‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 2025, pp 0-28.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

Facial Expression Recognition: A Survey of Techniques, Datasets, and
Real-World Challenges

Mohamed A. Abdeldayem !*, Hesham F. A. Hamed !, Amr M. Nagy >3

L Department of Artificial Intelligence, Faculty of Artificial Intelligence, Egyptian Russian University, Egypt
2Department of Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Egypt
3 Department of Computer Science, Faculty of Computer Science, Benha National University, Egypt

Abstract Facial expressions are a powerful nonverbal communication tool that can convey emotions, thoughts, and
intentions, enhancing the richness and effectiveness of human interaction. Facial Expression Recognition (FER) has gained
increasing attention due to its applications in education, healthcare, marketing, and security. In this survey, we examine
the key techniques and approaches employed in FER, focusing on three main categories: traditional machine learning,
deep learning, and hybrid methods. We review traditional pipelines involving image preprocessing, feature extraction,
and classification, along with deep learning methods such as convolutional neural networks (CNNs), transfer learning,
attention mechanisms, and optimized loss functions. Furthermore, the study provides a comprehensive examination of
existing research and available datasets related to emotion recognition. We also summarize the best-performing methods
used with the most common datasets. In addition, the survey addresses the technical challenges of emotion recognition in
real-world scenarios, such as variations in illumination, occlusion, and population diversity. The survey highlights state-of-
the-art FER models, comparing their accuracy, efficiency, and limitations. Ultimately, this work serves as a comprehensive
starting point for researchers, offering insights into current FER trends and guiding the development of more robust and
accurate recognition systems.
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1. Introduction

Facial expression recognition (FER) is essential in nonverbal communication and remains fundamental in
interpersonal interactions [1], [2]. Additionally, facial expressions and their interpretations may differ between
cultures, but a general understanding of some expressions enhances understanding among people from different
cultural backgrounds. These expressions can be classified into eight distinct categories: anger, happiness, neutrality,
contempt, disgust, fear, sadness, and surprise. The number of research papers on FER is continually increasing,
according to the Scopus database, which makes the topic more appealing to researchers, as illustrated in Figure 1.

Vision-based FER has emerged as a formidable tool for emotion assessment in a wide range of practical
applications. In [3], for example, counseling psychologists evaluate a patient’s psychosocial state and formulate
therapeutic strategies by consistently monitoring nonverbal cues, such as facial expressions. In the realm of retail
sales, the analysis of client facial expression data is employed to determine the necessity of having a human sales
representative present [4], [5]. Other significant application areas include social robotics and facial expression
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synthesis, particularly in human interaction systems, such as feedback for improved e-learning and driver fatigue
monitoring.

The advancement of computer technology has prompted improvements in various domains, including artificial
intelligence and machine learning. Consequently, various techniques have been employed for the identification of
facial expressions. These techniques utilize a substantial amount of valuable information during communication to
train for effective facial expression recognition (FER) [6]. The two fundamental phases of classical FER include
emotion identification and feature extraction. Moreover, traditional machine learning FER methods typically use
human-defined features, employing local binary pattern (LBP) to extract features from images [7], and Histogram
of Oriented Gradient (HOG). In [8], HOG was applied to the JAFFE dataset, achieving an accuracy of 92.97%. In
[9], the authors utilized LBP with different datasets, achieving accuracies of 99.66%, 74.23%, 89.53%, and 88.20%
on the CK+, FER2013, FERPLUS, and RAF-DB datasets, respectively.

Recent advancements in the domains of machine learning and deep learning have enabled the development of
increasingly sophisticated algorithms for FER, which can achieve notable precision in classifying fundamental
facial expressions, particularly in demanding real-world scenarios [10]. Advances in FER have been made possible
by advanced neural network architectures, including CNNs, attention mechanisms, and transfer learning, which
skillfully manage variations in facial expressions influenced by factors such as lighting, head poses, occlusions, and
focus on parts of images when training [11], [12]. In contrast, features can be automatically recognized through
deep neural networks which recently dominated most of the research for facial expression [13], [14]. Despite deep
learning models showing better performance, intricate deep learning architectures come with substantial hardware
demands, thereby constraining their utility on mobile and embedded systems [15], [16]. In [17], authors used
CNN s to extract features to interpret and respond to human facial emotions. FER has made significant progress
using CNNSs to classify emotions. Moreover, the use of transfer learning has greatly enhanced the power of facial
emotion recognition models. In [18], transfer learning was used through DenseNet-161 achieve the best accuracy:
96.51% on KDEF and 99.52% on JAFFE,and with Resnet-50 on FER2013 and RAF-DB, achieving an accuracy of
88.13% and 86.72% [3].

This survey aims to explore the challenges of facial image recognition by reviewing previous research and
identifying key difficulties in the field. The main contributions of this paper can be summarized as follows:

* A comprehensive overview of FER techniques: We categorize and examine the main methodologies
utilized in facial expression recognition, such as traditional machine learning methods, deep learning
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architectures (including CNNSs, attention mechanisms, and transfer learning), and hybrid techniques, with
a focus on their strengths and limitations.

* Analysis of FER Datasets: We present a comprehensive evaluation of the most frequently utilized FER
datasets, highlighting their attributes, challenges (including occlusion, mislabeling, and class imbalance),
and their impact on model performance.

* Identification of key challenges: We identify important technical and practical challenges faced in real-
world FER applications, such as illumination variation, data bias, ethical gaps, expression similarity, intra-
class and inter-class variability, and ambiguity in facial images.

* Survey of cutting-edge models and solutions: We review recent advances in FER, including loss function
enhancements (such as AdaReg, Ad-Corre, and PDLS), attention mechanisms, data augmentation strategies
(including MixAugment), and ensemble approaches such as ESR, and explore how these techniques address
existing limitations.

The rest of this paper is organized as follows: Section 2 discusses the challenges, Section 3 presents the
methodologies, Section 4 reviews the datasets, Section 5 explores the applications, Section 6 provides evaluation
and analysis, Section 7 outlines future work, and finally, Section 8 concludes the paper. By evaluating the current
state of FER research, we offer recommendations to guide researchers in developing more accurate, efficient, and
generalizable FER systems. In summary, Table 5 provides a comparison of the most recent studies addressing
various FER solutions.

2. Challenges

2.1. Dataset

Despite significant progress in facial expression recognition (FER), the field continues to face complex
challenges arising from variations in facial appearance, similarity, and ambiguity of expressions, compounded
by environmental factors and dataset limitations. Datasets collected in the wild often suffer from occlusion issues
such as low lighting, headwear, glasses, or hair covering parts of the face which hinder accurate feature extraction
and model generalization [19], [20], [21]. Some datasets even contain mislabeled or incomplete samples, such as
FER2013, which includes images without faces that degrade model performance [22]. Additional challenges stem
from ambiguous labeling, large intra-class variability, and class imbalance, all of which contribute to inconsistent
accuracy and model instability [23], [24]. Dataset specific limitations further exacerbate these issues for instance,
AffectNet initially contained inconsistent image sizes (later standardized to 224x224) [20], while AFEW suffered
from a scarcity of usable video samples, leading to the creation of SFEW [25]. Underlying many of these
challenges are representational biases embedded in training datasets. Narrow demographic coverage, such as
JAFFE’s exclusive focus on ten Japanese women [26], biases models toward specific ethnic and gender groups,
while AffectNet, despite its scale, overrepresents Western and young adult faces and underrepresents older, non-
binary, and neurodiverse individuals [27]. Such demographic imbalances can cause models to perform 20-30%
better on Caucasian faces than on Black or Asian faces, and up to 15% worse on older adults due to age-
related facial muscle differences [28], [29]. Environmental and cultural factors, including lighting, occlusion,
and expression norms, further reinforce these biases, reflecting historical data collection practices that prioritized
convenience over inclusivity and ultimately limiting model fairness and robustness across diverse populations.

2.2. Model

Additionally, the process of identifying facial expressions raises many methodological challenges [30], such as
the use of augmentation strategies to overcome overfitting problems on unconstrained datasets [31], and attention
mechanisms that pose difficulties in capturing facial images and obtaining global information from them [32],
[33], [12]. Performance deteriorates due to the extraction of low-level features [34]. Furthermore, learning from
video frames is difficult due to frame instability [35]. Traditional methods, such as ensemble learning, require
more computational resources and involve replication [23]. A new data augmentation strategy called MixAugment
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has been proposed to overcome these challenges. It relies on the Mixup technique to augment data, enhancing data
diversity through constrained transformations applied to the original dataset [36]. The attention mechanism, instead
of focusing solely on low-level features, integrates two stages: the initial stage of low-level feature extraction and a
later stage of high-level semantic representation [34]. To distinguish the different effects of facial expressions from
the lower and upper face regions, a combination of channel attention and spatial self-attention mechanisms is used
[37]. Ensemble Shared Representations (ESR) have been introduced to address challenges in ensemble learning.
ESR encompasses various networks dedicated to the learning process, focusing on the execution of low- and mid-
level discriminative learning within convolutional layers [23]. FER remains a promising area for researchers, as
many issues and challenges still exist regarding both the datasets used and the methods applied.

2.3. Similarity and class imbalance

The most common issues facing existing FER models are high expression similarity and class imbalance.
Previous studies have primarily focused on increasing discriminative ability through deep CNNs. However, these
architectures require significant memory resources and incur high computational costs. Using deep neural networks
remains challenging due to intra-class variability, inter-class similarity in facial images, and the ambiguity of
certain images. Discriminative power and class imbalance handling have been improved by introducing an adaptive
supervised objective known as AdaReg Loss [38]. Additionally, the discriminative capability of embedded feature
vectors has been enhanced through the application of deep metric learning methods. These challenges can further be
addressed by Adaptive Correlation Loss (Ad-Corre), which improves FER performance under difficult conditions
[39].

