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Abstract Set theory is a generalization of interval theory. However, this theory has shortcomings due to the lack of an
inverse element for addition. The concept of null sets was therefore introduced to address this issue. Nonetheless, in set-
valued optimization, the use of this concept remains largely insufficient. This article, therefore, introduces a linear fractional
set-valued optimization problem, the solution to which is based on the concept of null sets. This concept enables a partial
order to be established between sets for simple differences and the Hukuhara difference. On this basis, the notions of optimal
and H-optimal solutions have been defined. To solve the proposed set-valued linear fractional optimization problem, it is first
transformed into a set-valued linear optimization problem. To make this conversion, we have proposed an adapted version of
the Charnes and Cooper method applicable to set-valued linear fractional optimization problems. Subsequently, the obtained
set-valued linear optimization problem is transformed into a deterministic linear bi-objective optimization problem using
the vectorization technique. To apply a classical method for resolution, the bi-objective problem is converted into a single-
objective linear optimization problem using the scalarization technique. Finally, an algorithm has been proposed, and two
didactic examples have been solved to better illustrate the steps of the proposed procedure.
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1. Introduction

Set-valued optimization is a type of optimization in which the coefficients of the objective functions and constraints
are sets. This particular optimization problem is a generalization of a specific class of optimization problems
where the coefficients are real intervals [2, 20, 13, 16, 29]. In recent years, optimization researchers have dedicated
significant attention to this issue. Indeed, D. Kuroiwa [6, 7, 8] and D. Kuroiwa et al. [9] were the first to address
this type of optimization problem.

Subsequently, this work generated excitement. We can mention, among others, [17], whose research has
contributed to the proposal of numerous concepts in the theory of set comparison. When it [18] was, its work
made it possible to transform a set optimization problem into a bi-objective optimization problem using the
vectorization technique. The study in [19] focused on the directional derivatives in set optimisation with the set
less order relation. The optimality conditions, existence theorems, and non-convex scalarisation in set optimisation
problems were studied in [25, 26, 10, 11]. [5] has also designed an algorithm to solve set optimization problems in
polyhedral convex games, and [28] studied the convergence of the solution sets for set optimization problems. The
well-posed problem issue and the Karush—-Kuhn-Tucker conditions in set optimization have been studied in [23]
and [24], respectively. The concept of set optimization was used in [27] to model the optimization of photovoltaic
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P. LOMPO AND A. COMPAORE 1

power plant layout.

The major drawback of all these works lies in manipulating the differences between sets. The elements, or
coefficients, of the optimization problem are sets; therefore, the difference of an element does not necessarily equal
zero. Inspired by this, Wu[12] introduced the concept of a null set in hyperspace, which consists of all nonempty
subsets of a given normed space. He defined two partial orders based on algebraic and Hukuhara differences
between any two elements of hyperspace using these concepts. These orders allowed him to solve set optimization
problems. In fact, he transformed set optimization problems into classical bi-objective optimization problems. To
solve the bi-objective problem, he uses the scalarization technique. His work shows that the optimal solution to
the scalarized problem is also the optimal solution to the original set optimization problem.

However, Wu’s[12] work is limited to the linear case only. Previously, Wu[14] had used the concept of null
set, based on the same principle, to solve interval-valued optimization problems (which are a special case of
set-valued problems). Unlike Wu, who uses a linear scalarisation function in his work, A. Moar et al.[3] proposed
using a nonlinear scalarisation function in set optimization based on the null set concept. Still based on this
concept, Zhang[4] solved multi-valued equilibrium problems. Inspired by Wu’s work [12], other researchers
such as J. C. Sama and K. Some [21, 22] have proposed using the concept of null set to solve fuzzy nonlinear
optimization problems. In all the work carried out, the concept of null set offers another, more efficient possibility
in solving certain types of optimization problems whose coefficients and/or variables are sets or fuzzy numbers.
Unfortunately, this efficiency has not yet been tested for solving set-valued nonlinear optimization problems. This
motivates the present work, which aims to generalise Wu’s[12] work in the non-linear case. Therefore, this work
proposes an extension to the nonlinear case. This extension will make a significant contribution to the field of
set-valued optimization. Specifically, we propose studying a set-valued fractional linear programming case. This
choice is because fractional linear optimization problems belong to a class of nonlinear optimization problems
with applications in various fields, including planning, management, finance, and engineering. Our reflection
attempts to establish the foundations of the theory in the fractional case. For this, first, the linear fractional set
optimization problem is transformed into a linear set optimization problem.

Secondly, the set-valued fractional linear programming problem will be transformed into a deterministic
bi-objective linear optimization problem using vectorization. Next, we will use a scalarization technique to
convert the linear bi-objective problem into a deterministic mono-objective problem. Finally, we will propose
an equivalence study between the solutions of the linear bi-objective problem and the initial problem, as well as
between the solutions of the linear bi-objective problem and the solutions of the scalarized linear problem.

To better present our results, in Section 2, we will introduce the fundamental elements necessary for
understanding the work. Section 3 will present our main results. Two didactic examples will be discussed in Section
4 to demonstrate our method. Section 5 will conclude with a summary.

2. Basic concepts

2.1. Set analysis
This section introduces the concept of a null set and its properties.
Definition 2.1 ([12, 13, 15]). Let (7,|| ®||) be a normed space and Z..(7) be a collection of all compact and

convex sets of 7. Let A, B € E..(T) and v be real numbers.
Let @, ©, © denote the sum, difference, and multiplication between sets, respectively. The following relations hold:

. AeB={a+blac A and b€ B},

2.voA={va|ac A},
3. AoB=A®(-B)={a—blac A and be B}.
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2 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

Definition 2.2. Let © be a continuous linear function on a set 7 with coefficients greater than or equal to 1. Let 4
be the largest value of 7 and x5 be the smallest value of 7. The following relations hold:

sup O(a) = O(x1),
a€T

and

igg_@(a) = O(z2).

