‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0-16.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

The Prediction by using Nonlinear Autoregressive Model
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Abstract The study proposed a nonlinear autoregressive model along with its stability conditions. The primary objective
was to apply this model to predict the daily number of new COVID-19 cases in the Kingdom of Saudi Arabia during 2022.
The model consists of two parts: a linear term and a nonlinear term that incorporates a decreasing function. This structure
made it possible to construct a numerical example that meets the theoretical stability criteria, as illustrated in Example 1 of
the paper. The model was then applied to real-world data, specifically the time series of daily COVID-19 infections recorded
over a continuous three-month period in 2022. Using a Python-based implementation, the model parameters were estimated
to fulfill the stability conditions. The residuals were analyzed, and the model was subsequently employed to forecast the
expected number of new infections for the following month of 2022.
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1. Introduction

A nonlinear autoregressive model was proposed that simulates the exponential autoregressive model of the scientist
Ozaki and we used the “local linearization technique” to obtain an approximate linear model for the proposed
study model. We first determined the single point of the proposed model, then determined the stability criteria
of this single point and the stability of the limit cycle. To illustrate this technique, we mentioned examples 1
and 2 ,to illustrate this technique. The research model was used to analyze the real time series data related
to COVID-19 infection in the Kingdom of Saudi Arabia during a period of three months in 2022 from the
website https://www.worldometers.info/coronavirus/country/saudi—-arabia/. To ensure
the stability of the time series data, we applied the natural logarithm transformation because the original data is
increasing exponentially, and then the first difference was taken to stabilize the time series as shown in Figure 7
For the research, Python programs were employed to process the data and estimate the parameters of the proposed
first-order nonlinear model that met the stability criteria. Finally, we applied the study model to predict future
COVID-19 cases in the Kingdom of Saudi Arabia, which is the goal of the research.

We can see the definition of the ARMA model of order (p, ¢) in [1]. Definitions of the “autoregressive model of
time series of order p in discrete time,” the “exponential nonlinear model of order p,” the “’singular point with its
stability,” the ”limit cycle with its stability,” and the technique of "local linearization” were given in [2]. Also, the
“exponential nonlinear model with ~ of order p” is defined in [3].

Numerous scholars have identified the criteria for ensuring the stability of nonlinear regression models through
the utilization of the linear local approximation technique pioneered by Ozaki. The stability conditions for a
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limit cycle in the Gompertz autoregressive model were investigated in [4]. The stationary condition for the GJR-
GARCH(Q, P) model was determined in [5]. Stability conditions for SATER models were found in [6], and for
nonlinear time series models in [7]. Stability conditions for exponential GARCH models were studied in [8]. The
stability of boiling water reactor oscillation through nonlinear time series modelling was studied in [9]. The stability
analysis of RBF network-based state-dependent autoregressive models for nonlinear time series was conducted in
[10].

Many scholars have employed regression models to forecast future values of analyzed data. Maobin Li, Shouwen
Ji, and Gang Liu used three forecast models for ECS in [11]. Models were developed to forecast wind speeds over
timescales ranging from 10 minutes to one hour in [12]. Forecasts for COVID-19 using a simple frequency method
based on daily confirmed cases were generated in [13]. The future of the COVID-19 pandemic in Europe in 2021
was studied in [14]. Data from cohorts vaccinated against COVID-19 and BCG were examined to analyze how
both COVID-19 and TB spread using a mathematical partitioned model in [15].

A new nonlinear autoregressive neural network time series model (NAR-NNTS) was introduced for predicting
COVID-19 cases in [16]. A univariate time series model was used to predict the number of COVID-19 cases likely
to occur in the coming days in India in [17]. A time series model using a nonlinear regression extrinsic neural
network (NARX) was proposed for predicting recovered and deceased COVID-19 cases in [18]. The nonlinear
smoothed autoregressive transition (STAR) model was demonstrated to improve the prediction of COVID-19
incidence rate in [19]. Linear and nonlinear forecasting models were confirmed to accurately capture the COVID-
19 trend in Nigeria in [20].

Models were used to predict COVID-19 data using improved LSTM-ARIMA algorithms in [21]. A hybrid
approach combining ARIMA and a single hidden layer autoregressive neural network (NNAR) was used to forecast
daily COVID-19 cases in [22]. The accuracy of the best-fit ARIMA model forecasts was evaluated in [23]. A
comparison between ARIMA and XGBoost models for predicting COVID-19 in the United States was conducted
in [24]. COVID-19 confirmed cases and deaths in Chile were predicted using time series techniques in [25].

