLASSIFICATION OF RETINAL PATHOLOGIES

consensus across layers for better feature representation. CapsNet also employs Margin Loss, a special function
used to guide network training based on measurement of difference between ground truth and predicted values, for
detailed information refer to [22]. CapsNet relies on three main components:

(1) Squash Function: ensures output vectors have length in (0, 1) while preserving orientation:

__lsil* s
T 14 (s syl

(2) Dynamic Routing: capsules communicate through routing-by-agreement:
8;j= Y cijly Wy = Wi,
i

with coupling coefficients
__ exp(byy)
Cij = &< 1 -
>k exp(bir)
(3) Margin Loss: encourages correct class capsules to have long vectors:
Ly = Ty max(0,m™* — ||[vi|)? + (1 — Ti) max(0, |vi| —m™)?,

where T}, = 1 if class k is present, otherwise 0.

4.2. Proposed R50-CapsNet Architecture

The R50-CapsNet structure, as depicted in Figure 4, was tailored for ophthalmic disease classification from retinal
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Figure 4. The architecture of our proposed R50-CapsNet approach.

images. The pre-trained ResNet50 extracts feature maps, followed by convolutional layers with a 5 x 5 kernel and
148 filters. A 2D max-pooling and 50% dropout enhance feature selection and reduce overfitting. The use of 3 x 3
and 5 x 5 kernels enables multiscale feature capture, from fine lesions to broader retinal structures.

The Primary Caps layer applies 328 filters with 5 x 5 kernels and a 2-pixel stride to generate 32 capsule maps,
each with 8D capsules. The 8D dimension balances representation power and efficiency, consistent with prior
CapsNet studies [22].
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Finally, the OctCaps output layer represents each of the seven classes with 16D capsules, providing sufficient
capacity to model intra-class variability while maintaining interpretability, since each capsule corresponds to one
disease category. Dynamic routing aggregates information from lower capsules to support accurate classification.
5. Results and Discussions

The R50-CapsNet model stands out for its high performance in classifying ophthalmic diseases, attributed to
several factors. Firstly, it leverages the pre-trained weights of ResNet50 from the ImageNet database. Initializing
the weights from a model already trained on a vast array of diverse data allows it to benefit from prior knowledge
of general visual features. In addition, the use of Capsules provides a significant advantage, as they capture spatial
relationships within OCT images more effectively than traditional convolutional techniques—an essential property
for ophthalmic disease classification.

To ensure reliable evaluation, we applied 5-fold cross-validation, training the model for 50 epochs with an
adaptive learning rate of 0.001 and a batch size of 50. On average, training required around 193 milliseconds
per sample. The architecture, with 81 million parameters, is well-proportioned to handle the added complexity
introduced by Capsule Networks while fully exploiting ResNet50’s feature extraction capabilities.

5.1. OCTDL Dataset

5.1.1. Confusion matrix The confusion matrix for the OCTDL dataset indicates that while there are some
classification errors, the majority of the 826 retinal image samples are accurately predicted. The results are
satisfactory across all seven disease categories, see Figure 5a. The ROC curves (Fig. 5b) are near perfect macro-
AUC 0.999; class AUCs: AMD 0.999, DME/ERM/RAO/RVO 1.000, NO 0.997 showing very high true-positive
rates with very low false-positive rates.
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Figure 5. OCTDL classification results: confusion matrix and ROC curve.

5.1.2. Classification Report This report demonstrates the performance of the R50-CapsNet model. For the
OCTDL dataset, the model achieves a maximum precision of 100% for the DME, ERM, VID, RVO and RAO
classes, while the minimum precision is 75.2% for the AMD class, see Table 7.