Proposition 2.3 ([12, 13])
Let (7,]| e ||) be a normed space and © be a continuous linear function with coefficients greater than or equal to 1
on7.Let A, B € E.(T) and v € R. Then the following equalities hold:

1.
O(a) = © © d inf O(a)=inf O inf O(a).
Sup (a) Sup (a) +sup (o) and  inf ©(a)= inf O(c) + inf O(c)
2.
v.sup ©(«) if v >0,
acA
sup O(a) =
a€A0A v. inf ©(a) if v <O0.
acA
3.
v. inf O(a) if v >0,
acA
inf O(a) =
acroA v.sup O(a) if v <O0.
acA
4.
aeSEgA@(a) = 223@(@) - O%rel&@(a) if aeiﬂf@f\@(a) = ig&@(a) - 21613@(04).
5.

O2}154@(@) + ael%A@(a) = 1/(21;86(01) + ;2&6(@)).

The following is an example of a simple application of Proposition 2.3.
Example 2.4. Consider the following sets
Ay ={G(t)/t € [0,1]} and Az = {(2(t)/t € [0,1]}
with (3 and (» are functions defined as follows:
¢1:[0,1] = [0,5], tes t? 1,
and
¢2: [0,1] — [0, 5], t—t+2.
Let ©(«) = va, then we have:
Sup O(a) + inf O(a) =vGi(1) +26(0)
=2v+4v
=3v
and

sup O(a) + inf O(«a) = v(a(1) + v(2(0)
a€As a€Az

=3v+v
=4v
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P. LOMPO AND A. COMPAORE 3

Remark 2.5. Z..(7) does not constitute a vector space since for every A € Z..(7) and B € Z..(T), we have
A® B ¢ Z..(T) and for all real v, we have v © A ¢ Z..(T).

Let 61 be the zero element of the normed space 7, it can be considered as the zero element of Z..(7) since
A @ {07} = A. In other words, since A © A # {67}, this means that A © A is not the zero element of Z..(7); in
other words, the addition of the inverse elements of A in Z..(7) does not exist.

Example 2.6 ([14]). In the special case of interval arithmetic, setting A = [a*, a¥| with a* and oY real numbers
such that aX < oV, we have:

A8 A= [a*a"] & [a" "] = [a" ") @ [a¥, ~a"
_ [aL —aV. U — aL}
where oV — o > 0, which says that the additive inverse element in =..(7) does not exist. One of the reasons is

that the concept of the zero element of =...(7") is not defined. This also says that Z..(7) cannot form a vector space
under the above interval addition and scalar multiplication.

Hence, the following definition.

Definition 2.7 ([12, 13]). The null set of =..(7) is defined by:
Q={AcA|AcZ.(T)} @.1)
It is considered the zeroth element of Z..(7).

Proposition 2.8 ([12])
We have the properties of the null set.

1. If w € Q) then the zero element 61 € w. This also says that Q # =Z..7T .
2. w € Qimplies that—w = w.

3. vQ = Qfor v € R whith v # 0.

4. Q is closed under set addition, that is, wy, @ wy €  for each wq,wy € Q.

Definition 2.9 ([12, 13, 21, 22]). Let V be an R-vector space. Consider the function £ : Z..(7) — V, then:

1. L is additive if and only if L(A & A) = L(A) + L(A).

2. L is positively homogeneous if and only if L(vA) = v.L(A) with v > 0.

3. L is positively homogeneous if and only if L(v.A) = v.L(A) if v > 0.

4. L is linear if and only if it is both additive and homogeneous.

5. LW ® A) = vF.L(A) withv > 0 and k > 0, £ is homogeneous of degree k.

Proposition 2.10 ([12, 13])
Let V be an R— vector space. Consider the function £ : Z..(7) — V. Suppose that

l. —L(w) = L(—w) forall w € §, then L(w) = by for all w € Q2 where the zero element of the vector space V'

is 9\/.

2. L(w) = Oy for all w € 2, and, suppose that £ is additive, then L(A S B) = L(A) — L(B) for all A,B €
Eee(T).

3. L is additive and that the Hukuhara difference A &y B exists for all A, B € Z..(T) then, L(A6y B) =
L(A) — L(B).

Definition 2.11 ([12, 13]). Let C be a subset of Z..(7") with
C= {C’ € Ece(T) : sup ©(a) + inf O(a) > 0} . (2.2)
aeC acC

1. Cisissaid to be convex ifandonly if v © A @ (1 —v) ©B e Cforall A, B € =Z..(T),and v € [0,1].
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4 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

2. Cis said to be cone if and only if v ® A € C for A € C and v > 0.
3. A cone C is said to be cone convex if and only if it is also convex .

Proposition 2.12 ([12, 13])

Let V be an R-vector space. Consider the function £ : Z..(T) — V.

Let C be a convex cone in Z..(7 ). If £ is additive and positively homogeneous, then the set L(C) = {L(A)|A € C}
is a convex cone in a vector space V.

Proof

Assume that C is a convex cone, i.e., if A BeC,vO AP ue B e for v > 0, > 0. Consider the function £
which is additive and positively homogeneous of degree k. We have L(v © A® u ® B) € L(C), then vL(A) +
wL(B) € L(C).

Therefore, £(C) is a convex cone in the vector space V. O

Proposition 2.13 ([12])
Let C be a convex cone in Z..(7), then A® B € C forall A4, B € C.

Proof
Let A, B €C.
According to the Definition 2.11, we have:

A € C = sup O(a) + inf O(a), (%)
acA acA

BeC=supO(a)+ inf O(x).  (xx)
aEB aEB

The relations (%) and (*x) give us:

< . .
0 < sup O(a) + ;g&@(a) + sup O(a) + olérelfz;@(a)’

acA acB
= 222@(@) + Zlelg@(a) + aigi@(a) + ilelfBG(a),
= aeszpég@(a) + aeiiln;B@(a).
SoA®BeC. O

2.2. Preference order

This section presents partial orders and their properties.

