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Abstract This paper introduces a novel class of continuous probability distributions called the Log-Adjusted Polynomial
(LAP) G family, with a focus on the LAP Weibull distribution as a key special case. The proposed family is designed to
enhance the flexibility of classical distributions by incorporating additional parameters that control shape, skewness, and tail
behavior. The LAP Weibull model is particularly useful for modeling lifetime data, extreme events, and insurance claims
characterized by heavy tails and asymmetry. The paper presents the mathematical formulation of the new family, including its
cumulative distribution function, probability density function, and hazard rate function. It also explores structural properties
such as series expansions and tail behavior. Risk analysis is conducted using advanced risk measures, including Value-at-
Risk (VaR), Tail VaR (TVaR), and tail mean-variance (TMV(q), under various estimation techniques. Estimation methods
considered include maximum likelihood (MLE), Cramér—von Mises (CVM), Anderson—Darling (ADE), and their right-tail
and left-tail variants. These methods are compared using both simulated and real insurance data to assess their sensitivity to
tail events. The performance of each estimator is evaluated in terms of bias, accuracy, and robustness in capturing extreme
risks. The LAP Weibull model demonstrates superior performance in fitting heavy-tailed data compared to traditional models.
The ADE also performs well, offering a balance between sensitivity and stability. MLE and CVM tend to underestimate tail
risks, which could lead to insufficient capital reserves in insurance applications. The study highlights the importance of
selecting appropriate estimation techniques based on the specific goals of the risk analysis. With its enhanced flexibility
and performance in modeling extreme risks, the LAP Weibull model offers a robust framework for modern risk assessment.
The findings support the use of ADE in high-stakes risk management scenarios, especially when dealing with heavy-tailed
insurance data. This work contributes to the growing literature on advanced statistical models for actuarial and financial risk
analysis. The LAP Weibull model proves particularly useful in capturing the tail behavior of claim distributions, improving
the accuracy of risk predictions. The paper provides a solid foundation for future applications of the LAP family in modeling
complex real-world phenomena under uncertainty.
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1. Introduction

In recent years, significant advancements have been made in the development of generalized statistical distributions
to better capture the complexities of real-world data across various domains such as finance, insurance, medicine,
and engineering (Abiad et al., 2025; Afify et al., 2018). These efforts have focused on enhancing classical models by
introducing additional shape parameters or combining existing distribution families to improve flexibility, accuracy,
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and applicability (Alizadeh et al., 2018; Abouelmagd et al., 2019). Notable among these developments are the
Odd Log-Logistic Topp—Leone G family, which provides greater modeling capabilities for skewed and bimodal
datasets, and the Zero Truncated Poisson Burr X family, designed to simultaneously model count and continuous
data (Alizadeh et al., 2018; Abouelmagd et al., 2019). Other notable contributions include the Transmuted Weibull-
G family, Exponential Lindley Odd Log-Logistic-G family, and the Odd Log-Logistic Weibull-G family, which
extend the utility of classical distributions in survival and reliability analysis (Korkmaz et al., 2018; Rasekhi et al.,
2022). Additionally, Alizadeh et al. (2023) explored copula-based extensions of the XGamma distribution, while
Mansour et al. (2020f) introduced copulas into the modeling of acute bone cancer data. Ibrahim et al. (2025a,
2025b) further expanded this field by applying Clayton copulas to validate flexible Weibull models. The current
paper builds upon these developments by proposing a novel G-family that incorporates closed-form expressions
for moments, quantile functions, and entropy measures, allowing for a broader range of shapes and tail behaviors.
This new framework enables more accurate modeling of complex data structures and improves interpretability and
predictive performance.

In recent years, the development of flexible and general families of probability distributions has gained significant
attention in statistical research. These models aim to enhance the modeling capabilities of classical distributions
by introducing additional parameters that control shape, skewness, tail behavior, and other distributional
characteristics. One effective approach involves transforming a baseline cumulative distribution function (CDF),
G (x; @), using carefully designed generator functions. In this context, we introduce a novel class of continuous
distributions called the LAP family and characterized by a unique combination of logarithmic and exponential
transformations. The proposed model is defined by both a CDF