2.4. Ethical Gaps

Beyond technical challenges, FER deployment raises serious ethical concerns, especially regarding privacy and
potential misuse. The survey addresses these issues only briefly, leaving critical discussions underexplored.
Facial recognition technologies, including FER, collect highly sensitive biometric data, such as unique emotional
signatures. This information can be exploited without consent, particularly in surveillance contexts. Such non-
consensual monitoring undermines individual autonomy and raises serious ethical concerns. In hiring scenarios,
emotion-sensing tools pose a substantial risk of discriminatory outcomes. Algorithms may misinterpret “neutral”
expressions as indicators of disinterest, thereby disadvantaging candidates from cultures where subdued emotional
displays are normative. Such misinterpretations can reinforce occupational segregation along racial and gender
lines, perpetuating systemic inequities in employment practices. Privacy invasions are further intensified in
workplace emotion tracking, where employees often report fears of constant surveillance. Such monitoring can lead
to psychological stress associated with “performing” emotions and increase the risk of biased inferences, such as
misinterpreting anxiety as incompetence [40]. Moreover, unreliable FER performance in non-ideal conditions, such
as poor video quality, increases the likelihood of false positives in high-stakes security applications. This raises the
risk of wrongful profiling and other serious consequences. Ethical frameworks must therefore prioritize consent,
transparency, and systematic bias audits. However, current practices frequently fall short of these standards, as
evidenced by the proliferation of unregulated commercial tools [41].

3. Methods

Facial Expression Recognition techniques can be broadly classified into three categories: Machine Learning (ML),
Deep Learning (DL), and Hybrid approaches. Each method follows a different processing pipeline, as illustrated
in Figure 2.

3.1. Machine Learning Techniques

Early FER approaches involve several steps, including preprocessing, feature extraction, feature selection, and

classification using machine learning techniques [42]. Preprocessing is one of the primary processes for handling
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Figure 2. Pipeline Diagram: ML vs. DL vs. Hybrid Techniques for FER

images and improving image quality. These operations include reducing noise [43], converting images to binary or
grayscale, adjusting pixel brightness [44], resizing images [45], reducing the effect of illumination using histogram
equalization and image sharpening [7], and managing the background, which affects classification accuracy [46].
Feature extraction is the most critical stage in object recognition within an image. In [7], LBP was used to extract
features from images, achieving accuracies of 98.61% and 97.62% for the Cohn-Kanade and JAFFE databases,
respectively. In [47], a combination of PCA and LBP was used to select the best features, achieving an accuracy
of up to 93.75%. In [48], a combination of HOG and LBP achieved accuracies of 92.22%, 97.70%, 96.02%,
and 91.30% on the MMI, JAFFE, LNMIIT, and Cohn-Kanade datasets, respectively. Classical machine learning
algorithms involve identifying handcrafted features to represent facial expressions [49]. In [50], facial expressions
were classified using active learning algorithms and SVM, achieving an accuracy of 92.26% on the Cohn-Kanade
dataset. Other papers have used SVM after feature extraction, such as [51], KNN [52], [48], random forest [8],
and decision tree [53]. In [54], SVM was applied to the MMI and JAFFE datasets, achieving accuracies of 99.02%
and 98.44%, respectively. Additionally, in [55], an ensemble learning strategy was used to combine the outputs of
SVM, random forest, and logistic regression to improve accuracy through majority voting, enhancing stability and
prediction performance.

After revising the section, we have expanded the discussion to include an analytical comparison with traditional
machine learning techniques. Specifically, we highlight methods that rely on handcrafted features such as LBP
[7, 47] and HOG [48]. These methods achieved high accuracy on classical datasets like Cohn-Kanade, JAFFE,
and LNMIIT, often ranging between 90-99%, depending on the specific feature design and classifier used. HOG
generally outperforms LBP alone, as its gradient-based descriptors capture local shape and edge information more
effectively under varying illumination conditions [48], [42]. However, these improvements come with notable
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computational trade-offs. Traditional approaches require extensive preprocessing—such as color conversion,
illumination correction, and background normalization along with feature selection to address dimensionality
issues. Classifiers like SVM, KNN, and Random Forest also experience increased time and memory complexity
with high-dimensional feature spaces. Overall, while traditional techniques perform well on controlled datasets,
they lack robustness when faced with real-world variations such as occlusion, lighting, and pose. This limitation
highlights the motivation for adopting more advanced deep learning-based FER models [49].

3.2. Deep Learning Techniques

Deep learning has recently made significant strides, enabling it to deliver highly accurate results in FER. It has
revolutionized FER by providing powerful tools to automatically learn features from large datasets. CNNs have
become the cornerstone of modern FER systems due to their ability to automatically learn hierarchical features
from raw image data. Modern techniques commonly involve fine-tuning pre-trained models that were initially
trained on extensive datasets. Transfer learning, where a model trained on one task is adapted for another, is a
common technique in this field.

In this part, we will present the most commonly used methods in deep learning applications to recognize
facial expressions. Figure 3 illustrates the architectural evolution of facial expression recognition (FER) models,
highlighting the progressive shift from traditional convolutional networks to attention-based and transformer-driven
frameworks. Early CNN architectures, such as FERNet [45] and DCNN [56], laid the foundation for automated
facial feature extraction. However, their reliance on local receptive fields limited their capacity to capture broader
contextual information. The introduction of transfer learning enabled deeper architectures such as ResNet [17] and
MobileNet [1] to leverage large-scale pretraining, significantly enhancing their ability to generalize across diverse
FER datasets. The subsequent integration of attention mechanisms, such as CBAM [32], further improved model
performance by directing computational focus toward salient facial regions, thereby increasing robustness against
variations in occlusion, pose, and illumination. Most recently, transformer-based architectures, such as ViT [34]
and POSTER++ [14] have redefined feature representation through global self-attention, enabling comprehensive
modeling of spatial dependencies and emotional context. This shift marks a conceptual transition from localized
convolutional learning to globally contextualized perception in FER systems.

[ CNNs ]—[ Transfer ]—{ Attention ]—[Transformer]
Learning

FERNet, DCNN, ..... ResNet, MobileNet, .... CBAM, DDAMEN, ..... POSTER++VIiT,.....

Figure 3. The progression of FER architectures from traditional CNNs to advanced transformer-based models.

3.2.1. Convolutional Neural Network: CNNs are among the most powerful algorithms for extracting image
features [11], [6]. Many studies in this field have used CNNs to analyze FER processes from numerous images
in order to learn facial expression features [56], [57], [31], [58], [59]. In [60], the authors proposed a FER approach
for masked faces, combining low-light image enhancement with upper-face feature analysis using a CNN. The
model achieved an accuracy of 69.3% on the AffectNet dataset for 8 facial expression classes. In [61], a model was
built using a CNN that includes two main components: EfficientFace, used for recognizing facial expressions, and
the Label Distribution Generator (LDG), which creates a label distribution that functions as the ground truth for
training EfficientFace. In this context, a deep DWConv convolution, global average pooling, and a fully connected
network were combined to build a model capable of classifying facial expressions. In [45], a model called
FERNet was developed using a deep convolutional neural network (DCNN), which included multiple blocks with
convolutional layers and sublayers. The model achieved an accuracy of approximately 69.57% on the FER2013
dataset. Convolutional networks have also been used to generate Ensembles with Shared Representations (ESRs),
which have been shown to be scalable and efficient for processing large-scale facial expression datasets. The ESRs
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were trained using subject-independent ten-fold cross-validation on the CK dataset [23]. The Facial Motion Prior
Networks (FMPN) framework was proposed to expedite facial expression recognition. This framework includes
two components: a Facial Motion Generator (FMG) and a Classification Network (CN). The FMG is responsible for
generating the facial motion mask by integrating prior domain knowledge, while the CN is a deep learning-based
classification network trained using the cross-entropy loss function [16].

3.2.2. Transfer Learning: Pre-trained models are employed to address novel, closely related problems that exhibit
limited data availability and low complexity through transfer learning [10], [62]. In [18], transfer learning based
on a deep CNN model was used to recognize facial expressions and extract optimal features. By optimizing
pre-existing models with data specific to a particular domain, researchers have successfully achieved superior
performance levels by leveraging the intricate feature representations learned by these models from extensive
datasets [63]. Numerous studies have trained self-constructed networks from scratch or improved performance by
fine-tuning established models such as MobileNetV1 [1], [22], ResNet-18 [17], [54], GoogleNet [64], and VGG-
Face [65], and have utilized various deep learning frameworks, including Inception-V3 [6], Inception-ResNet-v2
[66], VGG19, and ResNet-50 [67], [68], [3], to detect interaction in e-learning environments by recognizing facial
expressions [67]. In [69], a single FER neural network was used, which was pre-trained for facial recognition and
fine-tuned on AffectNet static images using a powerful optimization technique. The model achieved an accuracy of
66.34% for 7 classes and 63.03% for 8 classes. For the other two datasets, VGAF and AFEW, the model achieved
accuracies of 70.23% and 59.27%, respectively. In summary, the use of transfer learning for facial expression
recognition has played an effective role in achieving state-of-the-art results across different datasets.