Definition 2.14. Let C be a convex cone in Z..(7T), for A, B € Z..(T), we define two binary relations on Z..(7)
as follows:

1. A< Bifandonlyif Bo A€ C.
2. A=<y Bifandonly if B&y Aexists,and (Boy A) @w € C forall w € Q.

Proposition 2.15 ([12, 13, 21])
Let C be a convex cone in Z..(7T).

1. Assume that ) C C then, the binary relation = is reflexive.

2. The relation =< is transitive.

3. Let A,B€=..(7T)and v > 0, if A < B then, v ©® A < v ® B i.e. the binary relation < is compatible with
multiplication by a scalar.

4. Let A,B,D,E € Z.o(T), if AXBand D < £ then, A® D < B® £. In other words, the binary relation is
compatible with set addition.
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P. LOMPO AND A. COMPAORE 5

Proposition 2.16 ([12, 13])
Let C be a convex cone in Z..(T).

1. Suppose that Q2 C C, then the binary relation <y is reflexive.

2. The relation < is transitive.

3. Let A,B€ E..(T) and v > 0, if A <y B then v A <y vB i.e. the binary relation <y is compatible with
scalar multiplication.

4. Let A,B,D,E€=Z.(T), if A=y B and D <y & then A®D <y BadE ie. the binary relation is
compatible with set addition.

Definition 2.17 ([12, 13]). Let V be an R— vector space and L : Z..(7) — V. The kernel of L is defined by:
ker L ={A: L(A) =0y},
where 6y is the zero element of the vector space. It is obvious that
L(w) = Oy for all w € Qif and only if Q C ker L.

Let C be a convex cone in Z..(7) and £ be an additive and positively homogeneous function, then £(C) is a
convex cone in an R—vector space V.
So, we can define two binary relations < and <y on L(Z..(7)) C V as follows:

(
* L(A) = L(B) if and only if L(B) — L(A) € L(C).
* L(A) <y L(B)ifand only if £L(B) — L(A) € L(C) and B oy A exists.

Also L(A) =g L(B) implies that L(.A) < L(B).

Proposition 2.18 ([12, 13])
Let V' be an R-vector space and C a convex cone in Z..(7) and let £ : Z..(7) — V be an additive and positively
homogeneous function; then we have the following propositions:

1. Assume that {#x} € C, then the binary relation <y is reflexive in £(Z..(T)).

2. The binary relation < is transitive.

3. The binary relation < is compatible with multiplication by a scalar in £(Z..(T)).
4. The binary relation <y is compatible with set addition in £(Z..(7)).

Proposition 2.19 ([12, 13, 22])

Let V be an R-vector space and C a convex cone in Z..(7) and let £ : Z..(7) — V be an additive and positively
homogeneous function.

Suppose that 2 C ker £. Then we have the following hold:

1. A < Bimplies that £L(A) < £(B) and, A <y Bimplies L(A) <y L(B).
2. Assume ker £ C C. Then, £(A) < L(B) implies A < B, and L(A) =y L£(B) implies that A <y 5.

3. Main results

This section contains two subsections. The first subsection will propose an extension of the Charnes—Cooper
transformation to convert a fractional set-valued optimization problem into a linear set-valued optimization
problem. The second subsection will propose a solution algorithm.

3.1. An extension of the Charnes and Cooper transformation for a set-valued fractional linear optimisation
problem

Given P, Q and g; where j = 1, m, set-valued linear functions defined from U to Z..(7), with @) non-zero for a

subset of U.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

From a formal point of view, a set-valued linear fractional optimization problem with m constraints can be
reformulated as follows:

P(z)
O =
pt f(x) o)
St (3.1)
g](x)jO, ]:Lm
xr € R7.

For some value of z, Q(z) can be equal to zero. To avoid such cases, it is necessary that
{x>20,9(x) 20=Q(z) = 0}or{z > 0,9(z) 0= Q(z) < 0}.
For convenience, suppose that (3.1) satisfies the following condition:

{z>0,9(z) 0= Q(x) = 0}.

Let G C U denote the decision set and let F = f(G) = {f(z)| z € G} C E..(T). We will adapt the Charnes
and Cooper method [1] to transform the set-valued fractional linear optimization problem (3.1) into a set-valued
linear optimization problem.

1 1
3.1.1. Relationship between L (A) and m
1 1
The proposition below establishes an ordering relation between £ (A) and m It will make it possible to

transform the fractional set optimization problem into a linear set optimization problem by adding an inequality
constraint.

Proposition 3.1

Let V be an R—vector space and let £ : Z..(7) — R be an additive and positively homogeneous function. Let O
be a linear application with coefficients greater than or equal to 1 on a set 7.

Let A be a nonempty subset of =..(7") with A > 0. Then:

e(%) = oo
Proof

A being a non-empty set of Z..(7 ), then we denote a the largest value of A and a’ the smallest value of A.
Let ©(a) = va withv > 1.

L (;) = Suli O(a) + infl O(a)
QEZ (xEA
1 1
@(5)‘#9(&)

(#+3)
v|—+-—
a a

via+a')

!/

aa

and
L(A) = sup ©(«) + sup O(«)
acA acA
=v(a+ad).

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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So

1 1
Let’s study the sign of: £ (A) — m We have:

Since a and a’ are positive, then we have: vaa’(a + a’) > 0 so the sign is that of (v(a + a’))?