F(2;8,®) = Clog [l + G (z;®)] #¢=2) 2 e R, (D)

and a corresponding probability density function (PDF):

f(;8,8) = Cg (2;8) "=V P (x), z €R, )
where 5 > 0 are parameters,
1
~ ePlog(2)’
18 a normalization constant,
1
P = log[1 0}
@)= Trgme TP lel + O e,

which plays a central role in shaping the behavior of the model, and G (x;®) is a baseline cdf with the
corresponding PDF ¢ (x; @) which depends on the parameter ®. A key feature of this family lies in the structure of
the PDF, where the exponential term ¢”¢(#:2) introduces a form of exponential weighting dependent on the baseline
CDF. Crucially, this exponential component is further modulated by the function P (z) , which incorporates a
logarithmic adjustment of G (x; ®). This LAP acts as a flexible weight function that influences the tail behavior,
skewness, and kurtosis of the resulting distribution. By emphasizing the interaction between the exponential
generator and the logarithmic polynomial weight P (z), this family offers enhanced flexibility over traditional
models. It allows for a wide range of hazard rate shapes, including increasing, decreasing, bathtub, and upside-
down bathtub forms, making it suitable for applications in reliability analysis, survival modeling, actuarial science,
and other fields requiring nuanced data fitting. As x — —o0, G (z; ®) — 0,

log[14 G (2;2)] = G (1; D),

FOED) 1 146 (a3 )
Then,

F (23 8,8) ~ CG (a3 9) [1 + BG (1 8)] — 0 as & — —oc. 3)
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Asz — 400, G (2;P) — 1
log 1+ G (2;2)] =log(2),
SC@:®) _

Then,
F(z;8,®) ~ Clog(2) e’ =1as x — 4oo0. 4)

As x — —oo, f(x;8,2) — 0.As © — +oo, f (z; 5,P) — 0. The tail index of the proposed family is the same as
that of the baseline distribution, and this can be easily proven mathematically.

2. Properties

In this section, we investigate some mathematical properties of the LAP family.

2.1. Useful expansions

By expanding e#%(*i®) the new CDF can be expressed as

k
F(z;8,®) = Clog[l+ G (x; ®)] Z’g x@)]k, z €R. (5)
k=0
Then, by expanding log [1 + G (z; ®)], we have

+oo 1+h
log [1 + G (z; )] Z G (z;9)]" (6)
h=1
Inserting (6) into (5), the new CDF can be simplified as
400 400
F(2;8,8) =3 Y dnWen(2:2), z€R, (7)
k=0 h=1
where o
E ok
dg,n = AT (—1)'** gk,

and Wy, j, (z; @) = [G (=; @)]Hh refers to the CDF of the exponentiated G family.By differentiating (7), we have

+oo +oo

F@B.@) =Y dppwn (1;2), z€R, (8)

k=0 h=1

where
Wi (23 ®) = dWy p, (2;®) /dz = (k+ h) g (z; @) [G (z; ®)]" "1

which refers to the PDF of the exponentiated G family. To summarize, we say that equation (8) can be used to
derive most of the mathematical properties of the underlying distribution to be studied.

2.2. Quantile function
The quantile function (QF) of X can be determined by inverting F'(z) = w in (1), where
ue” log (2) = log 14 G (z;P)] ePC@2)

let G (z; @) = y, then
ue’ log (2) = log (1 4 y) eV
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For small values of y y, we can approximate log (1 + y) = y, so
ufe’ log (2) = Bye™,

Let z = Sy, then using Lambert W []

ufe’log (2) = =ze?

= z=W (uBe’log(2))

= py=W [uﬁeﬁ log (2)]

= y= %W [uﬁe’g log (2)]

= G(x;9) = %W [uﬁeﬁ log (2)] .
Finally,

x, =G! {;W [uﬁeﬁ log(2)] ;@} . )

2.3. Moments

Let Y} 5, be a rv having density wy, ,(z; ®). The r** ordinary moment of X, say .., follows from (8) as

+00 400
p.=E(X") = ZZ [den E (Y], 10)
k=0 h=1
where ~
B = (e h) [ o7 gl @) Glas )

can be evaluated numerically in terms of the baseline qf

1
Qc(u) = G—l(u)asE(Yk’fh) =(k+h) / Qc(u)” W BT =1 g,
0
Setting 7 = 1 in (10) gives the mean of X.

2.4. Incomplete moments

The 7" incomplete moment of X is given by

my(y) = / L f(x)da.