3.2.3. Attention Mechanism: Attention mechanisms work deeply within images to enhance feature extraction and
have proven to be powerful tools for processing facial expressions. Convolutional Block Attention Mechanisms
(CBAM) are among the most successful and effective techniques in FER, as they selectively focus on important
regions within facial images to improve recognition accuracy [32], [70]. In [71], an attention mechanism was
proposed to operate across pyramid levels to identify the most critical facial regions, achieving accuracies of
63.77% on AffectNet-7, 60.68% on AffectNet-8, 88.98% on RAF-DB, and 89.75% on FER+. This mechanism
also aids in selecting the most informative metrics to obtain discriminative expression representations. Similarly,
[13], [68] employed different non-overlapping regional attention mechanisms to extract features from distant
facial regions. Additionally, a convolutional attention module was combined with residual network optimization
to improve FER accuracy [72]. In this context, attention weights associated with the importance of features
were calculated using intermediate spatial feature maps within a CNN, serving as a contextual framework. The
integration of attention-based hybrid models has effectively addressed the limitations of traditional convolutional
filters, such as limited inductive bias and receptive field size [73].

In [33], a Region Attention Network (RAN) was developed to emphasize the importance of facial regions,
especially under occlusion and expression variation. This model performed well on datasets such as FERPlus,
AffectNet, RAF-DB, and SFEW. In [74], the Deep Attentive Center Loss (DACL) method was introduced to
enhance feature discrimination by adaptively selecting the most relevant features using spatial feature maps
within the CNN. Another study, [75], proposed the Dual-Direction Attention Mixed Feature Network (DDAMFN),
which utilizes convolution kernels of varying sizes to extract diverse spatial information and integrates coordinate
attention layers to model long-range dependencies. DDAMFN generates feature maps in vertical and horizontal
directions using multiple Dual-Direction Attention (DDA) heads and reshapes them to predict expression categories
via a fully connected layer.

Attention mechanisms are frequently built on convolutional neural networks and often support both low-
level feature learning and high-level semantic representation. In [34], two types of attention mechanisms
were introduced: grid-wise attention, designed to capture interdependencies in local features, and a visual
transformer-based attention method for global semantic understanding using visual semantic tokens. In [14],
POSTER++ improved upon its predecessor by introducing cross-fusion, a two-stream architecture, and multi-scale
feature extraction. These enhancements replaced the original window-based mutual attention with conventional
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mutual attention, removed the image-to-landmark branch, and fused image features with landmark-based multi-
scale features, achieving 67.49%, 63.77%, and 67.49% accuracy on AffectNet-7, AffectNet-8, and RAF-DB,
respectively. Lightweight attention-based FER models have also emerged. For instance, a MobileNet-based model
in [15] incorporated an attention module with dropout to mitigate overfitting and was evaluated on FERPlus
and RAF-DB using MobileNetV1, V2, and V3. In [1], PAtt-Lite, a lightweight patch-based attention network
based on MobileNetV1, used a patch extraction block to enhance local feature representation. Recently, attention
mechanisms have continued to play a critical role in FER, especially when combined with CNNs and transfer
learning strategies.

3.2.4. Loss Function: A loss function within the realm of deep learning serves as a measure of the performance of
a neural network model on a given dataset. It quantifies the disparity between the predicted outcomes and the actual
outputs generated by the model. The primary objective of neural networks is to minimize the loss function, thereby
enhancing the model’s predictive accuracy. In [76], a novel adaptive supervised objective known as Adaptive
Regularization (AdaReg) Loss is presented, which recalibrates class significance coefficients to mitigate class
imbalance and enhance the robustness of expression representations. The standard AdaReg is employed to optimize
disparities among facial expressions within a high-dimensional space during CNN training. In [38], a standard
term is formulated according to the expression presented in Equation 1; however, it is noted that this standard is
susceptible to imbalanced label distributions.

1

N-—1 N
AD im0 2jmivr illei —ejll2

(D

LAdaReg =

Where )\ is a parameter used to weight the importance coefficients; e; and e; represent the embeddings of categories
7 and j, respectively, N is the total number of categories; and «; is the importance coefficient for category 4

In [39], another loss function, which constitutes the adaptive correlation loss (Ad-Corre) for FER in the wild,
consists of feature discrimination, average discrimination, and embedded discrimination. Deep metric learning
(DML) is applied in the paper’s Xception network architecture to enhance the discriminative capabilities of the
learned embedded features. The network is guided by the Ad-Corre loss to produce embedded feature vectors
with low between-class sample correlation and high within-class sample correlation. The model is then trained by
combining the proposed Ad-Corre loss with the cross-entropy loss.

d — _
COR(X,Y) = 21 (X = 2) (Vi —9)
\/EZ:1 (X — )% x \/Zizl(Yk — )2

According to equation 2, the correlation between two vectors X and Y is equal to 1 when they are identical and
-1 when they are uncorrelated. Here Z and g represent the mean values of vectors X and Y, respectively.

In-the-wild FER involves challenges related to pose, orientation, and input accuracy. To enhance low-resolution
inputs, the authors in [20] proposed a Pyramid with Super-Resolution (PSR) network. They also addressed
expression ambiguity by using the Prior Distribution Label Smoothing (PDLS) loss function, as specified in
equation 3. The PDLS loss function incorporates the initial study’s understanding of expression confusion in facial
expression recognition (FER) tasks by examining specific confusion patterns between different emotion labels.
This function is used with the VGG16 backbone network, employing input images at different scales from the
AffectNet-7, AffectNet-8, FER+, and RAF-DB datasets, achieving accuracies of 63.77%, 60.68%, 89.75%, and
88.98%, respectively.

2

PDLS = = 3 ((fe - 0+ die - (1 — ) -log(o (=) G)
ceC

Where c represents each class in the FER task; ¢. is the true label for class ¢; « is the weight parameter for the
true label; dj. provides prior information regarding the ambiguity of each expression in the FER task; and o(zc)
represents the softmax output for class c.
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In [77], a new loss function was introduced, known as the weighted clustering loss function, as shown in equation
4, specifically designed to address imbalanced datasets. This loss function was implemented during the fine-tuning
phase by establishing a class center for each expression category and assigning weights based on the proportional
representation of each expression in the overall image count. This approach enhanced intra-class compactness and
inter-class separability [78].

n

1 5
Lloss -5 Yi (4)

2« k
(Tl - cul) +4
J#i
Where n is the number of samples in the dataset; W, is the weight associated with the true class label y;; Cy,is

the centroid of the true class y;; k is the total number of classes; A is the regularization parameter; and x; represents
the input features of the i*" sample.

||xl — Cys

3.2.5. Efficient and Lightweight Architectures for Edge Devices: Deep CNNs and attention-based models
frequently deliver high accuracy. However, their use in mobile and embedded systems is limited by significant
computational and memory demands. FER applications in mobile learning apps, driver monitoring, and
social robots demand lightweight, efficient models. The remainder of this subsection summarizes lightweight
architectures and practical model optimization techniques that are particularly relevant to FER.

Lightweight architectures.

* MobileNet (V1/V2/V3): Depthwise separable convolutions help reduce the parameter count, making them
suitable for mobile FER applications. Using this approach, MobileNet achieved 97.9% accuracy on the
FER2013 dataset [1].

* A-MobileNet: Incorporates attention to improve discriminability while keeping a compact design, validated
on RAF-DB and FERPlus [15].

* Lightweight hybrids for attention: PAtt-Lite incorporates patch- or symbol-based attention modules into
MobileNet-like backbones. This design has been shown to enhance feature localization while introducing
only minor increases in the number of parameters [22].

* Specialized tiny models: Task-specific tiny CNNs are designed from scratch with fewer layers and narrower
channels. They are particularly suited for strict-latency applications such as driver monitoring and real-time
classroom feedback [79].

Model optimization techniques. Beyond selecting a compact architecture, three main families of compression
and optimization methods are commonly applied, particularly when targeting edge devices:

¢ Pruning. Remove redundant weights/filters (unstructured or structured). Structured pruning (filter/channel
removal) generally yields speedups on real hardware unstructured pruning reduces the overall parameter
count. However, it often requires sparse kernels or specialized runtimes to achieve noticeable latency gains.
Pruning is typically followed by fine-tuning to recover accuracy. In [80], pruning optimization was applied
to VGG and ResNet models on the CK+ and JAFFE datasets. The results demonstrated reduced redundancy
while preserving overall performance.

* Quantization. Reducing numeric precision, for example through 8-bit integer quantization, is a common
technique to lower memory requirements. It also accelerates inference on resource-constrained devices. In the
context of FER, demonstrates that quantization can effectively reduce memory usage and increase inference
speed without significant accuracy degradation [81]. Complementary work on MobileNet architectures
further supports these findings: A Quantization-Friendly Separable Convolution for MobileNets proposes
structural modifications to enhance robustness under quantization. It shows that 8-bit inference achieves
accuracy comparable to full-precision models [82]. Similarly, Memory-Driven Mixed Low Precision
Quantization investigates INT4/INT8 quantization on MobileNets deployed to microcontrollers. It reports
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favorable trade-offs between latency and accuracy [83]. Together, these studies highlight quantization as an
effective strategy for enabling efficient FER on mobile and embedded platforms.

¢ Knowledge Distillation (KD). The authors in [84] use KD to create a model of less than 1 MB for FER,
achieving 1851 FPS on a CPU. In [85], an online KD approach is proposed to improve FER accuracy without
introducing additional parameters. However, [86] demonstrates KD-based lightweight models for FER on
FER2013 and RAF-DB, showing both speed and memory gains.