A deep belief network-based state-dependent autoregressive (DBN-AR) model was investigated in [26]. A newly
developed nonlinear autoregressive model was applied to forecast daily new COVID-19 cases in Iraq in [27].
The NARNN framework employs the sigmoid activation function under varying settings of previous values and
hidden neuron counts in [28]. A nonlinear autoregressive exogenous (NARX) model was constructed to forecast
the spread of COVID-19 in Jordan in [29]. The study investigates the appropriateness of applying the K-means
clustering algorithm to categorize five separate datasets that undergo feature selection through the Binary Harris
Hawks Optimization Algorithm (BHHOA) in [30].

2. THE PROPOSED STUDY FRAMEWORK

The proposed model for studying nonlinear time series is

P

1
Yi = Z |:ai +b; <2yt1>] Ye—i + ¢ Y1 #0 ()

i=1

where,{¢;} is white noise a1, ..., ap;b1, ..., b, are the constants of equation (1).
If y.—1 — Foo, then
1

Yt—1

— 0,

the model of equation (1) is y; = > +_, a; ys—; + &4

3. RESULTS
The technique employed to examine the stability of the suggested model is an approximation method.
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3.1. Singular point Z
Replacing with p=1 in equation (1) to get

1
Yi = [(Il + b (2 )] Y1+ Y170 (2)
Yt—1
Since ey =0, Z = f(Z). Then

1
7 = [a1+b1(ﬁ)]Z,Z7é0,b1 %0 (3)
The singular point Z
)

3.2. Stability at a singular point:

The stability conditions for a singular point were formulated using y; = Z + Z,, Vs = ¢;t — 1, and for an equation
(2), e, = 0, and since , Vs = t;t — 1; Z, is smallest, to reached that Z7' convergent to zero , Vn > 2,Vs =t¢; t — 1;
ZyZy1=0.

Z+Zt: [a1+b1(2

ﬁ)](z +Zi1) ()

Then,

darZ + by — 272 da1Z + by 722)] ©)
27 27
If the solution to equation (6) is within a unit circle, then (6) represents a stable first-order linear model.
Expressed using symbols
| nq |=| mi ‘< 1

Zt = [( )]Zt—l = mlzt—laml = [(

3.3. A limit cycle

A period ¢ limit cycle of y; = y¢; Yt41;- .. Yet+q; for the model suggested in Equation (2). When y; is a points
nearly a limit cycle is replaced
VSG{tvtflh ys:ys‘}’Zs

Y+ Zy = [01 +0 <2(%_11_|_Zt_1))} (Ye—1+ Zt-1) (7
Then
Z, = <4alyt; +0b1 — 2%) 7 . )
Yt—1
Put, t =t + ¢ in (8) forgetting
Ziyq = <4a1 qu; oo 2yt+q> Zitq-1 ©))
Yt+q—1
Therefore
1 T4a _i+b—2 i
Zpiy = l[[l [ 1Yt+q—i 2ytlﬂlii Yi+q—( 1)} Z, (10)
Then
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Zitq| _ ﬁ (4611 Yt+q—i + b1 — 2yt+q—(1’—1)> <1 a1
Zt Pl 2Yt+q-i
Then, (11) is
Zittq < <4a1 Yiqio1 + b1 — 2yt+i)
Zita) <1 (12)
’ Zy };[1 2Ys1i-1

4. Examples

This section of the study comprises two examples, denoted as examples (1) and (2).These illustrations serve the
purpose of pinpointing the singular point for the proposed model, applying stability constraints, and charting the
trajectories of first-order models. Additionally, you can refer to Appendix (A) for MATLAB programs that display
the orbits of the study model for both Examples (1) and (2).

u
Orbits for y(i)=((-0.5)+((H)* (A G-1)*2))))*(G-1):

15-"""7"""1 """"" § e T e SN Ve D S e e e v it st sty
¥(1)=0.01 |}
: : : : : : : y(1)=-10 |
: : : : : : : (1)=11
L preeeee e .. - }—
- S SO SOOI SISO SO SOOI AUUOL SO SO
=

Figure 1. The stability of a singular point with different initial values.