To better understand the impact of the hybrid design, Table 8 presents an ablation study that compares
R50-CapsNet with its individual components, ResNet50 and CapsNet. The results show a clear advantage for
the combined model. While ResNet50 alone reaches an accuracy of 84.6% and CapsNet achieves 87.6%, the
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6 DEEP LEARNING-BASED CLASSIFICATION OF RETINAL PATHOLOGIES

Table 7. Classification Report for OCTDL dataset Table 8. Ablation Metric Comparison on OCTDL
Classes Precision | Recall | Fl-score | Support Architecture | Accuracy | Precision | Recall | Fl-score | AUC
AMD 0.752 1.000 0.858 118 ResNet50 84.6 86.6 89.8 84.6 98.8
DME 1.000 0.949 0.974 118 CapsNet 87.6 91.0 87.6 88.2 97.2
ERM 1.000 0.881 0.937 118 R50-CapsNet 93.6 94.9 93.6 93.7 99.9
NO 0.890 0.958 0.922 118
RAO 1.000 1.000 1.000 118
RVO 1.000 1.000 1.000 118
VID 1.000 0.763 0.865 118
Accuracy 0.936 826
Macro Avg 0.949 0.936 0.937 826
Weighted Avg 0.949 0.936 0.937 826

integration of the two pushes the accuracy up to 93.6%. The same trend appears across other metrics: precision,
recall, Fl-score, and AUC all improve when the models are combined. This demonstrates that R50-CapsNet
effectively merges the strong feature extraction of ResNet50 with the spatial representation strengths of CapsNet,
resulting in a more powerful and generalizable architecture.

5.2. OCTDL + OCT2017 Datasets

5.2.1. Confusion matrix In the combined OCTDL + OCT2017 dataset, the confusion matrix reflects occasional
misclassifications, yet the model largely predicts the majority of retinal images accurately. Across all four disease
classes, the outcomes are generally satisfactory, see Figure 6a. The ROC curves (Fig. 6b) are perfect AUC = 1.000.
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Figure 6. OCTDL + OCT2017 classification results: confusion matrix and ROC curve.

5.2.2. Classification Report This report demonstrates the performance of the R50-CapsNet model. For hybrid
OCTDL and OCT2017 dataset, the model achieves a maximum precision of 99.8% for the Normal class while the
minimum precision is 98.7% for the DRUSEN and CNYV, see Table 9.

Table 10 presents the ablation study on the hybrid dataset. ResNet50 and CapsNet alone achieve accuracies of
95.7% and 95.8%, respectively, while their combination in R50-CapsNet raises accuracy to 99.2%. The hybrid
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Table 9. Classification Report for OCTDL + OCT2017 Table 10. Ablation Metric Comparison on OCTDL +

dataset OCT2017
Classes Precision | Recall | Fl-score | Support Architecture | Accuracy | Precision | Recall | Fl-score | AUC
CNV 0.987 0.985 0.986 527 ResNet50 95.7 95.4 95.7 95.5 99.6
DME 0.996 0.994 0.995 527 CapsNet 95.8 95.9 95.8 95.8 99.6
DRUSEN 0.987 0.989 0.988 527 R50-CapsNet 99.2 99.2 99.2 99.2 100
NO 0.998 1.000 0.999 527
Accuracy 0.992 2108
Macro Avg 0.992 0.992 0.992 2108
Weighted Avg 0.992 0.992 0.992 2108

model also improves precision, recall, and F1-score, and reaches a perfect AUC' of 100, confirming its reliability
and strong generalization ability.

5.3. Discussions

Table 11 showcases the performance evaluation of several models in the realm of OCT image classification,
including ResNet50, VGG16, DenseNet, EfficientNet-v2, ViT, Swin Transformer, and the proposed R50-CapsNet.
Two distinct datasets were utilized for evaluation: the OCTDL dataset and a combined dataset merging OCTDL
with OCT2017’s classes (CNV, DME, Drusen, and NO). Across both datasets, R50-CapsNet consistently
outperforms the other models. On OCTDL, it improves accuracy by about 7.7% compared to the best baseline,
while on the combined dataset it shows a much larger gain of 0.43%. These results highlight the effectiveness of
the hybrid architecture in delivering both higher accuracy and more stable performance across different datasets.
For MobileNetV3 achieves a per-image latency of 6.95 ms, which is faster than R50-CapsNet but with lower
accuracy.