—ad'.
Now we know that (v(a + ') — ad’ = [v(a + ') — Vad'] [v(a + a’) + Vaa']. Since a and @’ are positive we
have [v(a + a') + Vaa'] > 0, so the sign is that of [v(a + a’) — Vad’

1 1 /

For £ <A> > w [u(a +a)— \/aa'] > 0, it is necessary that [u(a +a) — \/aa'] >0=v> vaa
/

AsVa,d' € RY justifies that -

a+a’
< 1.
a+a —
/ !
We have ja/ <l=+Vvad <a+d.So
a+a

aa’

¥ /§1:>\/aa’§a+a’
a+a

= ad’ < a®+d? + 2ad

=0<a’+d?+ad.
li

Thusv > 1>

n /,henceu > 1.
a a

1 1
So for all v > 1 we have: £ (.A) > m Hence the proof.

O
3.1.2. Modified Charnes-Cooper method
Consider the following fractional function:

P(x) . 1
0= 0w ~ " qw
Let T(x) = Q(m).We have:
L(T(z))=L (Q(lx)> :
By posing
1 1
=) = (g57) = 200y

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

‘We obtain:

1
t> 5 = tL(Q(x)) = 1,

L(Q(z
. m(f?( ) (3.2)

y:xtéa;:%

Substituting in the expression f(z) gives us:
t (3.3)
The problem becomes:

(3.4)

We have a new form equality constraint: t£L(Q(=)) > 1.
So, we have the following problem:
min f(y,t) = P(L)1,

S.t:
g(%) <0,5=1,m, (3.5)
Q) = 1,
yeRY, t>0.

Problem (3.5) is a set-valued linear optimization problem. Thus, we have the theorem that guarantees the
existence of the solution.

Theorem 3.2
If (y*,t*) is a feasible solution to problem (3.5), then z* is a feasible solution to problem (3.1).

Proof
Assume that (y*, t*) is an optimal solution to problem (3.5). We want to prove that «* is a solution to the problem

(3.1).
Forallz > 0, Q(x) > 0, as (y*, t*) is an optimal solution to problem (3.5), then:

P #) > flt) = (L) > ep(Y), 3.6

Replacing y* with t*z* and y with tz in equation (3.6) we obtain:

t*P(z*) > tP(z),

. 1 oo L _ro( _
Ast* =L (Q(x*)>,wehaveT(m’ )= Q(x*),andt— L <Q(x)) =T(z) = @)
We obtain a new inequality:
P(zr) _ P(x) .
2@ 0w f&) > f(z).
So, x* is an optimal solution to the problem (3.1). O

Stat., Optim. Inf. Comput. Vol. x, Month 202x



P. LOMPO AND A. COMPAORE 9

3.2. Proposed resolution technique

Let A; and B; be nonempty sets of a normed vector space (7,]|| e ||) fori =1,--- ,n.
Let:

Pz)=210A4 @220 A8 ®x, © Ay,
and
Qz)=210B1 @208, @ --- Dy © By

The functions P(x) and Q(x) are set-valued linear functions. In the following, we will only assume Q(x) > 0.
Therefore, we have the following set-valued fractional linear function:

T1OAI DO A D Dx, O A,
21O0BL BT OB BB, OB,

flz) =

3.7)

The rest of our work focuses on a minimization problem. A set-valued fractional linear optimization problem
can be reformulated as follows:

_331@./41@%2@./42@"'@%;@«4”

min f () 21 OB D2 OB @ Day By

St (3.8)
gj(x)jov j:]-am»

xERi.

To solve problem (3.8), follow these steps:

3.2.1. Resolution Steps
Problem (3.8) resolution is solved by following these steps:

Step 1: Using the modified Charnes and Cooper method
The modified Charnes and Cooper method is used to transform the set-valued fractional optimization
problem into a set-valued linear optimization problem.

Step 2: Vectorization
It allows the overall optimization problem obtained in Step 1 to be transformed into a deterministic bi-
objective optimization problem.

Step 3: Scalarization
This step enables us to transform the deterministic, bi-objective problem obtained in Step 2 into a
deterministic linear, mono-objective problem.

Step 4: Resolution
In this step, the deterministic, single-objective, linear problem obtained in Step 3 is solved using any linear
programming method. The optimum is found by substituting the minimisers into the initial objective function.

Clearly, the following paragraphs detail the steps described previously.

3.2.2. Stepl: Using the modified Charnes and Cooper method

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

110A P20 A D - D, O A,
210B1 @208 @D, ©B,

fz) =

<y1©A1€B OAy B yf@An)7

= 0AI DR A D - Dy, © Ay,

= f(y,t)-
Transformation of the new constraint:

tﬁ(Q(%))ﬂE(( oB o2 2B @—@B))

=t sup O(a) + inf O(a)
LA Yn 5 (JLE(&@lﬁ@%@Bz@“'@yl@Bn)
Oée(tQ 10 t OB2®---@ n © n> t t t

We obtain a new set-valued linear optimization problem:

min f(y,t) =y1 O AL DY O A @ - Dy, © Ap,

S.t:
Yy . __

gj(?> j Oa J - 1uma

t (SHP Y1 Y2 Yn O(a) +inf g Y2 Yn @(a)> > 1,
a€<7®l§1€5 ; OB2®-- @7@ ) [e1S (t 681@7682@ @7@8 )
yeRY, t>0.

Definition 3.3. [12]

1. (y*,t*) is an optimal solution to problem (3.9) if and only if f(y*,t*) € MIN¢(F).
2. (y*,t*) is an H—optimal solution to problem (3.9) if and only if f(y*,t*) € H — MIN¢(F).

Remark 3.4.
By Theoreme 3.2, if (y*,¢*) is a feasible solution to problem (3.9), then z* is a feasible solution to problem (3.8).

3.2.3. Step 2: Vectorization

In this step, we use the vectorization technique to transform the problem (3.9) into a bi-objective optimization
problem.

Let (7, || o ||) be a normed vector space, and let © be a continuous linear function on 7.

