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Images Restoration Based on a New Optimal Parameter to Conjugate
Gradient Method
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Abstract Image denoising plays a vital role in numerous image processing applications. This research presents a novel two-
phase conjugate gradient method tailored for mitigating impulse noise. The approach leverages a center-weighted median
filter, which adaptively identifies noise-affected pixels and applies the conjugate gradient technique to restore them. The
method focuses on minimizing a specific functional that maintains edge integrity while reducing noise candidates. One
of the key advantages of this technique is its descent-based search mechanism, with the possibility of achieving global
convergence through the Wolfe line search conditions. Experimental evaluations demonstrate the method’s effectiveness in
removing impulse noise using a spectral conjugate gradient approach.
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1. Introduction

The objective of this study is to provide a collection of iterative methods for solving optimization problems, using
an edge-preserving regularization (EPR) functional as the objective function. To detect and suppress impulsive
noise, an Adaptive Median Filter (AMF) [1] is employed. This filter operates based on two key equations that
identify potentially corrupted pixels. Let ȳ denote the observed noisy image of the original image x, where
{xij}M,N

i,j=1 represents the grayscale intensity values of x. The intermediate image y is obtained in the first phase
by applying the adaptive median filter to the noisy image y. The restoration of noisy pixels is then achieved by
minimizing the following function:

fα(u) =
∑

(i,j)∈N

[
|ui,j − yi,j |+

β

2

(
S1
i,j + S2

i,j

)]
(1)

where |N | is the length of the column vector ui,j = [ui,j ](i,j)∈N , β is the regularization parameter and S1
i,j =

2
∑

(m,n)∈Pi,j∩Nc

ϕα(ui,j − ym,n), S
2
i,j =

∑
(m,n)∈Pi,j∩N

ϕα(ui,j − ym,n) the noise candidate indices set N c is used

to measure the maximum smax and minimum smin of a noisy pixel. The neighborhood of (i, j) is represented
by A = {1, 2, 3, ......M} × {1, 2, 3, ......N} and V(i,j) =

(
V(i,j) ∩N c

)
∪
(
V(i,j) ∩N

)
, and an example of such a

function is ϕα =
√
α+ u2, α > 0 , an edge-preserving potential function with parameter α. Similar optimization

challenges arise when Fα(u) is of the form 1 , with S1
i,j + S2

i,j smooth and |ui,j − yi,j | non-smooth at zero. The
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function is reduced in [2] to a half-quadratic smooth approximation of Fα(u):

fα(u) =
∑

(i,j)∈N

[2× (S1
(i,j) + S2

(i,j) )] (2)

By employing the conjugate gradient method, it becomes possible to minimize the function fα(u) where:
Minfα(u) , u ∈ Rn and fα(u) : R

n → R is a smooth function. The conjugate gradient method, which operates
as an iterative optimization algorithm, generates a sequence of solutions according to the following update rule:

uk+1 = uk + αkdk (3)

where dk represents the search direction and αk is the step size determined through a reliable and accurate line
search. The step size αk can be computed using the formula:

αk = − gTk dk
dTkQdk

(4)

as referenced in [3]. To satisfy the Wolfe conditions, the step size αk must fulfill the following inequalities:

f(uk + αkdk) ≤ f(uk) + δαkg
T
k dk (5)

dTk g(uk + αkdk) ≥ σ dTk gk (6)

where 0 < δ < σ < 1. For additional details, see references [4, 5]. The selection of the search direction in the
conjugate gradient method is governed by the following formula:

dk+1 = −gk+1 + βkdk (7)

where βk is a scalar. The Fletcher-Reeves approach [6] and the Dai-Yuan (DY) methodology [7] are two examples
of distinct formula types. Specifically, [8, 9]. These are some of the numerous guises they might assume:

βFR
k =

∥gk+1∥2

∥gk∥2
, βDY

k+1 =
∥gk+1∥2

dTk yk
(8)

The convergence properties of conjugate gradient algorithms have been extensively investigated in the literature.
Zoutendijk [10] is recognized as a pioneer in this area, having established the global convergence of the
Fletcher–Reeves (FR) method under accurate line search conditions. Since then, numerous formulations for
computing the conjugate gradient coefficient have been developed. These formulations are noted for their strong
numerical performance and their ability to guide the algorithm toward a global solution. Recent contributions by
Hideaki and Yasushi [11], as well as Basim [12], have further advanced the nonlinear conjugate gradient method.
Their research demonstrates significant improvements in numerical efficiency and enhances the potential for global
convergence. Based on their studies, the following parameters and formulas have been proposed:

βHY
k =

∥gk+1∥2

2/αk(fk − fk+1)
, βB

k+1 =
∥gk+1∥2

(fk − fk+1)/αk − gTk dk/2
(9)

The application of these methods enables the full exploitation of the advantages and key characteristics inherent
in conjugate gradient algorithms. In addition to their robustness, these approaches offer a high degree of
computational efficiency. To further improve performance in unconstrained optimization problems, a quadratic
model has been proposed, enhancing the original conjugate gradient framework. This modification is designed to
optimize the algorithm’s efficiency and convergence behavior. Moreover, the development of three-term conjugate
gradient (CG) methods has attracted considerable attention in recent research. Significant contributions in this area
can be found in [8, 9, 13, 14, 15].

This study begins with a new coefficient conjugate derivation, then presents a fresh perspective on the
denominator dTkGvk using the quadratic model. Finally, it concludes with a study of the conjugate gradient method
and a convergence analysis. The numerical results of the proposed approach are then shown and compared with the
findings of many alternative conjugate gradient methods.
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2. A new parameter

This study seeks to formulate novel mathematical expressions. The function f can be assessed through the
application of the second-order Taylor series in the following manner:

f(x) = f(xk+1)− gTk+1sk +
1

2
sTkQ(uk+1)sk (10)

The gradient is the outcome of this:
gk+1 = gk +Q(uk+1)sk (11)

The second order curvature may be obtained from (11) in (10), we get:

sTkQ(uk)sk = 2(fk − fk+1) + 2yTk sk + 2gTk sk (12a)

By utilizing some algebra, we can determine:

sTkQ(uk)sk = 1/2yTk sk + (fk+1 − fk)− gTk sk (12b)

The conjugate condition is employed to ascertain the novel parameter. It is imperative to acknowledge that the
subsequent information delineates the conjugate condition:

dTk+1Q(uk)sk = 0 (13)

By using (7), (12b) with (13), we obtain:

βk =

[
1
2 +

(fk+1−fk)−gT
k sk

sTk yk

]
gTk+1yk

dTk yk
(14)

Using exact line search in above equation, we get:

βk =

[
1
2 +

(fk+1−fk)−gT
k sk

sTk yk

]
∥gk+1∥2

dTk yk
(15)

The BBE is the name given to this formula. Below is the BBE conjugate gradient algorithm.

3. Global convergence

This section aims to analyze the algorithm’s global convergence properties. Initially, we establish the following:

1. On the given set Ω = {u : u ∈ Rn, f(u) ≤ f(u1)}, f(u) is bounded from below.
2. The following inequality is met by L > 0, τ, υ ∈ Rn since the derivative ∇f(u) is Lipschitz continuous:

∥g(τ)− g(υ)∥ ≤ ∥τ − υ)∥ ,∀τ, υ ∈ Rn (16)

See [16, 17].

Theorem 1
If we apply a novel method to generate {xk} and {dk}, we obtain:

dTk+1gk+1 < 0 and dTk+1gk+1 = βkd
T
k gk. (17)
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Proof
Obviously, dk = −gk is required for dT1 g1 < 0. For any k, the dTk gk < 0 should be considered. One can easily
acquire it from (7) and (15):

dTk+1gk+1 = −gTk+1gk+1 + βkd
T
k gk+1 = −βk

(sTk yk)
2

(1/2sTk yk + (fk+1 − fk)− sTk gk)
+ βkd

T
k gk+1 (18)

that ensures:

dTk+1gk+1 = βk[d
T
k gk+1 −

(sTk yk)
2

(1/2sTk yk + (fk+1 − fk)− sTk gk)
] (19)

The result is acquired by utilizing (11) and (19)

dTk+1gk+1 = βkd
T
k gk (20)

Definitely dTk gk < 0, this results in:
dTk+1gk+1 < 0 (21)

The proof is completed.

In order to analyze the overall convergence properties of the conjugate gradient method, a comprehension of the
Zoutendijk condition [10] is necessary.