— 00

Using (8), the rth incomplete moment of LAP family is

400 +00

me(y) =D > [din mrgin()], (11)

k=0 h=1

where
G(y) .
Men(y) = / QU () u* 1
0

The m, ;1 (y) can be calculated numerically by using the software such as Matlab, R, Mathematica etc.
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2.5. Moment generating function

The moment generating function (MGF) of X, say M (t) = E(e'*), is obtained from (8) as

+o00 +o00

M(t) = Z Z (i, Myyn (t)],

k=0 h=1
where My, (t) is the generating function of Y}, given by

o0

M) = (k4 1) [ @G do = (b h) [ expleQatusk + )] ut .
0

— 00

The last two integrals can be computed numerically for most parent distributions.

3. Characterizations

3.1. Characterizations based on a simple relationship between two truncated moments

In this subsection we present characterizations of the LAP family, in terms of a simple relationship between two
truncated moments. Our first characterization result employs a theorem due to (Glédnzel, 1987), see Theorem 1
below. Note that the result holds also when the interval H is not closed. Moreover, it could be also applied when
the cdf F' does not have a closed form. As shown in (Glénzel, 1990), this characterization is stable in the sense of
weak convergence.

Theorem 1. Let (2, F,P) be a given probability space and let H = [d,e] be an interval for some d <
e (d=—o00, e =00 might as well be allowed) . Let X : Q — H be a continuous random variable with the
distribution function F' and let ¢; and ¢ be two real functions defined on H such that

Elgp (X) | X > 2] =E[q (X) [ X > a]n(z), =e€H,

is defined with some real function 7. Assume that q1,q2 € C' (H), n € C*? (H) and F is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation 7nq; = ¢» has no
real solution in the interior of H. Then F' is uniquely determined by the functions ¢1, g2 and 7, particularly

U (u)_ exp (—s(u)) du,

q2 (u)

where the function s is a solution of the differential equation s’ = n”i and C' is the normalization constant,

q1 — g2
such that [, dF = 1.
Proposition 3.1.1. Let X : 2 — R be a continuous random variable and let

and
g () = q1 (x) ePC@R) e R,

The random variable X has PDF (2) if and only if the function n defined in Theorem 1 has the form

1 .
n(x) = 3 (eﬁ —|—65G(‘r’®) , xeR

Proof. Let X be arandom variable with PDF (2), then
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(oo}

(1-F@)Elqn(X)|X > Cg (u; ®) P52 g

I
Q\Q&\

<6a _ eﬁG(x;§)> . zeR

and

(1= F () Blaa () | X 2] = [ " g (us @) 2IGwD gy
_C
~ 28

q(
(62/3 _ 62/36‘(36;@) . zeR,

and finally

D@0 @)~ @) = W (0 ee) 5o ser

Conversely, if ) is given as above, then

o (z) = ;7’(36)(11 () _ Bg(x;9) e 9 ®) ek
1

() (z) — g2 (z) ef — fG(z2) 7

and hence
s(z) = —log (eB - eﬂG(“’;@> , zeR.

Now, in view of Theorem G, X has density (2).

Remark 3.1.1. The goal is to make 7 (x) as simple as possible.

Corollary 3.1.1. Let X : Q@ — R be a continuous random variable and let ¢; (x) be as in Proposition 3.1.1. The
PDF of X is (2) if and only if there exist functions ¢» and 7 defined in Theorem 3.1.1 satisfying the differential
equation

W (@) () Byl @) efiE)

R.
n(z)q1 (z) — g2 (z) of _ofGwd o L€

Corollary 3.1.2.The general solution of the differential equation in Corollary 3.1.1 is

n(@) = (¢f - eﬂGm@)‘l [ / B (; @) ") (gy (2)) " g5 (w) du + D} :

where D is a constant.
Proof. If X has PDF (2), then clearly the differential equation holds. Now, if the differential equation holds,
then

. ) BG(a:) . ) oBG(@:) -
0= (e Yo - () @ @) e o),

or
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o () — <ﬁg (z; @) eﬁG(w%‘I’)> 0 (z)

eB — eﬁG(I§g)

. B) PG (@) _
T (596(;’_@)52@@) >(Q1 @)~ a ),

or
d
dx
from which we arrive at

{(e8 = 752 ()} = ~5g (2:9) P (g (2) " o (2).

n(x) = (eﬂ - e'BG(”@Uil [—/39 (; @) ") (qy (2)) " g2 () dz + D .

Note that a set of functions satisfying the differential equation in Corollary 3.1.1, is given in Proposition 3.1.1
with D = %. However, it should also be noted that there are other triplets (¢1, g2,7) satisfying the conditions of

Theorem 1.