C is a convex cone satisfying 2 C C where

C={C e Z.(T)/sup O(a) + O%Iglfg@(a) > 0}.

acC

In the following, we will take V = R2.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Consider £ : Z..(T) — R? and A a non-empty set in a vector space (7, || o ||). We have:

L(A) = (— sup O(a) — inf O(a), sup O(a) + inf O(a ))

acA acA acA acA
Let:
Jt)=p0A @R Ao - By, ®A, = Aly).
Then,
(Lof)(y,t)=|— sup O(a)— inf O(«a), sup O(a)+ inf O(«a) |,
acA(y) acA(y) acA(y) a€A(y)
= (fl(y7 t)7 f?(y7 t)) .
Since y; > 0 fori =1,2,--- ,n, using the previous proposition, we obtain:
sup O(a) = {sup @(a)] i+ + { sup @(a)] Yn, and ,
acA(y) ac Ay acA,
inf O(a) = f O . f O
it 0(0) = | inf 6]+t | inf 0(a)]
So:
fily,t) = — sup O(a)— inf O(a),
acA(y) acA(y)
:—[sup O(a) + mf O(a )} —-~-—[sup O(a) + inf @(a)} Yns
acAy acA 1 OZEAn aEA"
and

fa(y,t) = sup O(a)+ inf O(a),
acA(y) acA(y)

sup O(a) + inf O(a )}y1+~--+[sup O(a) + inf O(a )}y

acAq ac Ay aEA, acAn,

Now, let us transform the set-valued constraints into deterministic constraints.
Let the following constraint be:

t sup O(a) + inf O(a) | > 1.
NopaPon Yn a€ (yl oBeZon0 0L o8, )
a<t®1@t®2@@t®n> t t t
We have:
_n Yn
sup O(a) = == sup O(a) +---+ == sup O(w),
2! Y2 Yn t aeB t acB,
a€ (7681697@52@ ®?®Bn>

11

(3.10)
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12 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

and
inf S = inf © +— f O(«).
(yl Y Yn (0) = t alélzsl (c) + 2 ©()
ac 7631697@5269“-@?@57)
By adding (3.10) and (3.11), we obtain:
" ysup " O(a) + " " inf " O(a) | =
1 Imn

aEBy t acB,, a€B,

<§£1@( )+ inf O(a )> L <sup O(a) + inf O(a )> yT”

Multiplying ¢ by each member of (3.12) gives us the following result:

t sup O(a) + inf O(a) | =

Y1 Y2 Y
ac (vytl @Bl@yt OB PH-- @%@B ) ae( ; @BI@T@BQ@ GBTHQB )

<sup 0(a) +aig£1@(a)> Y14+ <Sup O(a) + inf O(a )> Yn.

a€B; a€B, acBn

Thus, we obtain the following linear deterministic constraint:

(Sup o(a) +aiéll;f19(a)> vt <Sup O(a) + inf O(a )) yn > 1.

a€eB; a€B, acBn

We obtain the following by vectorizing the other constraints:

and

‘We know that;

9;(5) 2 0= L(g;(9) < £(0),
= (9,D.5,(9) < 0.0
égj(%) 0 and gj(i) <0
As gj(%) < gj(%) then, gj(%) < gj(%) < 0. So, let us consider the constraints yj(%) < O withj =1,m.

(3.11)

(3.12)
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Thus, we can reformulate the deterministic linear optimization problem as follows:

min(Lof)(y,t) = (f1(y,1), f2(y,1))

g;(5)<0,j=1,m
(Py) (3.13)

(supaEB1 O(a) + infhep, @(a)) Y1+ -+ (supaeBn O(a) + infuep, @(a)) yn > 1

o+ <

y € RY,t>0.
Definition 3.5. [12]

1. (y*,t*) is an optimal solution to problem (3.13) if and only if (Lof)(y*,t*) € MIN ) (L(F)).
2. (y*,t*) is an optimal solution to problem (3.13) if and only if (Lof)(y*,t*) € H — MINpcy(L(F)).

The following propositions guarantee the concepts of minimal elements and H —minimal elements of F and of
L(F).

Proposition 3.6

Let £ : Z..(T) — R? be an additive and positively homogeneous function from Z...(7) to a vector space R? and
let C be a convex cone in Z..(T).

Let F be a subset of Z..(7) and let (y*,t*) be an H— optimal solution to the problem (3.9). Assume that
Q Cker L CC.Then, f(y*,t*) € H — MINc(F)if and only if L(f(y*,t*)) € H — MINpcy(L(F)).

Proof

Suppose that (y*, t*) is an H-optimal solution to problem (3.9).

let f(y*,t*) € H — MINc(F). Let us assume that it exists B € £L(F) such that B <y L(f(y*,t*)), where B =
L(f(y,1)) for f(y,t) € Fie. L(f(y,8)) =i L(F(y",t)). We want to show that L(f(y*, ")) = L(f(y.1)) = B.
We see that f(y,t) =g f(y*,t*), that is to say also that f(y*,t*) <y f(y,t) by the definition of the minimal
element.

Using the Proposition 2.19, we have L£(f(y*,t*)) =u L(f(y,t)) = B. Which shows that L(f(y*,t*)) is an H-
minimal element of £(F) with respect to the convex cone of £(C).

Conversely, for L(f(y*,t*)) € H— MINg)(L(F)), we assume that there exists f(y,t) € F such that
fly,t) =g f(y*,t*). We want to assert that f(y*,t*) <y f(y,t). Using the Proposition 2.19, we have
L(f(y,8)) < L(f(y",")). Since L(f(y", ")) € H — MIN ) (£(F)), we have £(f(y*, ) <u L(f(y,1)). By
the Proposition 2.19, we have f(y*,t*) <g f(y,t). Which shows that f(y*,t*) is a minimal element of F. O

Proposition 3.7

Let £ : Z..(T) — R? be an additive and positively homogeneous function from Z..(7) to a vector space R? and
let C be a convex cone in Z..(T).