4.1. Example (1)

Let’s suppose that we have the given model. y,=[—0.5 + 4(%%)]%_1 + &; While ,a; = —0.5,b; = 4. By using
equation (4), we derive that the singular point is such that:

b1 4 4

2(1=(a1)) 2(140.5) 2(1.5)
When Z = 1.333, and by using (6),
Zt - *08878 Zt—l (*)
Therefore, Z = 1.333 ,is a stable because the root n; = —0.8878 of equation (*) is in a unit circle.

Therefore, the next figure display the stability of the proposed model with different initial values
y(1) =0.01;y(1) = —10;y(1) = 11.
Z = 1.333, with constants a; = —0.5,b; = 4.
Figure 1, illustrates the trajectory plot for the stable proposed first-order model with a singular point
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4.2. Example (2)

If, a;=-190b =42, y, = [—1.9—1—4.2(2%171)]%71 + ¢¢ By utilizing equation (4), we determine that the

singular point is such that: Z = 2(1_%11)) = 2(1i21~9) = 2(42'_29) = 0.7241 When Z = 0.7241 and using (6), we obtain

Zy = —1.8998 Z;_1.

Therefore, Z = 0.7241 is unstable (the root n; = 1.8998) is outside a unity circle.
Therefore, the figure shows model orbits that unstable in different initial values.

y(1) =0.1;y(1) = —10;y(1) = 11;

Figure 2, illustrates the trajectory plot for unstable proposed first-order model with a singular point Z = 0.7241,
with constants a; = —1.9,b; = 4.2.

y(1)=0.1
y(1)=-10 ||

yltl

7 I T N AN (N SN RN N M
0

Figure 2. unstable singular point in different initial values.

5. Application

5.1. Description of the data utilized in the study

The study utilized information gathered from the website https://www.worldometers.info/
coronavirus/country/saudi-arabia/, which provides information on the daily count of new Covid-
19 cases in Kingdom of Saudi Arabia between 1st April 2022 and 30th June 2022. The dataset comprises 91
observations, representing the number of new cases reported each day during this specific timeframe. The dataset’s
lowest value occurred on 04-Apr-2022, with 78 new cases reported, whereas the highest value was recorded on
21-Jun-2022, with 1232 new cases reported, and to access the data used in the study, please refer to Appendix (A).
The next figure, figure 3, display The COV ID = y, series data between 01-Apr-2022 and 30-Jun-22. figure 3,
the daily count of new Covid-19 cases in Kingdom of Saudi Arabia between 1st April 2022 and 30th June 2022.

By utilizing the SPSS program to analyze the graph of the primary COVID data series as shown in Figure 3
,it becomes evident that the data is exhibiting growth, following an exponential pattern, and displaying instability.
Through the utilization of the EViews 9 software, an analysis was conducted on the initial COVID dataset (y;)
using autocorrelation and partial auto correlation functions as depicted in Figure 4. The observation made from
this analysis was that the COVID variable lacks stability Figure 4 for the autocorrelation and partial autocorrelation
functions for the real data series COVID.
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Figure 3. The COVID series data between 01-Apr-2022 and 30-Jun-22.

£ series: COVID  Workfile: COVID19:Untitled\ == EEE %"

[ViewlProcIObjealPropenies] [PrintINameIFreezel [SampleIGenr]SheetIGraph]StatsIIdent
Correlogram of COVID

Date: 08/08/24 Time: 22:08
Sample: 1 121
Included observations: 91

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

0.952 0.952 85.199 0.000
0.898 -0.091 161.80 0.000
0.863 0.189 233.44 0.000
0840 0.078 302.13 0.000
0.820 0.041 368.28 0.000
0819 0.250 435.08 0.000
0.807 -0.136 500.67 0.000
0.742 -0.504 556.85 0.000
0.674 -0.019 603.75 0.000
0634 0.127 64575 0.000
0.602 -0.045 684.14 0.000
0576 0.069 719.64 0.000
0.565 0.064 754.28 0.000
0549 0.041 787.39 0.000
0.488 -0.203 813.90 0.000
0426 -0.013 834.40 0.000
0.390 0.003 851.79 0.000
0365 0.015 867.21 0.000
0.344 0.052 881.09 0.000
0.334 -0.029 894.41 0.000
0.321 0.048 906.84 0.000
22 0270 -0.075 91579 0.000
23 0221 0.009 921.85 0.000
24 0193 -0.043 92655 0.000
25 0.173 -0.039 930.41 0.000
26 0154 -0.024 93350 0.000
27 0.147 0.042 936.38 0.000
28 0134 -0.042 938.78 0.000
29 0.093 0.012 939.96 0.000
30 0.050 -0.049 940.30 0.000
31 0.019 -0.151 940.35 0.000
32 -0.005 -0.002 940.35 0.000
33 -0.025 0.002 940.44 0.000
34 -0.042 -0.127 940.70 0.000
35 -0.063 0.000 941.30 0.000
36 -0.108 -0.043 943.09 0.000