Recent research in facial expression recognition (FER) highlights not only advancements in architectural
innovation but also the growing emphasis on computational efficiency for deployment in resource constrained
environments. Traditional CNNs, while lightweight, often compromise representational capacity [45], whereas
attention based and transformer driven architectures deliver superior accuracy but demand substantially greater
computational resources, including higher FLOPs, memory usage, and inference time [34], [14]. Hybrid
architectures that combine efficient backbones such as MobileNet with lightweight attention modules have emerged
as a promising compromise, achieving a balanced trade-off between performance and computational cost [1], [15],
[22]. Consistent performance patterns have been observed across prior studies: attention mechanisms such as HAM
[19] and POSTER++ [14] enhance conventional CNNSs, improving robustness under challenging conditions such as
occlusion and pose variation, and yielding 2—5% accuracy gains on datasets like RAF-DB and AffectNet. However,
these enhancements often increase computational complexity by 20-40%, limiting their practicality for real-time
or edge based deployment. Lightweight models such as MobileNetV1 [22] achieve a favorable balance between
accuracy and efficiency—reaching 97.9% on FER2013 and 95.05% on RAF-DB though their generalization
tends to decline on larger datasets such as AffectNet. To maintain competitive performance, fine-tuning, attention
integration, and advanced loss functions are often employed. In particular, Ad-Corre [39] and DACL [74] enhance
feature separability and robustness against noisy or ambiguous labels by mitigating intra-class similarity and inter-
class overlap. Similarly, multi-scale and region-aware networks such as MM-Net [87] and FMPN [16] demonstrate
greater stability under occlusion and pose variation, emphasizing the importance of hierarchical and localized
feature learning in real-world applications. Overall, while attention and transformer-based architectures continue to
achieve state-of-the-art performance in FER [14], [34], their computational demands constrain deployment in low-
power or real-time scenarios. Consequently, lightweight CNN architectures remain highly attractive for efficiency-
driven FER systems, where scalability must optimize not only accuracy but also energy consumption and real-time
responsiveness [82], [83].

3.3. Hybrid Techniques

FER is a complex task that often requires balancing feature extraction, representation learning, and classification.
Hybrid techniques, which combine multiple methodologies, have emerged as powerful tools to address these
challenges by integrating traditional machine learning with deep learning methods to improve recognition accuracy
and robustness. These techniques leverage the advantages of different strengths in computational paradigms to
enhance accuracy, robustness, and generalizability. In [54], a pre-trained ResNet18 model with a triple loss function
(TLF) was used to extract features, which were then input into an SVM classification model on the MMI dataset,
achieving 99.02% accuracy, and 98.44% accuracy on the JAFFE dataset. Similarly, [88] developed a model that
integrates a pre-trained EfficientNetBO network with additional CNN layers, achieving a top accuracy of 74.39%
on the FER2013 dataset and outperforming several state-of-the-art approaches. One popular approach combines
CNNs and SVMs: CNNs are used for feature extraction, capturing subtle patterns in facial expressions, while
SVMs serve as classifiers, distinguishing between different emotional states.

Additionally, hybrid FER models have included Vision Transformers (ViTs). Using a dual-stream structure to
collect both local and global facial features, a study presented a hybrid local attention module in a ViT framework,
which improved performance on the RAF-DB, FERPlus, and AffectNet datasets [89]. In [90], state-of-the-art
results on the FER2013, FER+, and AffectNet datasets were achieved by combining CNN-derived features with
features extracted using the Bag-of-Visual-Words (BOVW) model within a local learning framework, along with
a local SVM for classification. In multimedia applications, CNNs combined with Deep Belief Networks (DBNs)
were proposed by [91], achieving high recognition rates of 98.14%, 95.29%, and 98.86% on the JAFFE, KDEF, and
RaFD datasets, respectively, demonstrating the model’s strong generalization capability. In [92], a CNN model with
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long short-term memory (LSTM) was built, where features were extracted by a bidirectional LSTM for the CK+
and an in-house dataset. A deep learning approach based on Spatial Transformer Networks (STNs) was presented
in [93] for handling issues with high variability datasets like FER-2013. By focusing on important facial areas, this
model increased the accuracy of feature extraction and classification.

In [94], a hybrid model was created that combined CNN-based facial motion flow classification with SVM-based
geometric displacement classification, achieving 99.69% accuracy on the CK+ dataset and 94.69% on the BU4D
dataset. In [7], [48], SVM and KNN were used for classification to recognize facial expressions using two features:
HOG and LBP, on several image databases. In [95], a model was proposed that combines DCNNs for feature
extraction and Haar Cascades for real-time facial detection, resulting in enhanced classification performance on
the FER-2013 dataset. Hybrid techniques are not widely used in FER and may be somewhat limited, perhaps due
to the large number of features that have a high similarity rate, making other algorithms that focus on details
and parts of the images more important, such as attention mechanisms [13], [74], DeepCNN [60], [45], [96],
and transfer learning [68], [22], [67], followed by artificial neural networks. Table 1 shows a typical heat map of
accuracy values, simplified for datasets with different methods.

Table 1. Accuracy Comparison Across Methods and Datasets

Dataset ML (HOG+SVM) | DL (MobileNetV1) | DL (POSTER++) | Hybrid (CNN+SVM)
FER2013 90.16% 97.9% — 75.42%
AffectNet-7 — 66.97% (HAM) 67.49% 65.07% (ViT+Hybrid)
AffectNet-8 — 69.3% (DeepCNN) 63.77% 62.78%
RAF-DB 91.30% 95.05% 9221% 90.45%
JAFFE 99.66% — — 98.44%
CK+ 98.61% 100% (MobileNetV1) — 99.04%

Hybrid techniques in facial expression recognition (FER) leverage features extracted from pre-trained deep
models such as ResNet18 and EfficientNet to enhance recognition accuracy and robustness. These features are
subsequently used to train advanced classifiers such as SVM or incorporated into fusion architectures, including
CNN combined with Bag-of-Visual-Words (BOVW) frameworks [54], [88], [90]. Recent advancements also
integrate local and global attention mechanisms within Vision Transformer (ViT)-based frameworks to improve
spatial representation and recognition stability under challenging conditions [89]. Empirical results demonstrate
the strong potential of such hybrid systems: for instance, ResNet18 coupled with SVM achieved accuracies of
99.02% and 98.44% on the MMI and JAFFE datasets, respectively [54], while CNN-SVM models combining
geometric motion and appearance-based features achieved 94-99% on CK+ [94]. Comparable improvements have
been reported on large-scale datasets such as FER2013 and RAF-DB through CNN-attention fusion strategies and
the inclusion of additional network layers [88]. The primary advantage of hybrid techniques lies in their enhanced
robustness and generalization capability. By integrating complementary feature extraction and classification
paradigms, these models become less sensitive to variations in lighting, pose, occlusion, and background
complexity, thereby achieving more stable performance in real-world scenarios. However, this improvement
often comes at the cost of increased computational complexity and higher resource requirements during both
training and inference, especially when multiple components such as CNNs, Transformers, local attention modules,
and fusion units are combined. Moreover, handling large feature sets may introduce redundancy or high inter-
feature correlation, potentially diminishing performance if not properly optimized. Analytically, hybrid models
provide a balanced trade-off between the localized precision of CNN-based architectures and the global contextual
understanding enabled by Transformer-based designs. While Transformer only FER models achieve strong
performance with end-to-end learning, they typically incur substantial computational overhead. Conversely, pure
CNNs are computationally efficient but often less capable of handling complex spatial dependencies. Hybrid
architectures bridge this gap, combining the efficiency of CNNs with the representational strength of attention
mechanisms. This balance makes them particularly suitable for semi-constrained real-world FER applications,
where both accuracy and computational efficiency are critical considerations [13], [74], [68], [22], [67].
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4. Datasets

In recent years, the number of datasets dedicated to facial expression recognition has significantly increased, driven
by the growing demand for emotion-aware applications. This section presents a comprehensive overview of the
most widely used datasets, highlighting their characteristics, structure, and relevance in FER research.

4.1. Large-Scale Image Datasets

AffectNet

It contains approximately 400,000 images that have been manually annotated for the purpose of recognizing eight
specific facial expressions. Along with the corresponding valence and arousal levels, these expressions include
neutral, surprise, disgust, happy, angry, sad, fear, and contempt. This dataset is categorized into two main branches:
AffectNet-7 and AffectNet-8, the latter incorporating the ”contempt” category. AffectNet-7 encompasses a total of
287,401 images distributed across seven classes, with 283,901 images assigned to the training set and 3,500 images
to the test set. Furthermore, AffectNet-8 includes contempt data, resulting in an increase in the number of training
and testing samples to 287,568 and 4,000 images, respectively [27].

RAF-DB

(Real-world Affective Faces Database) includes 29,672 images with seven basic facial expressions. The images
depict people of different ages, nationalities, and head positions, including occlusions such as head tilt, glasses, or
hair, and processed images such as filters and special effects [97].

FER2013

It contains over 30,000 RGB facial photos of various expressions, each limited to 48 by 48 pixels. The primary
labels in FER2013 fall into seven categories: sad, disgust, surprise, fear, happiness, and neutral. The disgust
expression has the fewest images (600), compared to nearly 5,000 examples for each of the other labels [98].
FER Plus

It includes eight expressions derived from the original FER dataset. It exhibits class imbalance, with 9,030 neutral
images in the training set and 1,102 in the test set. Distaste has the fewest images, with just 107 in the training
set and 15 in the test set. The contempt emotion contains a comparable number of images—115 in the training
set and 13 in the test set. Compared to the other five emotions, disgust, contempt, and fear have fewer visual
representations. This is typical in natural conversation, where people are generally happy or in a neutral state, and
rarely express contempt, disgust, or fear [99].

FERG

It’s a repository comprising stylized characters with annotated facial expressions. It includes 55,767 images of
six stylized faces, all generated using MAYA software. The images for each character are categorized into seven
distinct types of expressions [100].

