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Abstract Accurate segmentation of brain tumors in MRI is an important aspect of accurate clinical diagnostics and sound
surgical planning. Tumor boundary accuracy is fundamental to informing assessment of a patient’s condition, acquired
through continuous expansion of Deep Learning based segmentation approaches. This study introduced an effective deep
learning method to perform 3D segmentation of multimodal MRI images by enhancing the Res-UNet architecture. Our
proposed model, 3D ASPP-ResUNet, incorporates an ASPP (Atrous Spatial Pyramid Pooling) module to better exploit
multi-spatial scale features. The BraTS 2020 dataset has been used for training and evaluation. This model performs well
according to the dice metric for different tumor regions attaining Dice scores of 0.7578 for TC (tumor core), 0.7025 for ET
(enhancing tumor) and 0.8273 for WT (whole tumor). Furthermore, we observed that the 3D ASPP-ResUNet was better than
currently leading models with respect to segmentation performance metrics that we defined as the Dice coefficients.
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1. Introduction

Brain tumors represent a serious intracranial pathology that can pose significant health risks.These abnormal
clumps of cells disrupt the brain, our body’s complex control center. Unlike healthy brain tissue, brain tumors
grow uncontrollably, causing harm to their surroundings [1]. This wreaks havoc on the brain’s ability to coordinate
our body, making brain tumors a serious threat to human health.

In order to diagnose brain tumors, medical imaging is essential. This includes techniques like CT scans,
ultrasounds, and X-rays, but MRI reigns is widely regarded as the most effective modality [2]. Its high resolution
and ability to capture detailed brain anatomy make it the go-to method for tumor detection. Accurate tumor
segmentation, identifying the tumor’s boundaries within an MRI scan, is crucial for safe and effective treatment,
especially surgery where preserving healthy tissue is paramount. While this segmentation can be done by
radiologists manually, it takes a lot of time and is prone to errors. This is where automated computer-aided
segmentation comes in a much needed development to streamline the process and ensure consistent results.

Brain tumor segmentation (BTS) is tricky. Tumor cells come in all shapes, sizes, and appearances, and can pop
up anywhere in the brain. Researchers are constantly looking for better ways to tackle this challenge, and recently,
one useful artifact that has risen is deep learning. Contrary to conventional machine learning, deep learning is able
to automatically identify and select the most significant features in an image. For complex jobs like brain tumor
segmentation, this is especially beneficial.
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This paper introduces a new deep learning method called 3D ASPP-ResUNet. It builds upon the existing 3D
Res-UNet architecture for segmenting 3D MRI scans from multimodalities. We’ve added a unique module called
ASPP (Atrous Spatial Pyramid Pooling) to increase accuracy. With the help of this module, the model may more
accurately separate tumors by capturing data from the image at various scales.

The paper has the following structure: Deep learning models related to segmentation of brain tumor are reviewed
in Section 2. Sections 3 & 4, unveiling our approach analyze the core of our research: 3D ASPP-ResUNet
architecture and its components. Section 5 tests our innovation by examining the outcomes of our suggested method
and evaluating its efficacy through comparison studies. Section 6 wraps up the work by providing a summary of
our results and suggesting possible avenues for further investigation.

2. Related Works

Due to its unique ability to automatically diagnose the size, type and location of tumors, brain tumor segmentation
has been a popular task in recent times. Many researchers have developed some compelling techniques or
methods for segmenting brain tumors. There are many deep learning approaches used in challenge of medical
imaging segmentation, including fully convolutional networks, cascaded architectures, approaches with dilated
convolutions, and the top-down approaches that are very popular.

Long et al. (2015) [3] actually initiated the concept of the fully convolutional network (FCN) by replacing fully
connected layers typically found in neural networks with 1 x 1 convolutions. This is problematic for segmentation
because all global image semantic context is lost, and the FCN learned to only exploit local representations. To
remedy this situation, the FCN leveraged its basic model VGG-16 and incorporated the lower and upper layers into
its segmentation layer using the skip connections.