—
1
]

1]

O

=

uuuuUUUUUHHHHHHHHHHHHHHH

Tooog
T R e
2

m|

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

B en

Figure 4. COVID’s autocorrelation and partial autocorrelation functions.

Due to the exponential nature of the original series, a fresh series named LCOVID was generated by
logarithmically transforming the COVID data. Subsequently, autocorrelation and partial autocorrelation functions
were graphed for the LCOVID series.Nonetheless, upon observation, the newly derived LCOVID time series
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data was found to exhibit instability, as illustrated in Figure 5. Figure 5 for the autocorrelation and partial
autocorrelation functions for the transformed data series LCOVID.

£ series: LCOVID  Workfile: COVID19:Untitled\ = B[]
[ViewIProcIObjectIPropertiesﬂPrintINameIFreeze]—[SamplelGeanSheetIGraphIStatsIIdent
Correlogram of LCOVID
Date: 08/08/24 Time: 22:13

Sample: 1 121
Included observations: 91

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

0971 0.971 88602 0.000
0.934 -0.140 171.58 0.000
0.902 0.066 249.75 0.000
0.869 -0.040 323.16 0.000
0.839 0.054 39251 0.000
0.819 0.120 459.29 0.000
0.794 -0.116 52285 0.000
0.749 -0.353 580.00 0.000
0.702 0.033 630.83 0.000
10 0.664 0.139 676.94 0.000
11 0629 0011 718.80 0.000
12 0.599 0.016 757.24 0.000
13 0.578 0.035 793.50 0.000
14 0.554 -0.040 827.21 0.000
15 0511 -0.214 856.24 0.000
16 0.470 0.066 881.12 0.000
17 0.435 0.024 902.80 0.000
18 0.406 0.063 921.88 0.000
0.383 0.018 939.09 0.000
20 0.367 -0.022 955.11 0.000
21 0.347 -0.008 969.68 0.000
22 0.308 -0.221 981.28 0.000
23 0269 0029 990.27 0.000
24 0.235 -0.006 997.27 0.000
25 0.204 -0.003 1002.6 0.000
26 0.176 -0.062 1006.6 0.000
27 0.155 0.003 1009.8 0.000
28 0.127 -0.083 1012.0 0.000
29 0.086 -0.033 1013.0 0.000
30 0.043 -0.061 1013.2 0.000
31 0.006 -0.029 1013.3 0.000
32 -0.030 -0.014 1013.4 0.000
33 -0.061 -0.025 1013.9 0.000
34 -0.090 -0.133 1015.1 0.000
35-0121 0.051 1017.3 0.000
36 -0.162 -0.023 1021.4 0.000
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Figure 5. LCOVID Graphs of autocorrelation and partial autocorrelation functions.

After applying the first difference to the original data by taking the natural logarithm, we obtained a new variable,
DLCOVID = log(y:) — log(yi-1) = Z

The autocorrelation and partial autocorrelation functions were plotted for this new variable DLCOVID, as shown
in Figure 6. Figure 6 for the autocorrelation and partial autocorrelation functions for the transformed data series
with the first difference D(LCOVID).

The Figure 7, displays the resulting stable time series and can be used for predicting future observations. The
following figure, figure 7 , shows the stable series of logarithms of the first difference of the original data that
DLCOVID = Z,