JAFFE

It focuses on Japanese females and includes seven facial expressions. It contains 213 images of these expressions
from 10 different Japanese female subjects. These images were annotated with average semantic ratings for each
facial expression by 60 annotators [26].

KDEF

created under laboratory conditions, was originally designed for use in psychological and medical research. It
comprises images from 70 actors captured at five different angles and is annotated with six fundamental facial
expressions, along with a neutral expression. In the field of basic emotion recognition, various extensively used
and large-scale facial expression datasets obtained from online sources have emerged in recent years to support the
training of deep neural networks [101].

CAER-S

It contains 65,983 images, categorized into seven facial expressions. These images are divided into 68% for training
and 32% for testing. The dataset was collected from social media to support the study and development of facial
expression recognition systems [102].
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4.2. Video and Dynamic Datasets

Cohn-Kanade (CK+)

It contains 593 videos of facial expressions from 123 people, aged 18 to 50, both male and female, with seven
expressions. These were captured at 30 frames per second, with frame dimensions of 640 x 490 or 640 x 480
pixels. This dataset includes 327 videos, each classified into one of the seven facial expressions. The CK+ database
is widely used for facial expression classification and is considered one of the most widespread and accessible
[103].

BU-3DFE

The database from Binghamton University comprises 606 facial expression sequences obtained from 100
individuals. It includes six basic facial expressions (disgust, fear, happiness, sadness, surprise, and anger) displayed
by each participant, induced in different ways and with varying levels of intensity. Like the Multi-PIE dataset,
this collection is commonly applied for the examination of three-dimensional facial expressions from multiple
viewpoints [104].

DFEW

It comprises more than 16,000 video clips sourced from a multitude of films. These video segments exhibit a range
of complex challenges in real-world scenarios, including severe lighting variations, occlusions, and unpredictable
changes in facial orientation [105].

DFER

The dataset was made publicly available in 2022 by a research team affiliated with Fudan University, encompassing
38,935 videos and seven distinct emotional categories, thus establishing its status as the most extensive dataset for
dynamic expression recognition currently available. Each video in the dataset is meticulously annotated by 30
professional annotators, ensuring a high level of data quality. The dataset is categorized into four groups based
on varying scene environments, which include daily social interactions, weekly presentations, intense interactive
displays, and unusual scenarios. Moreover, it can be further broken down into 22 more distinct scenarios. Owing
to its substantial sample size, each category contains approximately 10,000 video samples. Typically, 80% of the
dataset is used for training, while the remaining 20% is used for validation and the calculation of model evaluation
metrics [106].

MAFW

It’s a comprehensive, multimodal, complex affective dataset designed for recognizing dynamic facial expressions
in natural settings. This dataset comprises 10,045 video-audio segments, each labeled with a compound emotional
classification. Additionally, a brief description of the subjects’ emotional responses in each segment is provided
[107].

SFEW

Static frames were carefully selected from the AFEW database using face point clustering techniques to identify
crucial frames. The most common version, SFEW 2.0, is used in the SReco sub-challenge benchmarking dataset
in EmotiW 2015. Three separate sets make up the SFEW 2.0 dataset: Test (372 samples), Val (436 samples), and
Train (958 samples). Each image in this dataset is assigned one of seven different expressions—neutral, happiness,
sadness, surprise, disgust, fear, or anger. The labels for the training and validation sets are publicly available to all
participants, whereas the labels for the test set are hidden by the challenge organizers [108].

4.3. Specialized or Multi-condition Datasets

Multi-PIE (Multi Pose, Illumination, Expressions)

It comprises facial images of 337 individuals captured under varying conditions of pose, illumination, and facial
expressions. There are 15 distinct perspectives within the pose range, depicting profiles of the face in a side-to-side
manner. The alterations in illumination were simulated through the utilization of 19 different flashlights positioned
at various points within the room [109].

MMI

It’s a database dedicated to the expression of the six fundamental emotions. Among these are common expressions
found in the MMI facial expression database, which also contains expressions for every Action Unit (AU)
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currently identified, along with a number of action descriptors that include one AU enabled in the Facial Action
Coding System (FACS). Recently, recordings of natural expressions have also been added. The database contains
more than 2,900 high-resolution videos and still images covering 75 subjects. It indicates whether the AU is in a
neutral, onset, peak, or offset phase for each frame and is partially encoded at the frame level. Understanding the
facial expressions and audio clips from the scene sequences in the videos provides a complete explanation for the
existence of AUs in movies (event coding) [110].

The facial expression database used in Qulu-CASIA NIRVIS includes six distinct expressions, captured by having
participants sit on a chair in a room and fixate their position in front of the camera. The distance between the
camera and the subject’s face is approximately 60 cm. A group of 80 individuals aged between 23 and 58 years
were captured. A large majority of the participants were male (73.8%). Participants were asked to mimic a specific
facial expression based on a given example shown through image sequences. Recordings were captured at 25 fps
with a resolution of 320 x 240 pixels [111].

Radboud Faces Database (RaFD)

It comprises 1,608 images from 67 subjects in a laboratory-controlled setting, featuring three distinct gaze
directions: frontal, leftward, and rightward, each associated with eight expressions linked to every image [112].

Building on the previous discussion of FER challenges, a comprehensive understanding of dataset characteristics
is essential for improving the reliability, fairness, and generalizability of facial expression recognition systems.
In table 2 provides an expanded overview of widely used FER datasets, several critical aspects affecting their
real-world applicability warrant closer examination. A major limitation across many datasets is the lack of
standardized quality indicators, including labeling reliability, inter-annotator agreement, and detailed demographic
distribution. For instance, FER2013 contains numerous mislabeled samples that distort training dynamics and
reported accuracy, while AffectNet and RAF-DB offer limited demographic transparency, making fairness and
generalization assessment difficult. Another concern involves dataset licensing and usage restrictions, as many
large-scale FER datasets impose unclear or restrictive terms that hinder their use in commercial or privacy-sensitive
contexts, with few studies addressing their impact on reproducibility and deployment. Dynamic datasets such as
DFER, DFEW, and MAFW introduce additional challenges related to temporal alignment, annotation sparsity, and
frame-level consistency, affecting the reliability of sequence-based models like CNN-LSTM and transformers in
fine-grained temporal analysis. Moreover, dataset suitability often depends on research objectives, yet this is rarely
specified; smaller lab-controlled datasets like JAFFE and CK+ enable benchmarking under consistent conditions
but lack ecological validity, whereas large-scale in-the-wild datasets provide greater diversity at the expense of
increased noise and bias. Therefore, establishing a structured evaluation framework that includes demographic
reporting, annotation quality, licensing transparency, and temporal labeling rigor would help researchers select
datasets more strategically, ultimately improving model robustness, fairness, and ethical accountability.

Table 2. Expanded comparison of facial expression recognition datasets including demographic details, Annotation, and
recommended use cases.

Dataset Samples # Exp. | Demographic Labeling / Recommended Use
Annotation Case
AffectNet ~400K 7/8 Broad age/ethnicity | Manually annotated | Large-scale
images diversity (valence—arousal + in-the-wild training,
(web-sourced). categorical). loss robustness,
Exact distribution label-noise studies.
not reported.
RAF-DB 29,672 7 Mix of Manual annotation Robustness to
images ages/nationalities; (crowd/expert). occlusion and head
includes head pose; demographic-
pose/occlusion. diversity
Exact distribution experiments.
not reported.
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Dataset Samples # Exp. | Demographic Labeling / Recommended Use
Annotation Case
FER2013 ~30K 7 Web-sourced; no 7-class labels; Low-res FER, label
(48x48) demographic contains noise and noise handling,
breakdown reported. | mislabels. lightweight models.
FERPlus 32,298 8 Same as FER2013; Relabeled with label | Loss-function
images class imbalance distributions. studies (label
noted. smoothing, PDLS,
Ad-Corre).
JAFFE 213 images 7 Japanese female Semantic ratings Controlled,
(10 subjects) subjects only. averaged over 60 culture-specific
annotators. studies.
KDEF ~4,900 7 70 actors, lab Posed expressions Model validation
images setting. No ethnicity | in controlled angles. | under controlled
breakdown. pose/illumination.
CK+ 593 video 7-8 Subjects aged Onset/peak/offset Temporal FER, AU
sequences 18-50, mixed annotated; AU studies, onset—offset
(123 genders. labels available. modeling.
subjects)
BU-3DFE 606 6 100 subjects, Lab-captured 3D 3D / multi-view
sequences multiple intensities. | sequences, posed. FER, expression
(100 intensity analysis.
subjects)
MMI >2,900 6 75 subjects, lab Frame-level AU AU detection,
videos and (+AUs) | setting. onset/peak/offset biomechanics of
stills (75 annotations. expression.
subjects)
SFEW 2.0 958 train / 7 Frames extracted Clustered frame Occlusion /
436 val / 372 from AFEW movies | selection; test labels | in-the-wild
test (in-the-wild). hidden in EmotiW robustness;
challenge. benchmark testing.
DFEW ~16K video 7 Movie clips, varied Clip-level Large-scale
clips conditions. annotations; temporal FER,
Demographics not in-the-wild. shot-change
reported. robustness.
DFER 38,935 7 4 scene categories Annotated by 30 Benchmark for
videos (social, presentation, | professional dynamic FER,
interaction, annotators. CNN+LSTM/3D
unusual). CNN training.
MAFW 10,045 11 In-the-wild Segment-level Multimodal FER
video—audio multimodal dataset. | compound labels + (video+audio),
segments Demographics not short text compound emotion
reported. descriptions. recognition.