Havaei et al. (2017) [4] proposed a cascading structure of a convolutional neural network (CNN) that accurately
estimates local dependencies. The network leverages both more global contextual features and local feature
leveraging an extra source of data from the output of a simple CNN as the input for the overall CNN. Two phases
of training is performed over the BraTS 2013 dataset to mitigate tumor label imbalance. Despite the architecture
demonstrating a respectable overall performance (Having an overall tumor segmentation Dice score of 0.84 and a
specificity of 0.88), the network performance in terms of tumor core segmentation, and tumor highlight (region for
tumor) had limitations with Dice scores of 0.71 and 0.57.

Ranjbarzadeh et al. (2021) [5] developed a novel architecture that focuses solely on a tiny part of brain image
rather than the entire image to reduce computation time and overcome overfitting issues associated with a cascaded
model. They proposed the C-ConvNet/C-CNN model, a straightforward and effective cascaded convolutional
network. Both global and local features are used in two different ways by this C-CNN model. Additionally, to
increase the precision of tumor segmentation, they integrated a Distance Wise Attention mechanism. Even if the
suggested method produced remarkable outcomes on the BraTS 2018 dataset, limitations remain when it is faced
with a tumor volume that exceeds one-third of the entire brain.

In order to improve segmentation whilst maintaining resolution, Yu and Koltun (2015) [6] implemented a
modification of standard CNNs, dilated convolution (or atrous convolution). In these processes, the benefits of
dilated convolution help by providing linear rate increases for parameters and exponential rate increases for
receptive fields, which provides an efficient way to extract features. However, since dilated convolution may reduce
disassociation, or unlink pixels to their global context, it may also cause errors in classification.

Yang et al. (2020) [7] presented a modified U-Net known as DCU-Net (Dilated Convolution U-Net) for use
in segmentation of brain tumor. They recommended that use of multi-scale spatial pyramid pooling and dilated
convolutions could increase the receptive field efficiently, and therefore, DCU-Net did not include a max pooling
option in the down-sampling path as was done in some other dilated convolution networks, but instead used
up-sampling. To optimize the performance of segmentation, the authors used dilated residual blocks and skip
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connections. Assessment of the BraTS 2018 dataset indicated that overall, the model performed quite well,
achieving strong Dice similarity coefficients in several areas of tumor.

Cabhall et al. (2021) [8] introduced DIU-Net (Dilated Inception U-Net) approach for BTS, utilizing U-Net as a
base. Both local structural information and global contextual information may be extracted due to this architecture’s
combination of dilated convolutions and inception modules in the contraction and expansion paths. The DIU-Net
architecture demonstrates superior computational efficiency compared to U-Net, while having fewer parameters,
according to the promising outcomes on the dataset of BraTS 2018 .

The asymmetric 3D U-Net design presented by Belaid et al. (2020) [9], however, incorporates the 2D
EfficientNet classification model in the encoding stage. There are two steps that the encoder and the decoder go
through. The input data is three-dimensional, but the early stages of the encoder begin lowering the third dimension
according to the EfficientNet 2D network input share. Furthermore, there are two stages to the decoding process: a
2D and a 3D phase. The BraTS 2020 dataset was used by the authors to illustrate the efficacy of their models.

Using four similar encoder structures, Zhang et al. (2021) [10] developed the ME-Net model to enhance the
V-Net design, it has a single path for resolution reduction. Each encoder is designed to segment one of the four
modalities in parallel. They also implemented multiple skip connections in order to fuse the feature maps that were
produced by encoders. Then the combined feature maps are provided to the decoder as input.

More recent work, such as nnU-Net by Isensee et al. (2021) [11], is a self-configuring deep learning framework
that automatically configures neural network architecture, preprocessing, post-processing and training to each
dataset in biomedical image segmentation. The proprietary framework, nnU-Net, therefore relieves you of the
burden of design choices and still achieves competitive performance over a variety of segmentation tasks. nnU-Net
gained acceptance given it outperformed or matched specialized methods on a wide range of open datasets so you
can get state-of-the-art segmentation without even having to be an expert in hyperparameter tuning.

Methods that are based on transformers have also found their way into volumetric medical imaging in multiple
ways. Hybrid encoders (e.g., TransUNet [12] and TransBTS [13]) use CNNs for local detail, but also Transformers
for context and have validation BraTS accuracy that are similar. Fully 3D Transformers (e.g., UNETR [14] and
hierarchical Swin encoders such as SwinUNETR [15] and SwinBTS [16] closely align to this approach using
volumetric input and tend to be the most often seen in high-scoring BraTS submission or validation metrics.