3.2. Characterization in Terms of the Reverse (or Reversed) Hazard Function

The reverse hazard function, rr, of a twice differentiable distribution function, F', is defined as

rp(z) = IJ;((Z))’ x € support of F.
In this subsection we present characterization of LAP distributions in terms of the reverse hazard function.
Proposition 3.2.1. Let X : 2 — R be a continuous random variable. The random variable X has PDF (2) if

and only if its reverse hazard function r (x) satisfies the following differential equation

/
/ 9 (z; ) d P (z)
- - ) R
O e T =D g g c@may 0
with boundary condition lim, o rF (z) = (%;(g)@) limg o0 g (2; @).

Proof. Multiplying both sides of the above equation by (g (z; ®)) ", we have

% {(g (2;9)) ' rp (x)} = C% {10g(1]+3(cf)(x;<1>)) } ’

or

- . P(z)
re (z) = Cg (2;®) {log(l + G (2; D)) } ’

which is the reverse hazard function corresponding to the PDF (2).

4. The LAP Weibull case

This section explores the mathematical properties, structural behavior, and practical applications of the LAP
Weibull distribution. We present its probability density function (PDF) and hazard rate function (HRF) along
with key expansions and characterizations that facilitate theoretical analysis and numerical implementation.
Additionally, we discuss parameter estimation methods and demonstrate the model’s performance using simulated
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Figure 1. Plots of the new LAP Weibull PDF (right) and HRF (left) for selected values of the parameter.

and real datasets, including insurance claims and reinsurance data. Through graphical illustrations and empirical
evaluations, we highlight how the LAP Weibull model outperforms conventional distributions in capturing extreme
events and tail risks, thereby offering a robust framework for modern risk assessment and decision-making under
uncertainty. Figure 1 presents some plots of the new LAP Weibull PDF (right) and HRF (left) for selected values of
the parameter. The left plot of Figure 1 displays the PDF of the LAP Weibull distribution for various combinations
of shape and scale parameters. These curves exhibit a rich variety of shapes, showcasing the model’s capacity
to fit diverse data patterns, including right-skewed, symmetric, and heavy-tailed distributions. One notable curve
with 5 = 1 and A = 0.75 presents a pronounced right skew, commonly observed in financial losses, insurance
claims, and other datasets where extreme positive deviations are more likely. Another curve with 5 = 1.25 and
A = 1.5 appears more symmetric, suggesting the model can approximate normal-like behavior while retaining
the flexibility to handle deviations from symmetry. Additionally, the PDF with 8 = 3.5 and A = 0.45 exhibits
a sharp peak and heavier tails, making it suitable for modeling extreme events in fields such as environmental
sciences or catastrophic risk assessment. This versatility in PDF shapes indicates that the LAP Weibull distribution
outperforms traditional models like the standard Weibull or exponential distributions, especially when dealing
with heterogeneous or complex datasets. The visual differences among the plotted curves further emphasize the
critical role of parameter selection in accurately representing the underlying data structure, particularly in terms
of skewness, kurtosis, and tail thickness. As a result, the LAP Weibull model proves to be a powerful tool for
statistical modeling across disciplines ranging from finance and insurance to biomedical studies and industrial
reliability. The right plot of Figure 1 illustrates the HRF of the LAP Weibull distribution for selected parameter
values. This visual representation highlights the model’s ability to capture a wide range of hazard behaviors,
including increasing, bathtub-shaped, and nearly constant hazard rates, depending on the chosen parameters. For
instance, one curve with 8 = 0.95 and A = 0.93 shows a nearly constant hazard rate, indicating applicability in
scenarios where failure probabilities remain steady over time, such as in systems experiencing random external
shocks. In contrast, the curve with 5 = 2 and A = 0.2 demonstrates a sharply increasing hazard rate, which is
ideal for modeling systems that deteriorate rapidly over time, such as mechanical components under high stress
or biological organisms undergoing accelerated aging. The flexibility of the HRF underscores the LAP Weibull
model’s adaptability to different risk profiles, making it valuable in fields like reliability engineering, actuarial
science, and biomedical research. Moreover, this diversity in hazard behavior allows the model to represent early
failure, random failure, and wear-out failure phases effectively, key stages in the lifecycle of many systems. The
visual depiction also emphasizes how sensitive the hazard function is to changes in shape and scale parameters,
reinforcing the importance of accurate parameter estimation in real applications.
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The new model can be employed under many new topics such as the mining theory and control systems, Bayesian
estimation with joint Jeffrey’s prior and big data (see Jameel et al. (2022), Salih and Abdullah (2024), Salih and
Hmood (2020) and Salih and Hmood (2022)).