In recent years, the number of datasets dedicated to FER has increased significantly. While these datasets
provide a basis for training and evaluating FER models, each has fundamental limitations that affect generalisation,
reliability, and fairness. Table 3 illustrates the problems with the dataset and Table 4 helping researchers select
the appropriate data for facial expression recognition.
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Table 3. Overview of Common FER Datasets and Their Limitations

Dataset Type Limitations

AffectNet Large-scale in-the-wild | Severe class imbalance, ambiguous “contempt”, noisy
(static) annotations

RAF-DB In-the-wild (static) Class imbalance, subtle emotion ambiguity

FER2013 In-the-wild (static) Many mislabeled/non-face samples, very low resolution

FERPlus In-the-wild (static) Better labels than FER2013 but still imbalanced

FERG Synthetic (stylized) Cartoon-like faces, lacks realism

JAFFE Lab-controlled (static) Very small, only Japanese women (demographic bias)

KDEF Lab-controlled (static) Posed, limited diversity (Swedish actors)

CAER-S Social media (static) Noisy images, variable quality

CK+ (Cohn-Kanade)

Lab-controlled (video)

Posed, lacks real-world variability

BU-3DFE

3D static

Controlled conditions, limited natural variation

DFEW In-the-wild (video) Annotation subjectivity, noisy backgrounds

DFER In-the-wild (video) Large-scale, but subjective/contextual ambiguity

MAFW Multimodal (video+audio) | Complex compound emotions, annotation subjectivity

SFEW 2.0 In-the-wild (static, from | Small, test labels hidden (challenge format)
AFEW)

Multi-PIE Lab-controlled Unrealistic for natural scenarios
(pose/illumination)

MMI Lab-controlled Mostly posed, AU coding but less natural
(video+images)

Oulu-CASIA Lab-controlled (video, NIR | Small, constrained, mostly male participants
& VIS)

RaFD Lab-controlled (static) Posed, limited diversity, artificial setup

Table 4. Extended Dataset Selection Guidelines for FER Research

Research Goal

Recommended Datasets

Limitations

Real-world robustness AffectNet, RAF-DB, | Imbalanced and noisy labels; ambiguous
CAER-S classes; variable image quality

Controlled baseline experiments | CK+, JAFFE, KDEF, | Limited diversity, posed expressions, demo-
RaFD graphic bias

Video/temporal dynamics

DFEW, DFER, MAFW,

Annotation subjectivity, variable quality,

Oulu-CASIA, MMI, | mostly constrained setups
AFEW

Quick lightweight testing FER2013, FERPlus, | Mislabeled/noisy samples, low resolution,
SFEW 2.0 small test sets

3D expression analysis

BU-3DFE, Multi-PIE

Controlled lab conditions, unrealistic for in-
the-wild deployment

Synthetic/augmented testing FERG Cartoon-like synthetic faces, lacks realism
for transfer learning

Multimodal emotion analysis MAFW Complex compound emotions, subjective
annotations

Action Unit / fine-grained studies | MMI Posed expressions, AU coding but limited

natural variability
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5. Applications

The significance of employing facial expression recognition (FER) stems from its utilization in a multitude of
applications, including the identification of emotions in masked faces for individuals with visual impairments [60],
communications, driving [15], and human-computer interaction [14], [113]. Moreover, in education, emotional
learning has been explored. For instance, [38] examined how students behaved in an online learning environment
by utilizing video facial processing, tracking, and clustering to quickly and concurrently extract facial sequences
for every student and predict group-level effects, individual emotions, and student engagement levels. Flip videos
do not need to be sent to a distant server or teacher’s computer, as the model can perform real-time video processing
on a mobile device. By learning from brief clips that show the various emotions and engagement levels of each
student, the model may also be used to generate a summary of the course [96], [67], [68], [61]. Facial expressions
serve as crucial cues for assessing the efficacy of digital educational platforms and gauging student involvement
in virtual learning environments [114]. In medicine, FER has been used for medical diagnosis [115], [116]. The
identification of emotions expressed through facial cues holds considerable significance for a range of applications,
including psychological profiling, autonomous driving, and public space security [3], as well as mental health and
psychology [18], [117]. In security, FER can be applied in autonomous vehicles to identify the emotional states of
drivers, passengers, or pedestrians. This application has the potential to enhance safety by alerting the vehicle to
possible sources of distraction or hazardous situations, such as driver fatigue [118]. FER is also relevant in virtual
reality and social robotics [16], as well as in emotion analysis and affective computing [119], [17]. In marketing,
cameras equipped with artificial intelligence in shopping malls can analyze the immediate emotional responses of
patrons, offering valuable applications in the field [49]. Data from customer facial expressions are utilized in retail
sales to determine whether a human sales assistant is needed [4], [5].

6. Evaluation and Analysis

This section compares the majority of previous research using various algorithms to recognize facial expressions
across a range of datasets. As a result of this comparison, the algorithms that achieved the highest accuracy in
facial expression recognition are highlighted. For instance, a deep CNN achieved an accuracy of 69.3% on the
AffectNet-8 dataset [60], while a model called POSTER++, based on a pre-trained Vision Transformer, achieved
67.49% accuracy on the AffectNet-7 dataset [14]. MobileNetV1 was used on the FER2013 [1] and RAF-DB [22]
datasets, achieving accuracies of 97.9% and 95.05%, respectively. FER2013 remains one of the most widely used
datasets in facial expression recognition. Table 5 summarizes recent research on facial expression recognition
using various datasets that include both images and videos.

Table 5. Comparison between FER approaches.

Facial Expression Recognition Methodologies based on Machine learning

Methods year dataset Accuracy Code
HOG + RF [8] [2024] JAFFE 7 class : 92.97%
MMI 7 class : 98.44%
SVM [54] [2023] JAFFE 7 class : 98.44%
(LBP + SVM) CK+ 7 class : 92.26%
[2021] LFW 7 class : 94.67%
(Viola Jones + SVM) [48] CK+ 7 class : 97.69%
LFW 7 class : 98.88%
JAFFE 7 class : 97.62%

HOG + SVM [7] [2020] Cohn-Kanade 7 class : 98.61% _—
Continued on next page
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Methods year dataset Accuracy Code
(HOG and LBP) LNMIIT 7 class : 96.02%
+ [2020] MMI 7 class : 92.22%
(SVM and KNN) [48] CK 7 class : 91.30%
JAFFE 7 class : 97.70%
Decision Tree [2020] self-collected 6 class : 98.03%
KNN [53] self-collected 6 class : 97.21%
CK+ 6 class : 96.00%
WLD + SVM [120] [2019] MMI 7 class : 98.62%
SFEW 7 class : 50.20%
SVM [51] [2008] Cohn-Kanade 7 class : 84.55%
Facial Expression Recognition Methodologies based on Deep learning
Methods year dataset Accuracy Code
AffectNet 7 class : 65.05%
MM-Net [87] [2024] RAF-DB 7 class : 84.90%
FERPIus 7 class : 89.34%
AffectNet 8 class : 62.16%
Resnet-18 [2024] AffectNet 7 class : 65.73% codel
Swin-T [121] RAF-DB 7 class : 89.77%
FERPIlus 7 class : 92.31%
AffectNet 7 class : 62.7%
Inception- [2024] SFEW 7 class : 58.2%
Resnet-v2 [66] Multi-PIE 6 class : 93.4%
BU-3DFE 6 class : 88.3%
DFEW 7 class : 68.73%
DFER [122] [2024] AFEW 7 class : 55.00%
FERV39k 7 class : 47.80%
MAFW 7 class : 47.44%
AffectNet 8 class : 63.82%
HAM [19] [2024] AffectNet 7 class : 66.97%
RAF-DB 7 class : 91.92%
CAER-S 7 class : 92.86%
MobileNetV1 [1] [2024] FER2013 7 class : 97.9%
AffectNet 8 class : 62.09%
DAN [13] [2023] AffectNet 7 class : 65.69% code?2
RAF-DB 7 class : 89.70%
SFEW 2.0 7 class : 53.18%
AffectNet 7 class : 63.03%
ResNet-18 [17] [2023] RAF-DB 7 class : 85.69%
AffectNet 8 class : 69.3%
deep CNN [60] [2023] FER-2013 —_—
DISFA —_—
AffectNet 8 class : 63.77%
POSTER++ [14] [2023] AffectNet 7 class : 67.49% code3
RAF-DB 7 class : 92.21%
ResNet-50 [68] [2023] RAF-DB 7 class : 86.72%
FER2013 7 class : 88.13 %
Continued on next page
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Table 5 — continued from previous page
Methods year dataset Accuracy Code
RAF-DB 7 class : 95.05%
MobileNetV1 [22] [2023] CK+ 7 class : 100.0% coded
FER2013 7 class : 92.50%
FERPLUS 8 class : 95.55%
FER-2013 7 class : 73.4%
[2023] CK+ 7 class : 89.56%
Resnet-50 [67] RAF-DB 7 class : 76.72%
Own 8 class : 90.83%
Ad-Corre AffectNet 7 class : 63.36%
ResNet50 [39] [2022] RAF-DB 7 class : 86.96% codeb5
FER-2013 7 class : 72.03%
Meta-Face2Exp [31] [2022] AffectNet 7 class : 64.23%
RAF-DB 7 class : 88.58%
FERNet [45] [2022] FER2013 7 class : 69.57%
AffectNet 7 class : 66.34%
EfficientNet [2022] AffectNet 8 class : 63.03% codeb
-B2&-B0 [69] VGAF 70.23%
AFEW 59.27
AffectNet 63.03% STSN
AffectNet 63.97% KTN
STSN/KTN [38] [2021] RAF-DB 87.52% STSN
RAF-DB 88.07% KTN
FERPlus 89.66% STSN
FERPlus 90.49% KTN
AffectNet 7 class : 64.53%
(MA-Net) AffectNet 8 class : 60.29%
ResNet18 [21] [2021] RAF-DB 7 class : 88.40% code?
SFEW 59.40%
CAER-S 88.42%
A-MobilNet [15] [2021] FERPLUS 8 class : 88.11%
RAF-DB 7 class : 84.49%
DenseNet161 [18] [2021] KDEF 7 class : 96.51%
JAFFE 7 class : 99.52%
CK+ 7 class : 98%
DeepEmotion [32] [2021] Fer2013 7 class : 70.02% codes
FERG 7 class : 99.3%
JAFFE 7 class : 92.8%
RUL [24] [2021] FER2013 7 class : 73.75%
RAF-DB 7 class : 88.98%
RAF-DB 7 class : 88.26%
FER+ 8 class : 90.04%
FER-VT [34] [2021] CK+ 6 class : 100.0%
CK+ 7 class : 100.0%
CK+ 8 class : 99.46%
AffectNet 8 class : 59.89%
Continued on next page
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https://github.com/zengqunzhao/ma-net
https://www.sciencedirect.com/science/article/pii/S1110016821006682
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Table S — continued from previous page