3. Research methodology

In this section, we have briefly outlined what dataset to use and discussed all pre-processing steps associated
with that data. We then highlighted all aspects of the suggested model, including the multi-scale feature extractor
module, encoder and decoder.

3.1. Dataset

We used the BRATS2020 dataset [17] for our experiments, which included 3D brain MRI scans. Each scan comes
in four flavors: T1, T1ce, T2, and FLAIR, providing a comprehensive picture of the brain. To ensure consistency, all
scans are formatted as .nii.gz files and resized to 240 x 240 x 155 voxels. Each scan has been manually segmented
by one to four experts, providing ground truth annotations for:

* Necrosis and non-enhancing tumor (NCR/NET)
¢ Enhancing tumor (ET)

¢ Edema (ED)

* Non-tumor region (Background)

We trained the 3D ASPP-ResUNet model on the BraTS 2020 training dataset, available online to the public
through Kaggle [17]. Because the validation dataset lacked ground truth labels, the training dataset was split into
75% for train, 15% for validation, and 10% for test. This dataset consists of 344 scans taken from 34 patients for
testing, 52 for validation and 258 for training.
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3.2. Preprocessing

While the BRATS 2020 organizers prepped the data, MRI scans can be finicky. Variations in scanner strength can
cause intensity inconsistencies. To address this and improve segmentation results, we performed some additional
preprocessing steps on the training data:

* Normalization: Each MRI volume (T1ce, T2, and FLAIR) was thus normalized by MinMax scaling to the
[0, 1] range independently. There is no outlier clipping. The min and max for the scaling was determined by
the minimum and maximum intensity of each volume.

¢ Resizing: Due to memory constraints, we resize all images from 240 x 240 x 155 to 128 x 128 x 128.

e Multimodal Magic: Since each MRI scan offers valuable information, we combined every modalities
(T1, Tlce, T2 and FLAIR) into a single image. During training, the model sees these combined images
(128 x 128 x 128 with a depth of 4 representing the modalities) to get the most comprehensive picture
possible.

Figure 1 illustrates a MRI image before and after preprocessing.
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Figure 1. MRI sample image and the ground truth for each of the four modalities. Bottom figures: following preprocessing;
top figures: before preprocessing.

4. Network architecture

We provided a comprehensive description of the architecture of the proposed model with special regard to its core
component: the Atrous Spatial Pyramid Pooling (ASPP), detailed in the next subsection.

4.1. ASPP module

CNNSs use a general technique called Atrous Spatial Pyramid Pooling (ASPP) to gather information at different
scales in an image. It can be applied to various tasks that need precise object feature analysis, such as semantic
segmentation and image classification.

The ASPP model uses parallel dilated / atrous convolutions at various rates to extract features of objects at
multiple scales. Five parallel sub-networks make up the ASPP structure, as seen in figure 2. To gather global
information about the image, the first sub-network employs a global average pooling procedure. Following batch
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normalization, the generated features are putinto a 3 x 3 x 3 convolution with 256 filters. The second sub-network
usesal x 1 x 1 convolution, while the other three sub-networks use 3 x 3 x 3 convolutions with different dilation
rates of (6,12,18). These dilation rates are in accordance with those used in the 2D ASPP module of DeepLabV3
[18], enabling the network to capture multiscale receptive fields in volumetric MRI data while keeping spatial
consistency and avoiding sparse sampling in 3D feature maps. All these sub-networks are equipped with 256
filters and Batch Normalization. Following their extraction from each branch, the features are concatenated and put
through another 1 x 1 x 1 convolution using 256 filters and Batch Normalization.

The general form of the 3D atrous convolution is mathematically represented as:

y(p) =Y a(p+rk)w(k) )

k

where 2z is the input feature map, p the current voxel position, r the dilation rate, and w(k) denotes the scalar
weight in the convolution kernel.