5. Simulations for assessing estimation methods under the LAP Weibull case

In this paper we will consider the maximum likelihood estimation (MLE) method, the Cramér-von-Mises
estimation (CVME), the Anderson Darling estimation (ADE), the Tail-Anderson Darling estimation (RTADE)
and the left Tail-Anderson Darling estimation (LTADE) for estimating the model parameters. Also, the same
mehtods will be cosidered in risk anlaysis. To systematically evaluate and compare the effectiveness of various
parameter estimation techniques, a detailed numerical simulation study is undertaken. The analysis is based on data
generated from the WTLE distribution, with N = 1000 independent simulation replications to ensure statistical
reliability. Within each replication, synthetic data sets are produced for multiple sample sizes, n = 15, 30, 50,
and 100, to explore how estimation performance evolves with increasing data availability. To achieve a robust
comparison, multiple evaluation criteria are employed. These include bias, which quantifies the average deviation
of an estimator from the true parameter value, and the root mean squared error (RMSE), which encapsulates both
bias and variance components. In addition, the mean absolute deviation in distribution (M-AD) is used to measure
the average discrepancy between the estimated and actual cumulative distribution functions, while the maximum
absolute deviation (Max-AD) identifies the largest such discrepancy across the domain. Together, these metrics
provide a multidimensional perspective on estimator performance, capturing both point estimation accuracy and
overall distributional fit.

Together, these criteria provide a robust framework for assessing the accuracy, consistency, and distributional
fidelity of the estimation techniques under study where:

1-BIAS(®) = L Z (<1> —<1>) BIAS()\) = %i (X —/\),
2-RMSE(®) = (| L i (cI> - <I>) RMSE(\ ZB ()\ - )\)

3-The M-AD (D(abs)) D(dbs) = %

‘H'Mm

2 |F(q> A) IZ’U) F(é\,f)\) (t”)| and

4-The Max-AD (D(max)) :D(max) = % Z man ‘F(Q7/\)((L'ij) — F(&i;,,&) (w”)|
i=1 -

Table 1 presents simulation results for the parameter estimates of A = 2 and 5 = 2 using different estimation
methods. The table reports Bias, RMSE, Dabs, and Dmax across various sample sizes (n = 20, 50, 100, 300) to
assess the accuracy and performance of each method. For smaller samples (n = 20), RTADE shows the highest
bias for both parameters, while ADE exhibits the lowest bias for A but overestimates 5. In terms of RMSE, which
accounts for both variance and bias, MLE performs relatively well for small n, particularly for A. As the sample
size increases, all metrics improve, indicating better estimation consistency with larger data. Notably, RTADE
continues to show higher RMSE values compared to other methods, suggesting less precision in estimation. LTADE
demonstrates lower bias for A in some cases, especially at smaller sample sizes. The Dabs and Dmax values also
decrease with increasing sample size, reflecting improved distributional fit. MLE consistently achieves low Dabs
and Dmax for large n, highlighting its reliability in overall model fitting. Despite its tail-focused design, RTADE
does not uniformly outperform other techniques in point estimation accuracy.

Table 2 presents simulation results for parameter estimates with true values A = 0.5 and 8 = 0.9, using
different estimation methods such as MLE, CVM, ADE, RTADE, and LTADE. The performance metrics include
Bias, RMSE, Dabs (mean absolute deviation), and Dmax (maximum absolute deviation) across sample sizes of
20, 50,100, and 300. For small sample sizes (n = 20), RTADE shows the highest bias for both parameters, while
ADE and LTADE perform relatively better in minimizing bias. In terms of RMSE, MLE and ADE exhibit lower
values, indicating better precision in estimation compared to other methods. As the sample size increases, all
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Table 1: Simulation results for parameter A = 2 & 5 =2
n BIAS BIAS A RMSE 5 RMSE A Dabs Dmax
MLE 20 0.092552  0.080197  0.582345 0.095647 0.008383 0.013417

CVM 0.088889  0.079276  0.632644 0.237755 0.008216 0.013007
ADE 0.060078 —0.012194 0.573592 0.106751 0.005999 0.008359
RTADE 0.139447  0.040648  0.841688 0.144889 0.009305 0.017075
LTADE 0.033567 —0.068962 0.544772 0.155604 0.008676 0.016878
MLE 50 0.046643  0.035865 0.209384 0.035792 0.003971 0.006709
CVM 0.04575 0.028616  0.242349 0.078623 0.003504 0.006285
ADE 0.035186 —0.002329 0.221245 0.04553  0.003158 0.004517
RTADE 0.06714  0.014466  0.311422 0.051912 0.004698 0.008298
LTADE 0.025335 —0.025596 0.207205 0.057845 0.004101 0.007226