Table 11. Performance Evaluation of Models

Model Dataset Categories /?go gj Fl (,s7§)0 re Prec?;bo)n ®) A(cly'JU )C
VGGI16 [8] OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 859 86.9 88.8 86.9

VGG16 [8] OCT2017 + OCTDL | CNV, DME, Drusen, NO 81.8 79.8 82.3 99.6

EfficientNet-v2 [23] OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 73.28 72.64 77.16 98.12
EfficientNet-v2 [23] OCT2017 + OCTDL | CNV, DME, Drusen, NO 98.34 98.34 98.35 99.90
VIiT [24] OCTDL AMD, DME, ERM, NO, RAO, RVO, VID 60 50.99 44.79 73.50
ViT [24] OCT2017 + OCTDL | CNV, DME, Drusen, NO 90.11 90.09 90.13 98.12
DenseNet121 [25] OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 73.44 73.40 82.35 98.84
DenseNet121 [25] OCT2017 + OCTDL | CNV, DME, Drusen, NO 98.77 98.77 98.78 99.93
Swin Transformer [26] | OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 80.15 79.91 81.41 98.47
Swin Transformer [26] | OCT2017 + OCTDL | CNYV, DME, Drusen, NO 98.23 98.23 98.24 99.89
MobileNetV3 [27] OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 65.79 65.52 77.25 96.46
MobileNetV3 [27] OCT2017 + OCTDL | CNV, DME, Drusen, NO 98.32 98.32 98.32 99.89
Our R50-CapsNet OCTDL AMD, DME, ERM, NO, RAO, RVO, VID | 93.6 93.7 94.9 99.9

Our R50-CapsNet OCT2017 + OCTDL | CNYV, DME, Drusen, NO 99.2 99.2 99.2 100

To see what the network is actually keying on, we overlaid Grad-CAM heatmaps on representative OCT B-
scans. As shown in Fig. 7, the hotspots fall on the same structures clinicians look for: in AMD/Drusen they
trace undulating RPE/Bruch’s elevations (drusen); in CNV they outline pigment-epithelial detachment margins
with nearby pockets of sub- or intraretinal fluid; in DME they light up cystoid intraretinal spaces (sometimes
with a thin SRF layer); in ERM they run along the inner retinal surface where a hyper-reflective membrane
distorts the foveal contour; in RAO they emphasize the acutely hyper-reflective inner layers; in RVO they pick
out cystoid macular edema (£ subfoveal fluid); and in VID/VMT they cluster at points of vitreomacular adhesion
producing a “tented” fovea. These class-specific maps don’t replace segmentation, but they make the decision
process more transparent. Overall, they show that R50-CapsNet attends to anatomically meaningful cues—PED,
intra-/subretinal fluid, drusen, and surface traction—supporting the clinical plausibility of its predictions. Still,
Grad-CAM is a coarse, last-layer view and saliency methods have known limits; they should complement, not
substitute, quantitative evaluation.
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AMD CNV DME Drusen

Figure 7. Grad-CAM overlays for each class (AMD, CNV, DME, Drusen, ERM, RAO, RVO, VID)

6. Conclusion and Future Work

This study, our efforts have been dedicated to refining the R50-CapsNet classification model, leveraging Deep
Learning principles. Its standout performance, surpassing conventional CNNss, lies in its adeptness at discerning
spatial relationships within object features. This unique trait enhances its ability to handle variations in object pose,
scale, and orientation, significantly boosting overall performance.

Moreover, the anatomy of the eye has a specific shape, and the presence of a disease can deform this specific shape.
Therefore, it is crucial to measure the thickness of the eye layers, the rotation of the layers, the position, and the
shape of the macula. Looking ahead, our focus shifts to extending the model’s application into ophthalmology,
particularly in classifying stages of eye diseases. By expanding its capabilities and integrating clinical data, such
as patient history and diagnostic reports, we aim to provide more comprehensive insights into disease progression.
This holistic approach not only enhances predictive capabilities but also empowers healthcare professionals to
make informed decisions about patient management and treatment strategies.

Through rigorous testing across diverse datasets and a stratified 5-fold cross-validation protocol (with identical
preprocessing, data augmentation, class-weighted loss, and early stopping), we demonstrate the efficacy and
versatility of R50-CapsNet for ophthalmic disease classification. To support clinical deployment, we also report
computational efficiency (per-image inference time at batch = 1 and model size/parameters). We explicitly
acknowledge limitations due to minority classes (RAO, VID) and potential dataset bias and ethical considerations,
and we report macro-averaged metrics to reduce imbalance sensitivity. These additions strengthen the study’s
clinical relevance, transparency, and reliability, and future work will expand RAO/VID cohorts, conduct external
clinician-led validation, and explore model compression (e.g., pruning/quantization) to further ensure clinical
applicability.
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