Lemma 1
If we assume that both (1) and (2) are true, that αk fulfill the Wolfe conditions, as well as dk being descent direction,
then:

∞∑
k=1

(gTk dk)
2

∥dk∥2
< ∞ (22)

Theorem 2
Assuming the premises and lemma 1 are true and {uk} is a new sequence, then:

lim
k→∞

inf∥gk∥ = 0 (23)

Proof
Equation (23) is untrue by contradiction. We can identify a r > 0 such that, for each k:

∥gk+1∥ > r (24)

One can get the following outcome by squaring the search duration as dk+1 + gk+1 = βk dk on both sides:

∥dk+1∥2 + ∥gk+1∥2 + 2dTk+1gk+1 = (βk)
2∥dk∥2 (25)

When (20) is applied to (25), the results are obtained:

∥dk+1∥2 =
(dTk+1gk+1)

2

(dTk gk)
2

∥dk∥2 − 2dTk+1gk+1 − ∥gk+1∥2 (26)

Divided (26) by (dTk+1gk+1)
2, then result is:

∥dk+1∥2

(dTk+1gk+1)2
=

∥dk∥2

(dTk gk)
2
− ∥gk+1∥2

(dTk+1gk+1)2
− 2

dTk+1gk+1

≤ ∥dk∥2

(dTk gk)
2
−
(

∥gk+1∥
dTk+1gk+1

+
1

∥gk+1∥2

)
+

1

∥gk+1∥2

≤ ∥dk∥2

(dTk gk)
2
+

1

∥gk+1∥2

(27)
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As a result, we found:

∥dk+1∥2

(dTk+1gk+1)2
≤

k+1∑
i=1

1

∥gi∥2
(28)

Suppose c1 > 0 has ∥gk∥ ≥ c1 for every k ∈ n. Then:

∥dk+1∥2

(dTk+1gk+1)2
<

k + 1

c21
(29)

Ultimately, we have:

∞∑
k=1

(gTk dk)
2

∥dk∥2
= ∞ (30)

Similarly,limk→∞ inf∥gk∥ = 0 holds according to Lemma1. This is not the only outcome that may be obtained
using other formulas. See [8].

4. Numerical Results

In this investigation, we provide substantiation regarding the efficacy of the BBE algorithm in the attenuation of
salt-and-pepper impulse noise (2). The BBE methodology utilizes the following parameters: and Table 1 delineates
the research flow diagram, whereas Table 1 grants access to the original test imagery. The simulations are conducted
on a personal computing device employing MATLAB 2015a. The performance of the BBE technique is assessed in
juxtaposition with the FR method. It is imperative to underscore that the principal aim of this study is to ascertain
the rate at which carbon emissions can be mitigated. The evaluation of image quality is conducted through the
Signal-to-Noise Ratio (SNR):

PSNR = 10 · log10

(
2552

1
MN

∑
i,j

(
ur
i,j − u∗

i,j

)2
)

(31)

The u∗
i,j represents the pixel values in the original image, while the ur

i,j represents the pixel values in the restored
image. Both methods employ the same criteria to determine the stopping point.

|f(uk)− f(u(k − 1))|
|f(uk)|

≤ 10−4 and ∥f(uk)∥ ≤ 10−4 (1 + |f(uk)|) (32)

The findings of the examinations are presented in Table 1, below. Table 1 includes the peak signal-to-noise ratio,
abbreviated as PSNR, as well as the number of iterations, abbreviated as NI, and the number of function evaluations,
abbreviated as NF. Many references have addressed the subject of improvement from different points of view, as is
clear in fact [18, 19, 20, 21, 22], in order to strengthen the direct background of the test.
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Table 1. Numerical results of FR and BBE algorithms.

Image Noise level r(%) FR-Method BBE-Method

NI NF PSNR NI NF PSNR

Le
50 82 153 30.5529 62 65 30.4901
70 81 155 27.4824 64 67 27.0102
90 108 211 22.8583 69 73 22.9429

Ho
50 52 53 30.6845 42 43 35.0424
70 63 116 31.2564 52 53 30.9988
90 111 214 25.2870 65 67 24.7525

El
50 35 36 33.9129 32 33 33.8427
70 38 39 31.8640 38 39 31.8269
90 65 114 28.2019 52 53 28.2381

c512
50 59 87 35.5359 36 51 35.4844
70 78 142 30.6259 46 55 30.7098
90 121 236 24.3962 65 71 24.9006

The table shows that the performance of the suggested algorithms is better than the FR approach in terms of the
number of function evaluations, the peak signal-to-noise ratio, and the number of iterations.

Figure 1. The results of the FR and ew algorithms for the 256×256 Lena picture are shown

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Figure 2. The results of the FR and New algorithms for the 256×256 House picture are shown

Figure 3. The results of the FR and New algorithms for the 256×256 Elaine picture are shown
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Figure 4. The results of the FR and New algorithms for the 256×256 Cameraman picture are shown

5. Conclusions

We introduced a revised conjugate gradient formula incorporating a new optimal parameter, which is called BBE
conjugate gradient method. Our objective was to enhance the precision of our findings. By utilizing the search
criteria, we discovered the global convergence of the Wolfe line. Simulations suggest that BBE have the potential
to significantly decrease the number of function evaluations and iterations without compromising the image quality.