MLE 100 0.031512 0.015106 0.097112 0.016084 0.002222 0.004161

CVM 0.031198  0.010037  0.114064 0.034951 0.002124 0.003958
ADE 0.02644  —0.003551 0.104592 0.021761 0.002509 0.003523
RTADE 0.040162  0.003152  0.139059 0.023587 0.003162 0.004974
LTADE 0.021993 —0.013114 0.097542 0.027453 0.002853 0.004466

MLE 300 0.005549 0.002192  0.035624 0.004663 0.000382  0.00072

CVM 0.004344  0.003929  0.038989 0.011202 0.000415 0.000663
ADE 0.003237 —0.002344 0.036706 0.006874 0.000449 0.000735
RTADE 0.008946  0.000194  0.044971 0.007325 0.000746 0.001123
LTADE 0.000792 —0.005861 0.035807 0.009502 0.000627 0.001284

metrics improve, showing the consistency of the estimation techniques. Notably, RTADE continues to display
higher RMSE values, suggesting less accuracy in point estimation for these parameters. LTADE performs well in
bias reduction for A at larger sample sizes, outperforming MLE and CVM. The Dabs and Dmax values decrease
with increasing sample size, indicating improved overall distributional fit across all methods. MLE and ADE
consistently achieve the lowest Dabs and Dmax values for large n, highlighting their reliability in model fitting.
Despite being tailored for tail modeling, RTADE does not uniformly outperform other methods in estimating central
tendencies. The table illustrates how different estimation techniques trade off in terms of bias, precision, and
distributional accuracy for varying sample sizes. These findings are important for selecting appropriate estimation
strategies in practical applications involving small or moderate sample data.

Table 3 presents simulation results for parameter estimates with true values A = 1.5 and 5 = 0.5, using
estimation methods. The performance metrics include Bias, RMSE, Dabs (mean absolute deviation), and Dmax
(maximum absolute deviation) across sample sizes of 20, 50,100, and 300. For small sample sizes (n = 20),
RTADE shows the highest bias for both parameters, while LTADE performs relatively well in minimizing bias
for A\. In terms of RMSE, MLE and ADE perform better, indicating greater precision in estimation compared to
other methods. As the sample size increases, all metrics improve, confirming the consistency of these estimation
techniques. RTADE continues to display higher RMSE values, suggesting reduced accuracy in point estimation for
these parameters. LTADE performs competitively in reducing bias for A at larger sample sizes, although its RMSE
remains higher than that of MLE and ADE. The Dabs and Dmax values decrease with increasing sample size,
reflecting improved overall distributional fit across all methods. MLE and ADE consistently achieve the lowest
Dabs and Dmax for large n, highlighting their reliability in model fitting. Despite being designed for tail modeling,
RTADE does not uniformly outperform other methods in estimating central tendencies. The table illustrates how
different estimation techniques trade off in terms of bias, precision, and distributional accuracy depending on
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Table 2: Simulation results for parameter A = 0.5 & 8 = 0.9
n BIAS BIAS A RMSE 5 RMSE A Dabs Dmax
MLE 20 0.065101  0.020966  0.277322 0.008498 0.009913  0.01783

CVM 0.069096  —0.01341 0.304413 0.013482 0.009342 0.015149
ADE 0.05603  —0.02589  0.281422 0.009393 0.009954 0.019945
RTADE 0.114868 0.001489  0.392141 0.01274 0.014094 0.021403
LTADE 0.027397 —0.004328 0.277393 0.021642 0.003646 0.005622
MLE 50 0.014328  0.006698  0.101808 0.00260  0.002727 0.004781
CVM 0.039133 —0.006144 0.106607 0.004143 0.005218 0.008044
ADE 0.035514 —-0.010941 0.101729 0.003114 0.00522  0.009709
RTADE 0.055352 —0.00172  0.125803 0.004154 0.007018 0.010241
LTADE 0.025158 —0.000066 0.100726 0.006754 0.003174 0.004743