5.2. Estimate the parameters and stability condition , forcasted, prediction for the study model with data

Programs in the Python language were used to estimate the values of the parameters suitable for the study data and
the proposed non-linear model and to achieve the stability conditions of the research model, which were found on
the theoretical side in the third paragraph of the research, which is related to the results. We can see the program in
the python in the link:

https://colab.research.google.com/drive/1spI2QiMNO_6HJbZo JfLLcwWtps4RNk8B

5.2.1. Estimate the parameters for data and model with stability condition From the Python program we estimate
the parameters for the nonlinear proposed model that suitable for the study data in our search. The program starts
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Figure 6. Graphs of autocorrelation and partial autocorrelation functions for LDCOVID=Zt.
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by employing random initial values for the estimated parameters. Then ¢ = a; = 0.97,d = b; = 0.27 and by using
equation (2), we get that:
ye = [0.97 +0.27( =)y + &
By using equation (4), we get the singular point Z such that:
by _ . _ 027 _ — ;
Z—2(17(a1)) - 2(107%.797) = 2(()0?03) = 4.5. When Z = 4.5, and by using (6),

Zt =0.97 thl (**)

Therefore , Z = 4.5 is stable because the root n; = 0.97 of equation (**) is in a unit circle.
The next figure, figure 8 explain the stability singular point Z = 4.5, with estimate parameters ¢ = a; = 0.97,
d = by = 0.27 that suitable the study data and study proposed model.

i Orbits for y(i)=((0.97)+((027)*(((G-1))*2)))*(¥G-1)):
; ; ; y(1)=0.01
y(1)=-10 |i
| a s a y=11_|i
| R s R bressnoannnany

yltl

---------------------------------------------------------------------------------------

0 i l i i i i
0 50 100 150 200 250 300
t

Figure 8. The stable proposed model that suitable the study data with estimated parameters.

5.2.2. The forecasting for study model with transform data We were forecasting by using the proposed model with
the estimated parameters that we found in the Python program; we can see Appendix (B) to find the forecasting
and residuals for the transformed data by using the study model and the statistical criteria were that:

The Mean Squared Error (MSE) = 0.031119718076058615, ResidualV ariance = 0.03181903758338577,
AIC =10.895381004361774, BIC = —304.718116685427, NBIC : —3.34855073280689 , and the next figure,
figure 9 show that the transform original data and forcasted data by using the study proposed model.

5.2.3. The residuals test for the study model The autocorrelation function and the partial autocorrelation function
were found for the residuals of the model proposed in the first-order study for the transferred data, most of which
fall within the limits of confidence, which indicates that the model agrees with the data used and the possibility of
using it to predict future values. The next figures, figure 10 and figure 11 explained the autocorrelation and partial
autocorrelation functions graphs for the study model residuals The residual is clearly white noise, indicating that
the model is correct.
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Figure 9. The forecasted data and transformed real data plot.
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Figure 10. The autocorrelation function for the study model residuals.

5.2.4. We forecasted COVID data for the next month that we used by using study model We can see the program
in the python in the link:
https://colab.research.google.com/drive/1udVKbUFF-0TjJ_Aycuq yazRD1LZkzTf
From the Python program we estimate the parameters for the nonlinear proposed model that suitable for the study
data of Covid in our search. The program starts by employing random initial values for the estimated parameters.
Then, ¢ = a; = 0.959108457269065,d = b; = 53.09035963635171 we can see in Appendix (C) that we found the
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Figure 11. The partial autocorrelation function for the study model residuals.

forecasting COVID data by using the study model with the original data. The next figure, figure 12, showsthe
forecasting of COVID data by using the study model.

@ Original Data

1200 1 — Fitted Curve L)

1000 A

800 A

CcoviD

600 A

200 +

0 20 40 60 80

Figure 12. Forecasting COVID data by using the study model.

5.2.5. The predictions for study model with real data We can see the predictions for the study model with real data
for the next thirty days. The next figure, figure 13, explain the prediction of the real COVID data and the real data
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that we used in our search by using the study model for the next thirty days. Figure 13 the predictions for COVID
data by using the study model for the next month.

° @ Original Data
1200 4 @ —— Fitted Curve and Predictions

1000 A

800 1

CovID

600 A

400 -

200 A

Figure 13. predictions for COVID data by using the study model for the next thirty days.