Methods year dataset Accuracy Code
EfficientFace [61] [2021] AffectNet 7 class : 63.70% code9
RAF-DB 7 class : 88.36%
CAER-S 7 class : 85.87%
UIBVFED 7 class : 98.85%
FERG 7 class : 99.96%
DCNN-VC [55] [2021] CK+ 7 class : 99.04%
JAFFE 7 class : 99.57%
TFEID 7 class : 99.31%
DACL [74] [2021] Affectnet 7 class : 65.20%
RAF-DB 7 class : 87.78%
AffectNet 7 class : 63.77%
PSR [2020] AffectNet 8 class : 60.68% codel0
(VGG16) [20] RAF-DB 7 class : 88.98%
FER+ 8 class : 89.75%
MEMP [123] [2020] AffectNet 7 class : 58.93%
AffectNet 8 class : 59.3%
(ESR-9) [23] [2020] FER+ 8 class : 87.15% codell
CK+ 8 class : 89.4%
JAFFE 7 class : 99.66%
Inception-v3 [6] [2020] FER2013 7 class : 90.16%
AffectNet 7 class : 61.52%
FMPN [16] [2019] MMI 6 class : 82.74% codel?
CK+ 8 class : 98.06%
VGG Fer2013 7 class : 72.7%
ResNet [2016] Fer2013 7 class : 72.4% codel3
Inception Fer2013 7 class : 71.6%
Deep CNN [96] Fer2013 7 class : 75.2%
Facial Expression Recognition Methodologies based on Hybrid Techniques
Methods year dataset Accuracy Code
hybrid local attention RAF-DB 7 class : 90.45%
+ VIT [89] [2024] FERPlus 7 class : 90.13%
AffectNet 7 class : 65.07%
FERV39K 7 class : 51.31%
LSGTNet [124] [2024] DFEW 7 class : 72.34%
MMI 6 class : 88.61%
Oulu-casia 6 class : 91.88%
AffectNet 8 class : 62.78%
ResNet18 [2023] FER2013 7 class : 74.64%
+ SVM [54] MMI 6 class : 99.02%
JAFFE 7 class : 98.44%
JaFFE 7 class : 98.14%
CNN + DBN [91] [2023] KDEF 7 class : 95.29%
RaFD 7 class : 98.86%
CK+ 5 class : 84.87%
CNN + LSTM [92] [2023] in-house 4 class : 92.84%
CK+ 7 class : 99.69%
CNN + SVM [94] [2022] BU4D 6 class : 94.69%
Continued on next page
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https://ieeexplore.ieee.org/document/9143068
https://github.com/thanhhungqb/pyramid-super-resolution
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Table 5 — continued from previous page
Methods year dataset Accuracy Code

CNN [2022] FER2013 7 class : 70.04%
+ Harr Cascade [95]

EfficientNetBO [2021] FER2013 7 class : 74.39%
+ CNN [88]

UIBVFED 7 class : 98.85%

FERG 7 class : 99.96%

DCNN-VC [55] [2021] CK+ 7 class : 99.04%

JAFFE 7 class : 99.57%

TFEID 7 class : 99.31%

AffectNet 8 class : 59.58%

CNN and BOVW [2019] AffectNet 7 class : 63.31%

+ local SVM In [90] FER2013 7 class : 75.42%

FER+ 7 class : 87.76%

This survey not only gathers facial expression recognition techniques but also critically examines the conceptual
frameworks that explain their evolution, advantages, and disadvantages. The analysis reveals the methodological and
cognitive foundations of FER models, going beyond technical comparisons. At its core, FER is a multidisciplinary
challenge situated at the intersection of medical diagnosis, human-computer interaction, emotional education, and marketing.
Traditional machine learning methods, such as those based on LBP, HOG, SVM, DT, RF, and KNN, reflect a feature-
engineering paradigm grounded in the assumption that facial expressions can be manually decomposed into salient local
features. While interpretable and lightweight, this approach is limited in handling in-the-wild variations such as low light,
occlusions, and pose changes, revealing its conceptual limitations in real-world scenarios. Figure 4 shows some of the most
commonly used datasets—AffectNet-8, AffectNet-7, RAF-DB, and FER2013—along with the best-performing models:
DeepCNN, POSTER++, and MobileNetV 1, which achieved accuracies of 69.3%, 67.49%, 95.05%, and 97.9%, respectively.

The representation learning paradigm, which hierarchically abstracts features from raw pixels, forms the foundation of
deep learning-based techniques, including CNNs and attention-based networks. In [18], the authors used the DeepCNN
model with the KDEF and JAFFE datasets, achieving accuracies of 96.51% and 99.52%, respectively. This model utilized
transfer learning, which enhances the accuracy of emotion recognition, especially when using pre-trained DCNN models. A
key benefit of this method is its capacity to recognize images taken from different angles, making it more suitable for practical
applications. However, failure in learning transfer requires fine-tuning of model parameters, and the architecture of DNNSs is
relatively complex, potentially requiring significant computing resources for training. In [45], a simplified DeepCNN with
five layers was used to reduce complexity. However, the model’s ability to generalize to other datasets may be limited, as it
was trained solely on the FER2013 dataset. Additionally, the model was trained on the AffectNet dataset in a different study
[60], one of the most crucial datasets for FER. The model was applied to mask-covered images—an especially relevant
application given the COVID-19 pandemic—achieving an accuracy of 69.3%. Nevertheless, the method may struggle to
recognize complex emotions that rely on movements of the lower part of the face, indicating that further improvements are
needed to enhance its accuracy and generalizability.

Moreover, context-aware modeling is added to FER through transfer learning, attention mechanisms, and hybrid
architectures. According to these techniques, which are based on cognitive theories of visual saliency, certain facial
features—such as the mouth and eyes—contribute disproportionately to emotional inference.

In [15], the A-MobileNet model, which uses the MobileNetV1 backbone, features a lightweight design due to its
reduced parameter count, making it suitable for mobile applications where computational resources are limited. Improved
feature extraction using an attention mechanism that focuses on critical facial regions—including the eyes, mouth, and
forehead, which are important for expression recognition—enhances recognition accuracy without significantly increasing
computational cost. A-MobileNet performs more accurately on the RAF-DB and FERPIus datasets than MobileNetV1 and
MobileNetV2, validating the effectiveness of the modifications. However, it struggles to distinguish between expressions
with high similarity, leading to sensitivity to intra-class expression similarity (e.g., fear and surprise), despite the use of
attention mechanisms. This issue is not unique to this model; others such as [87] also struggle with expressions that exhibit
high similarity across categories, suggesting potential limitations in separating these labels. To manage class similarity by
reducing intra-class differences and maximizing inter-class differences, the authors of [125], [39], and [76] introduced novel
loss functions. In [126], a quadratic cross-similarity network is proposed to handle cross-class similarity. This network uses
cross-similarity attention mechanisms to identify salient features, thereby significantly reducing cross-class similarity in FER
tasks.
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Figure 4. The most used datasets with the best models

FER also includes challenges such as pose variation and occlusion. In [66], the authors presented a method that addresses
pose variation by introducing adversarial learning. This model generates pose-invariant feature representations, improving
performance in diverse real-world scenarios. For robustness against occlusion and pose changes, [87] introduced the
Multi-Granularity and Multi-Scale Network (MM-Net). MM-Net is a deep learning framework that captures facial features
at multiple granularities (local and global) and scales, allowing the model to integrate both fine-grained and holistic
information. By concentrating on different regions of the face, the network simplifies feature extraction through direct
incorporation into the main architecture. Its advantages include improved robustness to variations in pose and occlusion
while maintaining an efficient design. Experimental results show that MM-Net outperforms most state-of-the-art methods
on datasets such as RAF-DB, FERPlus, and AffectNet, demonstrating its effectiveness across diverse FER benchmarks.
In [19], augmented functionalities are introduced through the Hierarchical Attention Module (HAM). HAM is designed to
apply attention at multiple levels of feature representation. This mechanism enables the model to emphasize salient features
while suppressing irrelevant or redundant information. This advancement leads to improved feature integration, allowing
the model to reliably differentiate between local and global facial emotion cues. To optimize spatial feature extraction,
[122] employs a Graph Convolutional Network (GCN) model in conjunction with facial key points, which substantially
enhances the model’s resilience to occlusion and ambient noise. It effectively captures temporal dynamics through subjective
attention mechanisms, making it suitable for video sequences characterized by evolving expressions over time. Additionally,
it improves accuracy across heterogeneous datasets including DFEW, AFEW, FERV39k, and MAFW, demonstrating the
model’s generalizability and adaptability to a wide range of expression datasets.