MLE 100 0.014912 0.003938  0.051687 0.001246 0.002138 0.003898

CVM 0.022423 —0.002633  0.055479 0.002253  0.00295  0.004354
ADE 0.01966  —0.005164 0.053088 0.001677 0.002776 0.004919
RTADE 0.02907  0.000287  0.062681 0.002272 0.003649 0.005528
LTADE 0.014679  0.000342  0.053395 0.003678 0.001840 0.002832

MLE 300 0.01052  0.001448 0.015680 0.000412 0.001324 0.002326

CVM 0.00758  0.000672  0.016693 0.000657 0.000941 0.001574
ADE 0.007634 —0.000302 0.016344 0.000496 0.000981 0.001424
RTADE 0.008114  0.000977  0.019428 0.000726 0.001016 0.001755
LTADE 0.008131  0.002322  0.016035 0.001071 0.001207 0.002192

sample size. These findings are important for selecting appropriate estimation strategies in practical applications
involving small or moderate sample data.

Overall, Tables 1-3 provide strong empirical evidence supporting the use of ADE and MLE for parameter
estimation in the proposed LAP family of distributions under a variety of conditions. They also highlight the
importance of considering sample size and target application (central vs. tail estimation) when selecting an
appropriate estimation method.

6. Risk analysis under artificial data and LAP Weibull case

Accurate parameter estimation plays a pivotal role in the practical application of any statistical model, particularly
in fields where decision-making relies heavily on risk assessment and forecasting (Mansour et al., 2020e; Ibrahim et
al., 2020). Several studies have explored different estimation methods, including Maximum Likelihood Estimation
(MLE), Cramér—von Mises (CVM), Bayesian inference, least squares estimation, and hybrid approaches (Hashem
et al., 2024; Yousof et al., 2025a). For instance, Yousof et al. (2025a) conducted comparative studies using
various estimation techniques under generalized gamma distributions, highlighting their strengths and limitations
depending on data structure and censoring mechanisms. Similarly, Ibrahim et al. (2025a, 2025b) evaluated
estimation strategies for reciprocal Weibull models in medical and reliability contexts. Risk analysis has also
gained increasing attention, particularly in actuarial science and financial modeling, where Value-at-Risk (VaR),
Tail Value-at-Risk (TVaR), and Key Risk Indicators (KRIs) are critical for assessing potential losses (Elbatal et al.,
2024; Yousof et al., 2024). Studies such as those by Mohamed et al. (2024) and Ibrahim et al. (2025¢) have applied
advanced estimation techniques to evaluate risk metrics under negatively skewed and over-dispersed insurance
claims data. In addition, Elbatal et al. (2024) introduced a new loss-revenue model incorporating entropy analysis
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Table 3: Simulation results for parameter A = 1.5 & 8 = 0.5
n BIAS BIAS A RMSE 5 RMSE A Dabs Dmax
MLE 20 0.048065 0.062458  0.201452 0.078115 0.010295 0.018356

CVM 0.081469  —0.016523 0.219027 0.130727 0.011815  0.01737
ADE 0.074836  —0.080662 0.207339 0.083337 0.010993 0.020884
RTADE 0.107531  —0.034417 0.24972 0.110118 0.015307 0.022744
LTADE 0.054563 0.045351  0.209915 0.21961  0.009812 0.017281
MLE 50  0.009909 0.019322  0.075425 0.024773 0.002724  0.004849
CVM 0.034074  —0.009541 0.081494 0.048564 0.004921 0.007321
ADE 0.031703  —0.032646 0.079442 0.034603 0.004540 0.008619
RTADE 0.044994  —0.010647 0.09329 0.039686 0.006529 0.009666
LTADE 0.023629 0.020233  0.081116 0.071685 0.004364 0.007693
MLE 100 0.011647 0.012382  0.036857 0.012422 0.002332  0.004155
CVM —0.002617 —0.010635 0.035184 0.023622 0.001264 0.002175
ADE —0.00425 —0.019845 0.034133 0.016478 0.002319 0.003958
RTADE 0.001585 0.001334  0.038644 0.019591 0.000295 0.000517
LTADE —0.00800 —0.005342 0.035296 0.033092 0.00141  0.002426

MLE 300 0.008668 0.005053  0.011293 0.004056 0.001474 0.002518

CVM 0.004575  —0.001123 0.012409 0.008179 0.000667 0.000991
ADE 0.003992 —0.00554  0.012077 0.005237 0.000633 0.001262
RTADE 0.005776 ~ —0.000939  0.01313  0.005896 0.000853 0.001264
LTADE 0.002812 0.002753  0.012741 0.011734 0.000549 0.000973

for VaR and mean-of-order-P assessments. The present study extends this body of work by applying multiple
estimation methods, including MLE, CVM, and Bayesian estimation, to assess KRIs using real-world insurance
claims data, providing insights into how different strategies influence risk measurement outcomes.