REFERENCES

1. J.-F. Cai, R. Chan, and B. Morini, Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type
Methods, in Proceedings of Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, vol. 4485,
pp. 1–7, Springer, 2007. https://doi.org/10.1007/978-3-540-33267-1 7

2. G. Yu, J. Huang, and Y. Zhou, A descent spectral conjugate gradient method for impulse noise removal, Applied Mathematics Letters,
vol. 23, no. 5, pp. 555–560, May 2010. https://doi.org/10.1016/j.aml.2010.01.010

3. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer,
2006.

4. Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y.–X. Yuan, Convergence Properties of Nonlinear Conjugate Gradient Methods, SIAM
Journal on Optimization, vol. 10, no. 2, pp. 345–358, Jan. 2000. https://doi.org/10.1137/S1052623494268443

5. X. Jiang and J. Jian, A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems,
Nonlinear Dynamics, vol. 72, nos. 1–2, pp. 101–112, Apr. 2013. https://doi.org/10.1007/s11071-012-0694-6

6. R. Fletcher, Function minimization by conjugate gradients, The Computer Journal, vol. 7, no. 2, pp. 149–154, Feb. 1964.
https://doi.org/10.1093/comjnl/7.2.149

7. Y. H. Dai and Y. Yuan, A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property, SIAM Journal on
Optimization, vol. 10, no. 1, pp. 177–182, Jan. 1999. https://doi.org/10.1137/S1052623497318992

8. B. Hassan and H. A. Alashoor, Pediment New Parameters for a Conjugate Gradient Method And Using it in
Restoring Distorted Images, in 2022 8th International Conference on Contemporary Information, IEEE, 2022.
https://ieeexplore.ieee.org/document/10031853

9. B. Hassan and H. A. Alashoor, Involving New Coefficients Conjugate Gradient Method for Restoring Distorted Images, in 2022 8th
International Conference on Contemporary Information, IEEE, 2022. https://ieeexplore.ieee.org/document/10031653

Stat., Optim. Inf. Comput. Vol. x, Month 202x

https://doi.org/10.1007/978-3-540-33267-1_7
https://doi.org/10.1016/j.aml.2010.01.010
https://doi.org/10.1137/S1052623494268443
https://doi.org/10.1007/s11071-012-0694-6
https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1137/S1052623497318992
https://ieeexplore.ieee.org/document/10031853
https://ieeexplore.ieee.org/document/10031653


8 IMAGES RESTORATION BASED ON A NEW OPTIMAL PARAMETER TO CONJUGATE GRADIENT METHOD

10. G. Z.-I., Nonlinear programming, computational methods, 1970. https://cir.nii.ac.jp/crid/1571980075701600256
11. H. Iiduka and Y. Narushima, Conjugate gradient methods using value of objective function for unconstrained optimization,

Optimization Letters, vol. 6, no. 5, pp. 941–955, Jun. 2012. https://doi.org/10.1007/s11590-011-0324-0
12. B. Abbas Hassan, A new formula for conjugate parameter computation based on the quadratic model, Indonesian Journal of Electrical

Engineering and Computer Science, vol. 13, no. 3, pp. 954–961, Mar. 2019. https://doi.org/10.11591/ijeecs.v13.i3.pp954-961
13. B. A. Hassan and H. Sadiq, Efficient New Conjugate Gradient Methods for Removing Impulse Noise Images, European Journal of

Pure and Applied Mathematics, vol. 15, no. 4, pp. 2011–2021, Oct. 2022. https://doi.org/10.29020/nybg.ejpam.v15i4.4568
14. B. A. Hassan and A. A. A. Abdullah, Improvement of conjugate gradient methods for removing impulse noise

images, Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1, pp. 245–251, Jan. 2022.
https://doi.org/10.11591/ijeecs.v29.i1.pp245-251

15. B. A. Hassan, I. A. R. Moghrabi, and I. M. Sulaiman, New conjugate gradient image processing methods, Asian–European Journal
of Mathematics, vol. 16, no. 06, Jun. 2023. https://doi.org/10.1142/S1793557123500997

16. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on
Optimization, vol. 16, no. 1, pp. 170–192, 2005. https://doi.org/10.1137/030601880
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