Let F be a subset of Z..(7) and (y*,¢*) an optimal solution to the problem (3.9). Assume that 2 C ker £ C C.
Then, f(y*,t*) € MINc(F) if and only if L(f(y*,t*)) € MINg ) (L(F)).

Proof

Assume that (y*, t*) is an optimal solution to problem (3.9).
Let f(y*,t*) € MIN¢(F). Assume that there exists B € L(F) such that B < L’(f(y*,t*)), where B = L(f(y,t))
for f(y,t) € F; thatis, we have L(f(y,t)) < L(f(y*,t*)).We want to affirm that L(f(y*,t*)) = L(f(y,t)) = B.
We see that f(y,t) = f(y*,t*), by the definition of the minimal element, is also to say that fly*t*) = f(y,1).
Using the Proposition 2.19, we have L£(f(y*,t*)) < L(f(y,t)) = B. Which shows that £(f(y*,t*)) is a minimal
element of £(F) with respect to the convex cone of £(C).

Conversely, for L(f(y*,t*)) € MIN.)(L(F)), we assume that there exists f(y,t) € F such that f(y,t) =<
f(y*,t*). We want to assert that f(y*,t*) = f(y,t). Using the Proposition 2.19, we have L(f(y,t)) <
L(f(y*,t*)). Since L(f(y*,t*)) € MINcy(L(F)), we have L(f(y*,t*)) = L(f(y,t)). By Proposition 2.19, we
have f(y*,t*) < f(y,t). Which shows that f(y*,¢*) is a minimal element of F.

O
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14 SET-VALUED FRACTIONAL LINEAR PROGRAMMING BASED ON THE NULL SET CONCEPT

The following result guarantees the equivalence of optimal and H—optimal solutions of problems (3.13) and
(3.9).

Proposition 3.8
Let £ : Z..(T) — R? be an additive and positively homogeneous function from =Z..(7) to a vector space R? and
let C be a convex cone in Z..(7 ). Assume that Q C kerL C C.

1. (y*,t*) is an optimal solution to problem (3.9) if and only if (y*, ¢*) is an optimal solution to problem (3.13).
2. (y*,t*) is an H-optimal solution to problem (3.9) if and only if (y*, ¢*) is an H-optimal solution to problem
(3.13).

Proof

1. Suppose that (y*,t*) is an H-optimal solution to problem (3.9). Let A* = f(y*,t*). Let F be a subset
of Ec(T) and A* € F. As Q C kerL CC, we have A* € MIN¢(F) which implies that £(A*) €
MINgey(L(F))ie. L(f(y*,t*)) € MINgc)(L(F)). Using Definition 3.5, (y*,¢*) is an optimal solution
to problem (3.13).

Conversely, (y*,t*) is an optimal solution to problem (3.13) by definition of the minimum elements,
L(f(y*,t*)) € MINg)(L(F)). Using Proposition 3.7 we have: f(y*,t*) € MINc(F) and by definition
(y*,t*) is a solution to problem (3.9).

2. Suppose that (y*,t*) is an H — optimal solution to problem (3.9). Let A* = f(y*,t*).

Let F be a subset of Z..(7) and A* € F, since Q C kerL C C we have A* € H — M IN¢(F) which implies
that L(A*) € H — MINgoy(L(F))ie. L(f(y*,t*)) € H— MINg)(L(F)). Using Definition 3.5, (y*, t*)
is an optimal solution to problem (3.13).

Conversely, (y*,t*) is an optimal solution to problem (3.13) by definition of the H- minima elements,
L(f(y*,t*)) € H—=MINg)(L(F)). Using Proposition 3.6 we have: f(y*,t*) € H — MIN¢(F) and by
definition (y*,t*) is a solution to problem (3.9).

3.2.4. Step 3: Scalarization

Let £ : Z..(T) — R? be an additive and positively homogeneous function from Z..(7) in a vector space R? and
let C be a convex cone in Z...(7). Then C = £(C) is a convex cone of R?. Let V’ denote the set of linear functions
from R? to R. The dual cone of C is defined by:

Cvi={peV'/p(©) >0 ceC}. (3.14)
Definition 3.9. Let ¢ : R> — R. The scalarization function is defined by:
d(z,y) = Mz + Aoy + F,
where & > 0, A1 > 0 and Ay > 0 are constants and \; < Ag.

A1 and Aq can be interpreted as preference weights provided by the decision maker, and k is a constant that can
be ignored.
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The following is obtained by applying this scalarizing function:

qS((Eof)(y,t)):qb(— sup O(a) — inf O(a), sup O(a)+ inf @(a)),

acA(y) acA(y) a€A(y) a€A(y)

=N\ — A1) [ sup O(a)+ inf O(a)| + k&,

acA(y) acA(y)

= (2 —\1) [( sup ©(a)+ inf @(a)> T (Sup O(a) + inf e(a)> xn} +k,

€A, acA; €A, acA,
> 0.

Since A1 < A and k > 0, and since ¢((Lof)(y,t)) > 0, then ¢ € C. We obtain the following problem:

min ¢((Lof)(y, 1)),
St:

_ Y .
9;(3)<0.5=1m, (3.15)

(sup O(a) + aigél @(a)) Y1+ + ( sup ©(a) + inf @(a)) Yn > 1,

aEB; a€B, a€B,
eR™ .t > 0.

Problem (3.21) is a deterministic linear optimization problem, and we have the following theorem.
The following result establishes the equivalence between the optimal and H-optimal solutions to problems (3.21)
and (3.9).

Theorem 3.10

Let the function £ : Z..(7) — R? be an additive and positively homogeneous function, and let C be a convex cone
satisfying {0x } € C.