The next table, table(1) show that the predictions for COVID data by using the proposed study model for the
next thirty days.

t prediction of COVID t prediction of COVID t prediction of COVID
1-jul-22 755 11-jul-22 719 21-jul-22 695
2-jul-22 750 12-jul-22 716 22-jul-22 693
3-jul-22 746 13-jul-22 713 23-jul-22 691
4-jul-22 742 14-jul-22 710 24-jul-22 689
5-jul-22 738 15-jul-22 708 25-jul-22 688
6-jul-22 735 16-jul-22 705 26-jul-22 686
7-jul-22 731 17-jul-22 703 27-jul-22 685
8-jul-22 728 18-jul-22 701 28-jul-22 683
9-jul-22 725 19-jul-22 699 29-jul-22 682
10-jul-22 722 20-jul-22 697 30-jul-22 681

Table 1. Prediction of COVID by using study model
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6. Conclusions

The study investigates the determination of stability conditions for the proposed model using the local linear
approximation method, which focuses on identifying the unique non-zero point of the model and its associated
stability constraints, supported by a numerical example. Structurally, the proposed model bears a strong
resemblance to the exponential autoregressive model developed by the Japanese researcher Ozaki, as it integrates
both a linear component and a nonlinear component, the latter characterized by a decreasing function. The model
was validated with real-world data, specifically the daily counts of new COVID-19 cases in Saudi Arabia over a
continuous three-month span in 2022. Parameter estimation of the first-order model was carried out in Python
to ensure compliance with the stability condition at the singular point. The forecasts within the study period
demonstrated high accuracy, reflected in minimal residuals (Appendix B) and robust statistical performance. A key
finding of this research is that the proposed nonlinear time series model exhibits strong predictive capabilities for
anticipating the future dynamics of critical phenomena, such as daily COVID-19 infections, thereby supporting
the design and implementation of timely public health interventions to curb their spread and mitigate their
consequences.

Appendix (A)

The COVID series data between 01-Apr-2022 and 30-Jun-2022 in the Kingdom of Saudi Arabia.

t COVID t COvVID ¢ COVID
01-Apr-22 107 01-May-22 90 31-May-22 686
02-Apr-22 96 02-May-22 99 01-Jun-22 667
03-Apr-22 88 03-May-22 128 02-Jun-22 569
04-Apr-22 78 04-May-22 102 03-lun-22 775
05-Apr-22 104 05-May-22 124 04-Jun-22 662
06-Apr-22 116 06-May-22 159 05-Jun-22 565
07-Apr-22 108 07-May-22 219 06-Jun-22 652
08-Apr-22 114 08-May-22 234 07-Jun-22 967
09-Apr-22 104 09-May-22 339 08-Jun-22 952
10-Apr-22 95 10-May-22 565 09-Jun-22 1029
11-Apr-22 96 11-May-22 569 10-Jun-22 955
12-Apr-22 130 12-May-22 642 11-Jun22 932
13-Apr-22 135 13-May-22 611 12-Jun-22 753
14-Apr-22 110 14-May-22 559 13-Jun-22 905
15-Apr-22 103 15-May-22 434 14-Jun-22 1188
16-Apr-22 105 16-May-22 431 15-Jun-22 1152
17-Apr-22 83 17-May-22 630 16-Jun-22 1033
18-Apr-22 93 18-May-22 621 17-Jun-22 963
19-Apr-22 133 19-May-22 602 18-Jun-22 945
20-Apr-22 143 20-May-22 545 19-Jun-22 831
21-Apr-22 146 21-May-22 540 20-Jun-22 930
22-Apr-22 130 22-May-22 411 21-Jun-22 1232
23-Apr-22 117 23-May-22 467 22-Jun22 1143
24-Apr-22 91 24-May-22 650 23-Jun-22 1082
25-Apr-22 85 25-May-22 557 24-Jun-22 1002
26-Apr-22 109 26-May-22 540 25-Jun22 927
27-Apr-22 106 27-May-22 516 26-Jun-22 734
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t COVID t COVID t COVID
28-Apr-22 98 28-May-22 483 27-Jun-22 827
29-Apr-22 92 29-May-22 408 28-Jun-22 1076
30-Apr-22 99 30-May-22 530 29-Jun-22 869
30-Jun-22 759

Appendix (B)

Log(COVID) values, forecasting values, and residuals using the nonlinear study model.