The output size is computed as:

input_size + 2 X padding — r x (kernel_size — 1) — 1)

output_size = +1 (2)
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Figure 2. Structure of the ASPP module [19]
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4.2. Proposed model Architecture

Our proposed model architecture, 3D ASPP-ResUNet, has a typical Res-UNet architecture consisting of encoder
and decoder sides linked by skip connections. We have fused the Res-UNet backbone with a ASPP module
(see figure 3). The encoder and decoder feature channel depths of 64, 128, 256, and 512, respectively, and the
downsampling step after the final encoder block outputs the bridge features of 1024 channels and spatial dimensions
of 8 x 8 x 8. The model’s input has the size of 128 x 128 x 128 x 4 representing the 4 MRI modalities (T1, Tlce,
T2, and FLAIR). The output has the same feature spatial dimensions of 128 x 128 x 128 x 4 representing the 4
segmentation classes: non-enhancing/necrotic tumor core (NCR/NET), enhancing tumor (ET), edema (ED), and
background. Ground truth labels were one-hot encoded for use with categorical cross-entropy loss.

Figure 3 illustrates how the encoder path is composed of four residual blocks, each of which has two
convolutional layers combined with Batch Normalization and activation functions ReLU. A skip connection is
incorporated to preserve the identity mapping, when there is a mismatch in input and output dimension. Formally,
for an input tensor x, the corresponding residual block produces:

F(z) = BN(W; x ReLU(BN(W; x z))) 3)
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and output:

y = ReLU(F(x)+ W, X x) 4

Where Wy, W, are 3 x 3 x 3 convolution kernels and W is 1 x 1 x 1 convolution for channel alignment. The
use of this residual architecture allows for improvement in gradient flow and stability of model training as the 3D
feature domain grows deeper.

There are 64 feature maps in the first residual block, each measuring 128 x 128 x 128 pixels. The quantity of
feature maps increases by double and their dimension is cut in half at each subsampling level. As a result, there are
512 feature maps for the fourth-level residual block, each measuring 16 x 16 x 16.
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Figure 3. Architecture of 3D ASPP-ResUNet model.

Another downsampling operation (3D max pooling with a stride of 2) is performed after the fourth residual
block to derive a bridge representation of 1024 feature maps with size of 8 x 8 x 8. The bridge block serves as an
intermediate representation between the encoder and decoder, and ASPP takes to the output of the bridge block
before upsampling and passing it to the decoder path.

The decoder path reflects the encoder with four levels, having 64, 128, 256, and 512 features, respectively. Each
level begins with a 2 x 2 upsampling layer and is followed by a residual block. Skip connections are used to connect
each decoder block to its corresponding encoder block. The feature maps are doubled in size and cut in half at each
decoder block. After passing through a softmax activation function and a classification layer, predictions generated
by the final residual block are compared with the ground truth.

5. Results and discussion

The outcomes of our methodology are presented in this part along with an explanation of the implementation
process and the different measures utilized to assess the effectiveness of our model.
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5.1. Evaluation measure

Tumor Regions Used for Validation : To train their algorithms, participants were provided multi-class labels, and the
image data consisted of visual representations of tumor formations. In order to evaluate how well the segmentation
techniques worked, we divided the tumor structures into the three overlapping zones depicted in figure 4, which
corresponds to clinical uses like tumor volume measurement. These areas are:

1. The ”whole tumor” (WT), including all regions of tumor;
2. The ”tumor core” (TC), encompassing all tumor structures with the exception of edema;

3. The enhancing tumor” (ET), representing only the enhancing core components, typically associated with
high-grade cases. [20]

Edema

Enhancing

Necrosis

M+l + B = Whole Tumor

M + ] = Tumor Core
B = Enhacing Tumor

Figure 4. Different tumor regions

The performance of the approach is assessed using the most widely-used metric for BTS tasks: Coefficient Dice.
It is a conventional metric for segmenting brain tumor that measures how similar between the ground truth and
expected segmentation in order to provide an objective calculation of the accuracy of segmentation decisions.

Performance was evaluated for all tumor regions, overall segmentation (Dice Coef), but also by subregions,
whole tumor (Dice WT), tumor core (Dice TC) and enhancing tumor (Dice ET). Dice coefficients are calculated
using the equation as below on premise of predicted segmentation and ground truth data.