If € Cy» and an element (y*,¢*) € G such that:

P((Lof)(y™, 1)) < ¢((Lof)(y,t)) for (y,t) € G, (3.16)

then, (y*,t*) is both an optimal solution and an H-optimal solution to the problem (3.9).

Proof
Assume that (y*, t*) is not an optimal or H- optimal solution to problem (3.21) then, there exists (y, t) € G such that

((Lof)(y,t)) 2u ((ﬁof)(y %)) and ((Lof)(y*,t*)) ZAm ((Lof)(y.t)). If ((Lof)(y*,t*)) = ((Lof)(y,t)) then
this contradicts ((Lof)(y*,t*)) Zu ((Lof)(y,t)).

For this purpose, we have 6y, ¢ ((Lof)(y*,t*)) — ((Lof)(y,t)) € L(C) = C . Since ¢ € Cy, we obtain:

((Lof)(y™ 7)) — ¢((Lof)(y, 1) = o(((Lof)(y", 1)) — (Lof)(y,1))) > 0, (3.17)

which is a contradiction. So (y*,t*) is an H-optimal solution to problem (3.13). Using the previous proposition, it
follows that (y*, ¢*) is an H-optimal solution to problem (3.9).

On the other hand, considering the binary relation < and using the previous proposition, one can similarly
demonstrate that (y*,¢*) is an optimal solution to the problem (3.9). O

3.2.5. Step 4: Resolution The resolution is done using any linear programming optimization method. Indeed, at
this stage, the problem concerned is linear mono-objective. Considering the previous steps, the obtained minimizers
will be the minimizers of the original problem.
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Algorithm 1 Solving a Linear Fractional Set Optimisation Problem

1.

Enter the starting problem and the scalars \; and )\, such that \; < \; and k£ > 0.

2. Using the modified Charnes and Cooper method:

Introduce the new variables y, and ¢ such that z = %, where ¢t > 0, and construct the following new problem:

min f(y, ) = P(§)t

9(3) 20,5 =T m;

Y (3.18)
(@) =1
yeRY, t>0.
. Vectorization of functions:
Let © be a linear application of the form O(a) = va withv > 1
miny(EOf )y, t) = (f1(y,1), fa(y, 1))
g(,) < 07.] = 17m;
Tty (3.19)
tﬁ(Q(;)) >1
y € R}, 2> 0.
Scalarization function: :
Construct a scalar function, ¢: R? — R from £(f(z)), depending on A; and \,:
d(z,y) = Mz + Aoy + k. (3.20)
Scalarization of objective functions: :
Use the equation (3.20) to convert the problem (3.19) as follows:
minyqﬁ((ﬁof)(yj)) =Mfi(y,t) + Xafa(y,t) + &
?](?) < 07] = 17m;
Y (3.21)
tﬁ(Q(;)) >1
y € RY,t>0.

Resolution
Use any linear programming method to determine the value of y* and ¢*.

. Iteration on the parameters: If (y*,¢*) does not belong to the admissible set G or the set of efficient

solutions GH, do:
(a) If (y*,t*) € G ou (y*,t*) € G, then:
(W, t%)
is an optimal solution.
(b) Else

Update parameters A, As.
(c) Return to step 4 to recalculate the scalarizing problem.

*

Exit : Display the optimal solution. z* = v

t*
End.
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3.3. Algorithm

All steps can be summarized in the Algorithm1:
The complexity of the method is exponential. Indeed,

e for the Charnes and Cooper method, we transform the original problem into an equivalent one. The
complexity of this transformation is constant. These are the elementary operations. It can be estimated as
O(n), where n denotes the degree or number of vertices necessary for the operation at the objective function
level.

» for vectorization, we apply functions sup and inf. These are simple comparisons in a set. The complexity of
sup O(«) is O(|A|) where |A| = card { A} = n with n the number of elements.

So sug O(a) + auelf;1 O(a) is of complexity 20(n) and this sum is repeated n times at the level of the objective
ae

function. Thus, min f(y,t) has a worst-case complexity of O(n?), where n denotes the degree or number of
summation at the numerator.

At the constraint level, we have O(mn) where m is the summation number of the denominator. Therefore,
the complexity of vectorization is max {O(n?), O(mn)} .

» for scalarization, considering a bi-objective problem where f € R?, then we will have two sums to perform
on the objective function, so the complexity is: max {20(n?), O(mn)}.

* for the simplex algorithm, it is an algorithm for exploring points, which are actually the decision variables.
This requires 2™ — 1 operations with n the number of variables. Therefore, the worst-case complexity is
exponential, i.e., O(2").

* Conclusion:

If the process is repeated k times until the optimal solution is obtained, the complexity is estimated to be:

max {2k0(n?), kO(mn), kO(2")} = kO(2").

4. Some didactic examples

This section provides examples of applications. These specific didactic cases will help us to understand the theory
presented in this work.

Example 4.1. A sustainable agriculture project involving technical and economic uncertainties.
An agricultural cooperative manages a 10-hectare farm and wishes to develop a sustainable farming system there.
The cooperative plans to divide the area between two crops.

 z: hectares devoted to the traditional crop of wheat.
* y: hectares devoted to the innovative crop of lentils.

The objective is not to maximize gross revenue, nor to minimize cost, but to maximize the economic efficiency of
the project:
Income income

efficiency = Total cost

(4.1)

This ratio indicates how much income is generated for every euro invested, which is a key indicator of financial
sustainability.

In addition to variable income and costs per hectare, there are also fixed income and costs, which depend on the
economic and institutional scenario and are therefore uncertain.

Rather than using fixed values or probability laws, the cooperative uses a discrete scenario approach based on
three realistic cases.

1. Pessimistic factors include unfavourable climatic conditions, low prices, high costs and low subsidies.
2. Average factors include normal conditions and the subsidy standar,
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3. Optimistic factors included good conditions, strong demand, high subsidies and controlled costs.