13

t Log(y:) Forecast(Log(y;)) Residual t Log(y:) Forecast(Log(y:)) Residual
01-Apr-22  4.672829 4.716431 -0.0436 17-May-22 6.44572  6.081646 0.364074
02-Apr-22  4.564348 4.716431 -0.15208 18-May-22 6.431331 6.453612 -0.02228
03-Apr-22 4477337 4.610135 -0.1328 19-May-22  6.400257 6.439513 -0.03926
04-Apr-22  4.356709 4.524876 -0.16817 20-May-22 6.300786 6.409065 -0.10828
05-Apr-22  4.644391 4.406678 0.237713  21-May-22 6.291569 6.311597 -0.02003
06-Apr-22  4.753590 4.688566 0.065024 22-May-22 6.018593 6.302566 -0.28397
07-Apr-22  4.682131 4.795565 -0.11343  23-May-22  6.146329 6.035088 0.111241
08-Apr-22  4.736198 4.725546 0.010653 24-May-22 6.476972 6.160252 0.316721
09-Apr-22  4.644391 4.778524 -0.13413  25-May-22  6.322565 6.484235 -0.16167
10-Apr-22  4.553877 4.688566 -0.13469  26-May-22  6.291569 6.332938 -0.04137
11-Apr-22  4.564348 4.599875 -0.03553  27-May-22  6.246107 6.302566 -0.05646
12-Apr-22  4.867534 4.610135 0.257399 28-May-22 6.180017 6.258019 -0.078
13-Apr-22 4905275 4.907215 -0.00194 29-May-22 6.011267 6.19326 -0.18199
14-Apr-22  4.700480 4.944195 -0.24371  30-May-22 6.272877 6.02791 0.244967
15-Apr-22  4.634729 4.743525 -0.1088 31-May-22  6.530878 6.28425 0.246627
16-Apr-22  4.653960 4.679098 -0.02514  01-Jun-22  6.50279  6.537054 -0.03426
17-Apr-22  4.418841 4.697942 -0.2791 02-Jun-22  6.34388  6.509532 -0.16565
18-Apr-22  4.532599 4.467559 0.065041 03-Jun-22  6.652863 6.353824 0.299039
19-Apr-22  4.890349 4.579026 0.311323 04-Jun-22  6.495266 6.656583 -0.16132
20-Apr-22  4.962845 4.929570 0.033275 05-Jun-22  6.336826 6.502159 -0.16533
21-Apr-22  4.983607 5.000605 -0.017 06-Jun-22  6.480045 6.346911 0.133134
22-Apr-22  4.867534 5.020949 -0.15341 07-Jun-22  6.874198 6.487245 0.386953
23-Apr-22  4.762174 4.907215 -0.14504  08-Jun-22  6.858565 6.873460 -0.01489
24-Apr-22  4.510860 4.803976 -0.29312  09-Jun-22  6.936343 6.858141 0.078202
25-Apr-22  4.442651 4.557724 -0.11507  10-Jun-22  6.861711 6.934352 -0.07264
26-Apr-22  4.691348 4.490890 0.200458 11-Jun-22  6.837333 6.861224 -0.02389
27-Apr-22  4.663439  4.734577 -0.07114  12-Jun-22  6.624065 6.837337 -0.21327
28-Apr-22  4.584967 4.707230 -0.12226  13-Jun-22  6.807935 6.628365 0.17957
29-Apr-22  4.521789 4.630339 -0.10855  14-Jun-22  7.080027 6.808531 0.271496
30-Apr-22  4.595120 4.568433 0.026687 15-Jun-22  7.049255 7.075142 -0.02589
01-May-22 4.499810 4.640287 -0.14048  16-Jun-22  6.940222 7.044990 -0.10477
02-May-22  4.595120 4.546897 0.048223 17-Jun-22  6.870053 6.938154 -0.06810
03-May-22 4.852030 4.640287 0.211743 18-Jun-22  6.851185 6.869398 -0.01821
04-May-22 4.624973 4.892023 -0.26705 19-Jun-22  6.722630 6.850910 -0.12828
05-May-22  4.820282 4.669539 0.150743 20-Jun-22  6.835185 6.724944 0.110241
06-May-22 5.068904 4.860914 0.207991 21-Jun-22  7.116394 6.835232 0.281162
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t Log(y,) Forecast(Log(y;)) Residual t Log(y:) Forecast(Log(y;)) Residual
07-May-22 5.389072 5.104528 0.284543 22-Jun-22  7.041412 7.110777 -0.06937
08-May-22 5.455321 5.418247 0.037074 23-Jun-22  6.986566 7.037305 -0.05074
09-May-22  5.826000 5.483162 0.342838 24-Jun-22  6.909753 6.983564 -0.07381
10-May-22 6.336826 5.846375 0.490451 25-Jun-22  6.831954 6.908298 -0.07634
11-May-22 6.343880 6.346911 -0.00303  26-Jun-22  6.598509 6.832066 -0.23356
12-May-22  6.464588 6.353824 0.110765 27-Jun-22  6.717805 6.603323 0.114481
13-May-22 6.415097 6.472100 -0.05700  28-Jun-22  6.981006 6.720216 0.26079
14-May-22 6.326149 6.423606 -0.09746  29-Jun-22  6.767343 6.978116 -0.21077
15-May-22 6.073045 6.336450 -0.26341  30-Jun-22  6.632002 6.768757 -0.13675
16-May-22  6.066108 6.088443 -0.02233