IXNY]

DSC =2x ———
| X[+ Y]

&)

5.2. Implementation detail

We developed 3D ASPP-ResUNet model in Jupyter Notebook using necessary Python libraries like Keras,
TensorFlow, and NiBabel which helps in carrying on multiple experiments in medical image processing. The
training was conducted on a Geforce RTX 4090 GPU (24GB RAM), through the online platform Vast.ai. Due to
the limitations of the GPU memory, batch size = 1 was necessary for training with a total of 120 epochs completed.
The Adam optimizer (learning rate = 0.0001) and categorical cross-entropy loss, which is defined by equation 6
below, were employed for training the network.
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C
L=- Z ycl()g(gc) (6)
c=1

where y. and g. refer to the ground truth and predicted probability of class ¢, respectively, and C' = 4 denotes
the number of segmented classes (whole tumor, enhancing tumor, tumor core, and background).

Even though datasets for brain tumor segmentation are fundamentally class-imbalance, we avoided using class
weighting explicitly. All MRI volumes were consistently resized from 240 x 240 x 240 to 128 x 128 x 128 to
maintain equal spatial dimensions. The use of residual connections and ASPP module helped with multiscale
feature representation which partially reduced the impact of class imbalance.

5.3. Quantitative results

In order to intuitively and fairly evaluate the segmentation results obtained with these different enhancement
strategies, ablation experiments were conducted to demonstrate that ASPP can strengthen the network’s
segmentation. To guarantee the credibility of comparing results, two networks were trained separately with identical
experimental conditions: the optimizer, learning rate, batch size and training schedule were the same for Res-UNet
baseline and the ASPP-ResUNet. Random seeds were not fixed either; therefore, the result could also differ based
on a random weight initialization. The metrics that were measured on the validation data (Dice WT, Dice ET and
Dice TC ) are listed in table 1.

Table 1. Comparison of tumor region dice coefficients in ablation studies using the evaluation set after 120 epochs.

Method Dice WT Dice ET Dice TC
Res-UNet 0.7758 0.6348 0.6534
Res-UNet+ASPP  0.8242 0.6462 0.6846

In table 2, the evaluation measures (Dice WT, Dice ET and Dice TC) calculated on the test set are reported. To
analyze the statistical significance of the observed differences in Dice scores per-patient between the baseline and
proposed model, we performed the Wilcoxon signed-rank test.

Table 2. Comparison of tumor region dice coefficients in ablation studies using the test set after 120 epochs.

Method Dice WT Dice ET Dice TC
Res-UNet 0.8068 0.6963 0.7551
Res-UNet + ASPP  0.8273 0.7025 0.7578
Wilcoxon (p) 0.0166 0.1453 0.5228

The tables above illustrate that, the 3D ASPP-ResUNet model’s metrics have significantly improved. After 120
epochs, the Dice coefficients were 0.7758, 0.6348 and 0.6534, respectively in validation, and they increased to
0.8242, 0.6462 and 0.6846 after adding the ASPP module. Similarly, for the testing phase, the Dice coefficients
were 0.8068, 0.6963 and 0.7551, and after integration of ASPP, they increased to 0.8273, 0.7025 and 0.7578, for
WT, ET and TC, respectively.

From the statistical analyses, we conclude that the proposed 3D Res-UNet with ASPP obtained a statistically
significant value for the Whole Tumor (WT) region of interest (Wilcoxon p = 0.0166) while values for Enhancing
Tumor (ET) and Tumor Core (TC) regions were not statistically significant (p > 0.05). We theorize this is due to
the fact that the ASPP module was designed in such a manner as to increase the capacity of the model to capture
contextual data on multiple information and global spatial relationships. These traits are of great importance for
delineating the extent of the tumor (WT) which has more extensive and heterogeneous structures. The ET and
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TC subregions on the other hand, are conditioned in part by the fact that they are more localized smaller and
less homogeneous and subject to range of intensity differentials, which renders them more difficult to segment
accurately and less prone to improvement by global context. The uniformity of numerical improvement seen in all
three subregions suggests that the ASPP module improves the overall robustness of the model in terms of output
even when absolute statistical significance is not present for every class.

Figure 5 represents the training and validation loss per epoch as well as the dice coefficient curve. The training
Dice coefficient gradually increases and plateaus at around 0.99, whereas the validation Dice coefficient increases
sharply for the first 30 epochs and then plateaus at around 0.95 for the remainder of the training. The validation
loss follows the same trend as the validation Dice, showing a sharp drop early in the training before plateauing at
a low stable value with some minor fluctuations, as expected.