Each scenario assigns a specific value to each parameter, including fixed terms. Each set contains the following
elements: {Pessimistic, Average, Optimistic} .

This model enables us to prepare for the worst-case scenario, represent the most likely situation, and identify the
best potential outcome.
The parameters of the problem are as follows:

Wheat Lentils Constant terms
Income per ha Keuro | A; = {6,8,10} | A2 = {7,9,11} -
Cost per ha Keuro B, ={6,5,4} | By, ={5,4,3} -
Fixed income Keuro - - Ay ={4,5,6}
Fixed cost Keuro - - By ={2,3,4}
We aim to maximise the revenue/cost ratio, which is an affine fractional function:
Arz1 B Asza B Ap
B1£C1 @ BQZL’Q @ BO (42)

max f(x1,xe) =

1+ 22 <10
1 2 0,22 > 0.

1
We consider the linear application ©(«) = « and the constants A\; = 5 and \y = -, k=0.

» Step 1: modified Charnes and Cooper transformation

max f(y,t) = A1y1 D A2y2 D AO
y1+y2 < 10¢ ’
y1 = 0,92 > 0,2>0.

 Step 2: Vectorization
min £(f(y,t)) = L(A1y1 © Azy2 © Ap)
tL(B1(y1/t) ® Ba(y2/t) ® Bo) = 1 4.4)
Y1 +y2 < 10¢ ‘
y1 > 0,y2 = 0, > 0.

L(f(y,t)) = L(A1y1 © Asy2 @ Ao)

= Ksup O(a) + inf O(a )>y1+(sup O(a) + inf O(a ))y2+<8up O(a) + inf O(a )>

acA; acAy a€As a€Ay a€Ag a€Ap

- (sup O(a) + inf O(«a )> - <sup O(a) + inf O(« )) Yz — (sup O(a) + inf 9(&)) t]
acA; acA; a€As ac€Az a€Ao a€Ag
=[(10+8)y1 + (11 +9)yo + (6+5)t,— (10+8)y1 — (11 + 9) y2 — (6 + 5) ]
= (18y1 + 20ys + 11t, —18y; — 20y, — 11¢)

We do the same:

tL (B1(y1/t) @ Ba(y2/t) @ By) = <sup O(a) + inf O(«a )> Y1+ (Sup O(a) + inf O(a )) Yo+

a€B; aeB a€ Bs aeBs

(sup O(a) + inf O(a ))

a€ By a€Bo
= 11y; + 9y2 + 7t.
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So the problem becomes:

max L(f(y,t)) = (18y; + 20y2 + 11¢, —18y; — 20y, — 11¢)
My + Oy + 7t =1

Y1 +y2 < 10¢

y1 > 0,92 > 0,t > 0.

4.5)

» Step 3: Scalarization

max ¢(L(f(y,t))) = (A2 — A1) (18y1 + 20y2 + 11t)
1y +9ys + Tt =1

1 +y2 < 10¢

Y1 > O>y2 >0,t>0.

(4.6)

Which implies
max ¢(L(f(y,1))) = 18ys + 20y + 11¢
1y + 9y + 72 =1
Y1 +y2 < 10¢
y1 =2 0,y2 2 0,t > 0.

A7)

Thus, Problem (4.7) is a linear optimization problem.

 Step 4: Resolution

. o . . 10 1
With the Dantzig simplex algorithm, we have the solution: yi = 0, y5 = 97 and t* = 97"
By substitution, we have: z7 =0, x5 = 10. So the cooperative can cultivate 10 hectares of lentils and
¥ _ [74 95 116
fr= 347 43> 52 J°
Example 4.2.

Consider the following interval-valued fractional optimization problem[29]:

[37 5}‘%1 @ [134]552 @ [7v 11}
[1,2]21 @ [1,2]z2 & [4, 6]

max f(z) =

1 + 372 < 30 (4.8)

—$1+2$2 <5
x1 2 022 > 0,

, k = 0: We have:

N W

1
and the linear application ©(«) = « and the constants A; = 5 and Ay =

* modified Charnes and Cooper transformation

max f(xz,t) = [3,5]y1 @ [1,4]y2 @ [7, 11]t
Y1 + 3ya < 30t (4.9)
—y1 + 2y2 < 5¢

n 207y2 207t>0'

¢ Vectorization
max L(f(y,t)) = (8y1 + 5y2 + 18t, —8y1 — 5y — 181)

Sy 43y +10t=1

y1 + 3y2 < 30 (4.10)
—y1 + 2y2 < 5t

y1 2 0,y2 >0, > 0.
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¢ Scalization
max ¢(L(f(y,t))) = 8y1 + Sy + 18t
Sy1+3ys + 10t = 1
y1 + 3y2 < 30t 4.11)
—y1 +2y2 < 5t
y1 > 0,92 > 0,t > 0.

* Resolution Using the Dantzig simplex method: y; = %, Yo =0,1 = —.

97 161]'

By substitution we obtain: 1 = 30, o = 0 and f* = [@, 5

5. Conclusion

This paper proposed a formulation of a set-valued linear fractional optimization problem. This formulation is a
generalization of the interval-valued optimization theory. A resolution technique based on the modified Charnes
and Cooper linearization technique, vectorization, and scalarization was proposed using the concept of null sets.
To better describe the steps of the method, an algorithm and two didactic examples were presented. The results
of this work could be used to model and solve certain real-life problems of an imprecise nature, particularly in
economics, to measure the efficiency of systems expressed in the form of relationships between technical and/or
economic criteria. However, this work has certain limitations, namely a lack of comparative studies, an absence of
test problems in the literature, and a lack of case studies. These elements could be new avenues of research and
will make good contributions to the existing literature. Also, the study of sensitivity and phi, and the study of the
problem in infinite dimensions can be studied in the following.
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