Appendix (C)

COVID values, forecasting COVID values, and residuals by using the nonlinear study model.

t COVID Forecast(COVID) Residual t COVID Forecast(COVID) Residual
01-Apr-22 107 129 -22 17-May-22 630 440 190
02-Apr-22 96 129 -33 18-May-22 621 631 -10
03-Apr-22 88 119 -31 19-May-22 602 622 -20
04-Apr-22 78 111 -33 20-May-22 545 604 -59
05-Apr-22 104 101 3 21-May-22 540 549 -9
06-Apr-22 116 126 -10 22-May-22 411 544 -133
07-Apr-22 108 138 -30 23-May-22 467 421 46
08-Apr-22 114 130 -16 24-May-22 650 474 176
09-Apr-22 104 136 -32 25-May-22 557 650 -93
10-Apr-22 95 126 -31 26-May-22 540 561 21
11-Apr-22 96 118 -22 27-May-22 516 544 -28
12-Apr-22 130 119 11 28-May-22 483 521 -38
13-Apr-22 135 151 -16 29-May-22 408 490 -82
14-Apr-22 110 156 -46 30-May-22 530 418 112
15-Apr-22 103 132 -29 31-May-22 686 535 151
16-Apr-22 105 125 -20 01-Jun-22 667 684 -17
17-Apr-22 83 127 -44 02-Jun-22 569 666 -97
18-Apr-22 93 106 -13 03-Jun-22 775 572 203
19-Apr-22 133 116 17 04-Jun-22 662 770 -108
20-Apr-22 143 154 -11 05-Jun-22 565 661 -96
21-Apr-22 146 164 -18 06-Jun-22 652 568 84
22-Apr-22 130 167 -37 07-Jun-22 967 652 315
23-Apr-22 117 151 -34 08-Jun-22 952 954 -2
24-Apr-22 91 139 -48 09-Jun-22 1029 940 89
25-Apr-22 85 114 -29 10-Jun-22 955 1013 -58
26-Apr-22 109 108 1 11-Jun-22 932 942 -10
27-Apr-22 106 131 -25 12-Jun-22 753 920 -167
28-Apr-22 98 128 -30 13-Jun-22 905 749 156
29-Apr-22 92 121 -29 14-Jun-22 1188 895 293
30-Apr-22 99 115 -16 15-Jun-22 1152 1166 -14

Stat., Optim. Inf. Comput.

Vol. x, Month 202x



SALIM M. AHMAD, ANAS S. YOUNS AND AMMAR SAAD ABDULJABBAR 15

t COVID Forecast(COVID) Residual t COVID Forecast(COVID) Residual
01-May-22 90 121 -31 16-Jun-22 1033 1131 -98
02-May-22 99 113 -14 17-Jun-22 963 1017 -54
03-May-22 128 121 7 18-Jun-22 945 950 -5
04-May-22 102 149 -47 19-Jun-22 831 933 -102
05-May-22 124 124 0 20-Jun-22 930 824 106
06-May-22 159 145 14 21-Jun-22 1232 919 313
07-May-22 219 179 40 22-Jun-22 1143 1208 -65
08-May-22 234 237 -3 23-Jun-22 1082 1123 -41
09-May-22 339 251 88 24-Jun-22 1002 1064 -62
10-May-22 565 352 213 25-Jun-22 927 988 -61
11-May-22 569 568 1 26-Jun-22 734 916 -182
12-May-22 642 572 70 27-Jun-22 827 731 96
13-May-22 611 642 -31 28-Jun-22 1076 820 256
14-May-22 559 613 -54 29-Jun-22 869 1059 -190
15-May-22 434 563 -129 30-Jun-22 759 860 -101
16-May-22 431 443 -12
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