1.00 4 3.0 —— Training Loss
—— Validation Loss
0.95 4 2.5
0.90 1 297
15
0.851
10
0.80 1
0.5
0.751
= Training dice coef A
—— validation dice coef 0.0 1
T T T T T
o 20 40 60 80 100 120 (] 20 40 60 BO 100 120

Figure 5. Dice coef and loss of training and validation over 120 epochs

The difference in training and validation curves is a normal occurrence when training high-capacity 3D
convolutional architectures on multimodal MRI data. The plateau in the validation Dice and the stabilization of
the validation loss indicate that the model is achieving good generalization and not undergoing serious overfitting.
The model also achieves promising results on the BraTS2020 test dataset, as outlined in tables | and 2, which is
another indication of robustness of the proposed model.

5.4. Qualitative Results

The 3D ASPP-ResUNet model yields qualitative results, presented in figure 6, for segmenting brain tumors from
test set. The outcomes indicate that the model segments the tumor regions effectively, which is very coherent with
the truth.
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Figure 6. Qualitative results obtained on samples from the test set.

5.5. Comparison with related works

For demonstrating the efficacy of the 3D ASPP-ResUNet method, we compared it against a number of recent
methods for tumors segmentation automatically on the BraTS datasets.The Dice scores for WT, TC and ET
segmentation using various techniques are compiled in table 3.

Our model (0.8273) outperforms Belaid et al. (0.8068) but lags behind the rest of the comparison methods in
WT segmentation. Our model’s competitive score (0.7578) in TC segmentation is lower than Isensee et al. (0.8506)
or Jiang et al. (0.8030), but performs better than other methods. Our approach (0.7025) is close to the performance
of Zhang et al. (0.702) and higher than Belaid et al. (0.6959) for ET segmentation, although it is still less effective
than other approaches.

The proposed model shows increased performance over the ET and TC segmentation regions but does not
outperform best in class architectures for WT. This effect may relate to the ASPP module’s design for improved
aggregation of contextual features across multiple scales, which is advantageous for the outlying, complex or
heterogeneous tumor subregions such as Enhancing Tumor (ET) and Tumor Core (TC). Thus these characteristics
improve the boundary delineations and local detail but may marginally be adverse to the overall volumetric overlap
characteristics, which is why the WT Dice yields a marginally lower optimal result.
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Table 3. Comparison of our suggested model with other existing methods.

Reference Method Dataset Dice WTI Dice TC Dice ET
Fang et al. [21] Three pathways U-Net BraTS2018 0.8560 0.7220 0.7260
Chen et al. [22] S3D-UNET BraTS2018 0.8360 0.6890 0.7830
Belaid et al. [9]  Efficient embedding network  BraTS2020 0.8068 0.7520 0.6959

Zhang et al. [10] ME-Net BraTS2020 0.883 0.739 0.702
Isensee et al. [11] nnU-Net BraTS2020 0.8895 0.8506 0.8203
Jiang et al. [16] SwinBTS BraTS2020 0.8906 0.8030 0.7736
Proposed Model Res-UNet+ ASPP BraTS2020  0.8273 0.7578 0.7025

6. Conclusion and Future work

In medical imaging, the procedure of segmenting brain tumors is highly important. Diagnosing brain tumors early
can help improve treatment options and outcome of patient survival. Using the BraTS 2020 DataSet as input,
this research proposes a deep learning approach built upon the classical Res-UNet architecture for segmenting
brain tumors in 3D multimodal MRI scans. The capacity of the model to delineate global and local contextual
features was improved through the effective multi-scale feature extraction technique of ASPP integration. Both
experimental evaluation and statistical evaluation showed a statistically significant improvement in Whole Tumor
(WT) while still being competitive in performance for Enhancing Tumor (ET) and Tumor Core (TC). The model
showed good reliable performance and a balanced performance compared to the modern best practices with low
computational expensive performance.

Future work will encompass the integration of enhanced forms of regularization into the approach, particularly
dropout, weight decay and advanced data augmentation techniques to ensure stronger generalization of the model.
The application of this framework in an exploratory capacity to other complex areas of medical imaging such as
lung and breast tumour segmentation show both a further as well as fruitful avenue of future work.

Code and Data Availability

The trained model weights and the source code will be accessible to the general public on GitHub upon publication,
to enable reproducibility. The dataset utilized in our work is the BraTS 2020 dataset, which can be accessed on
Kaggle.
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