Class imbalance is a significant issue in FER, where the distribution of facial expression classes is often highly
skewed. Real-world facial expression datasets such as AffectNet, FER2013, and RAF-DB typically exhibit unbalanced data
distributions. Some expressions, such as ‘happiness’ or ‘neutrality’, are overrepresented, while others, such as ‘disgust’
or ‘contempt’, are significantly underrepresented. This imbalance can severely impact model performance by biasing
categorization toward dominant classes, resulting in poor recognition accuracy for minority expressions [27], [98], [97].
The imbalance is compounded by the inherent difficulty in collecting diverse and balanced expression datasets. For example,
emotions such as ‘fear’ or ‘disgust’ occur less frequently in natural environments compared to ‘happiness’ [127]. To mitigate
class imbalance, ensemble techniques such as boosting and bagging have been used on multiple models trained on balanced
subsets of the data [128]. Using focal loss to address class imbalance has proven effective in FER tasks. By down-weighting
well-classified examples and emphasizing hard, minority-class samples, focal loss significantly improves performance on
imbalanced datasets such as FER2013. This approach leads to substantial gains in minority-class Fl-scores. Similarly,
adaptive regularization (AdaReg) loss combined with category re-weighting enhances the model’s ability to discriminate rare
expressions. This effectiveness has been demonstrated in comprehensive deep FER studies [129]. Additionally, generative
adversarial networks (GANSs) can be used to create high-quality artificial samples, while momentum self-supervised learning
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techniques offer potential solutions to effectively address class imbalance in FER models [130]. Combining these methods
in hybrid pipelines such as focal loss with GAN boosting can lead to the development of more robust and fair FER models.
Future research should systematically evaluate these approaches across diverse and imbalanced datasets. Such evaluations
are essential for ensuring ethical progress and enhancing the generalizability of FER systems [131]. In [132], the model
effectively mitigates annotation ambiguity and class imbalance by computing class distributions and adaptively combining
them with attention weights. To address the misclassification of minority classes resulting from class imbalance, focal loss
was used to focus on examples that are difficult to classify [133].

Finally, loss functions play an important and subtle role in facial expression recognition. While traditional loss functions
aim to minimize classification errors, they frequently overlook semantic similarities between certain emotional categories
such as the closeness of fear and surprise. More advanced techniques, such as Ad-Corre and PDLS Loss, incorporate domain
information into the training process. These strategies integrate psychological insights into the model’s objectives, enhancing
emotional awareness and the interpretability of machine learning models. Importantly, FER research often overlooks cultural,
gender, and neurodivergent variables in expression and interpretation. The basic assumption that expressions are universal
across populations is being challenged by research in psychology and anthropology. To gain a deeper understanding of
FER, it is necessary to integrate culturally situated cognition and contextual emotional theories, moving beyond existing
data-driven limitations. Moreover, Bias and fairness in FER are critical for avoiding discriminatory outcomes, ensuring
equitable performance across demographic groups, and upholding ethical standards. In-the-wild datasets play a central role
in real-world FER applications, it is essential to systematically analyze commonly used datasets to identify and address
potential sources of bias. While some studies have partially explored these concerns, a more comprehensive and structured
examination remains necessary. FER performance can vary significantly depending on the demographic composition
and inherent biases present in the training data. Datasets that lack cultural, demographic, or socio-economic diversity
risk perpetuating stereotypes and amplifying algorithmic bias. Additionally, annotation bias such as subjective emotion
labeling and low inter-annotator agreement can critically undermine data reliability [134]. In [135], a detailed analysis of
widely used in-the-wild datasets, including AffectNet, ExpW, FER2013, and RAF-DB, revealed significant performance
disparities across gender, age, and ethnicity. Similarly, [134] demonstrated that systems trained on unbalanced datasets such
as DISFA, FER2013, and AffectNet exhibit higher error rates for individuals from underrepresented ethnic and cultural
groups. To mitigate these disparities, several debiasing strategies have been proposed. Score Normalization and Fair Score
Normalization methods [136] have shown effectiveness in reducing demographic bias through post-processing adjustments
of model outputs. Another promising line of research focuses on fairness-aware representation learning. The FADE method
[137], for example, enables model training without requiring explicit sensitive attributes for all samples, thereby promoting
fairer decision boundaries. It incorporates adversarial debiasing and federated learning techniques to account for population
diversity while maintaining competitive performance. Beyond technical interventions, FER deployment also raises broader
ethical and legal considerations, including privacy regulations, anti-discrimination laws, and biometric data governance.
Researchers and practitioners must ensure compliance with these legal frameworks and establish clear accountability for
potential model failures, misclassifications, and resulting harms [138]. Addressing these societal and ethical dimensions is
essential to developing FER systems that are not only accurate but also trustworthy, inclusive, and aligned with human rights
principles.

7. Future work

Future advancements in facial expression recognition should prioritize privacy, fairness, cultural adaptability, and
interpretability. Privacy preservation can be achieved through federated learning and on-device inference, ensuring that
sensitive facial data remain local while supporting collaborative model development and compliance with data protection
regulations. Addressing demographic and class imbalances in datasets such as AffectNet and RAF-DB is also essential;
synthetic data generation using StyleGAN or diffusion based models can enrich underrepresented emotion categories and
promote fairness across age, gender, and ethnic groups. Moreover, since FER performance varies across cultural contexts,
interdisciplinary collaboration with psychologists and sociologists is necessary to develop culturally sensitive emotion
taxonomies and adaptive classification strategies, thereby enhancing generalizability. Emerging research directions include
explainable artificial intelligence (XAI), which enables visualization of attention maps and feature attributions to improve
transparency and trust; morphological neural computing, which explores event-driven, brain-inspired architectures for energy
efficient, real-time emotion processing on mobile and embedded devices; and multimodal emotion understanding, which
integrates facial cues with speech, gestures, and physiological signals to capture richer emotional contexts and enhance
robustness in complex real-world environments.
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8. Conclusions

Facial expression recognition has progressed from relying on handcrafted features to adopting deep learning approaches.
This shift has greatly improved accuracy but also introduced challenges related to complexity, resource requirements, and
fairness. Traditional approaches provided interpretability and efficiency but performed poorly in uncontrolled environments.
In contrast, deep CNNs and attention-based architectures achieved state-of-the-art results, though they required large datasets
and heavy computational resources. Despite progress, unresolved issues such as inter-class similarity, class imbalance,
occlusion, cultural diversity, and label ambiguity still limit generalization in real-world applications. The next frontier in
FER research goes beyond achieving higher benchmark accuracy. It lies in developing models that are lightweight, resilient
to noise and occlusion, fair across demographics, and transparent in their decision-making. Promising directions include
loss-function engineering, attention-enhanced networks, hybrid paradigms, and efficiency techniques such as pruning,
quantization, and knowledge distillation. More importantly, combining advances in machine learning with insights from
psychology and cognitive science can pave the way for context-aware systems. Such systems would be capable of capturing
and interpreting the nuanced nature of human affect. Finally, the true impact of FER lies in enabling trustworthy, inclusive,
and deployable systems for healthcare, education, safety, marketing, and human—computer interaction. Building the next
generation of FER technologies will require more than just technical innovation. It must also prioritize fairness, efficiency,
and ethical deployment in dynamic real-world contexts.

List of abbreviations

AdaReg Adaptive Regular

AffectNet Affect-in-the-Wild Database

Ad-Corre Adaptive Correlation

ANN Artificial Neural Network

AU Action Unit

BU-3DFE Binghamton University 3D Facial Expression
CBAM Convolutional Block Attention Module
CNN Convolutional Neural Network

CN Classification Network

CK+ Cohn-Kanade Dataset

CAER-S Context-aware emotion recognition networks
DFEW Dynamic Facial Expression in the Wild
DDAMFN Deep Dual Attention Multi-Fusion Network
DDAN Dual-Direction Attention Network

DAN Distract your Attention Network

DACL Deep Attention Center Loss

DML Deep Metric Learning

DT Decision Tree

DFER Dynamic Facial Expression Recognition
DCNN Deep Convolutional Neural Network

ESR Ensemble with Shared Representation
FMPN Facial Motion Prior Networks

FACS Facial Action Coding System

FMG Facial Motion Generator

FER Facial Expression Recognition

FC Fully Connected

FERV39k Facial Expression Recognition Video 39,000
GAP Global Average Pooling

HAM Hierarchical Attention Module

HOG Histogram of Oriented Gradient

JAFFE Japanese Female Facial Expression

KDEF Karolinska Directed Emotional Faces

KTN Knowledgeable Teacher Network

KNN K-Nearest Neighbors)

LSGTNet Local Spatial and Global Temporal Network
LDG Label Distribution Generator

LBP Local Binary Pattern

MAFW Multi-Modal Affective in the Wild
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Multi-PIE Multi Pose, Illumination, Expressions
MMI Matic Media Interface

MFMP Multi-face Multi-part

MA-Net Multi-scale and Local Attention Network
MM-Net Multi-granularity and Multi-scale Network
PSR Pyramid with Super-Resolution

PCA principal component analysis

PDLs Prior Distribution Label Smoothing
RAF-DB Real-World Affective Database

RaFD Radboud Faces Database

RUL Relative Uncertainty Learning

RAN Region Attention Network

SVM Support Vector Machine

SFEW Static Facial Expression in-the-Wild
STN Spatial Transformer Network

STSN Self-Taught Student Network

ViT vision Transformer

VT Visual Transformer

VC Version Control
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