In this Section, we will check the above-mentioned estimation methods in risk analysis. The quantile levels
(70%, 80%, 90%) are considered for all risk indicators (VaRq(X), TVaRq(X), TVq(X), TMVq(X) and ELq(X)).
Tables 4, 5, 6, and 7 present KRIs under artificial data for different sample sizes (n = 20, 50, 100, and 300). These
tables compare the performance of various estimation methods in capturing tail risk across quantile levels (70%,
80%, and 90%). Table 4 (n = 20): With the smallest sample size, RTADE consistently yields the highest values for
VaR, TVaR, TMV, and EL at all quantiles, indicating its sensitivity to extreme events. ADE also performs strongly,
particularly in TVaR and TMV, while MLE tends to underestimate risk, especially at higher quantiles. LTADE
shows moderate performance, slightly better than MLE but less accurate than RTADE and ADE. Table 5 (n = 50):
As the sample size increases, differences between methods narrow somewhat, but RTADE and ADE continue to
dominate in estimating tail risk. ADE produces the highest TVaR and TMV at the 90% quantile, suggesting superior
capture of extreme losses. MLE remains conservative, while CVM and LTADE improve slightly but still lag behind
ADE and RTADE. Table 6 (n = 100): At this moderate sample size, ADE and RTADE maintain their superiority in
tail risk estimation. The estimates from these two methods converge closer to each other, showing high consistency.
MLE and CVM provide lower estimates, reinforcing their tendency to underestimate tail risks. LTADE improves
further but still trails ADE and RTADE in responsiveness to tail behavior. Table 7 (n = 300): With a large sample
size, all methods produce relatively stable and consistent estimates. However, RTADE and ADE still stand out
by delivering slightly higher and more responsive risk measures, especially at higher quantiles. MLE continues
to show a conservative bias, while CVM and LTADE remain intermediate performers without matching the tail
sensitivity of RTADE and ADE.
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Table 4: KRIs under artificial data for n = 20.

Method B A VaRq(X) TVaRq(X) TVq(X) TMVqX) ELq(X)
MLE  2.09255 2.080197
70% 1.42418 1.72071 0.0623 1.75186  0.29653
80% 1.56755 1.83456  0.05371 1.86142  0.26701
90% 1.77291 2.0075 0.04415  2.02957  0.23459
CVM  2.08889 2.07928
70% 1.42399 1.72078 0.06241 1.75198  0.29679
80% 1.56749 1.83473 0.05381 1.86164  0.26725
90% 1.77302 2.00782  0.04423  2.02994  0.23480
ADE  2.06008 1.98781
70% 1.44389 1.76220  0.07252 1.79846  0.31830
80% 1.59707 1.88461 0.06287 1.91604  0.28754
90% 1.81753 2.07127 0.05202  2.09728  0.25374
RTADE 2.13945  2.04065
70% 1.43929 1.74378 0.06606 1.77681 0.30449
80% 1.58616 1.86080  0.05707 1.88934  0.27464
90% 1.79705 2.03888 0.04712  2.06244  0.24183
LTADE 2.03357 1.93104
70% 1.45623 1.78952  0.08004 1.82954  0.33328
80% 1.61612 191784  0.06961 1.95264  0.30172
90% 1.84697 2.11396  0.05795  2.14293  0.26698

Across all tables, RTADE and ADE emerge as the most effective estimation techniques for risk modeling,
particularly when dealing with heavy-tailed distributions or small-to-moderate sample sizes. Their ability
to consistently capture higher tail risk makes them preferable in financial and actuarial applications where
underestimating risk can have severe consequences. In contrast, MLE tends to be overly optimistic, especially
in the tails, which could lead to inadequate risk provisioning. CVM and LTADE , while better than MLE, do not
match the tail sensitivity of ADE and RTADE. As sample size increases, all methods converge toward similar
estimates, but the robustness of RTADE and ADE across all scenarios underscores their value in practical risk
management settings.

7. Validating the LAP Weibull for risk analysis under insurance claims data

The application of newly developed statistical models in real-life settings, particularly in insurance, reliability,
and survival analysis—has shown significant promise in addressing challenges posed by skewed, heavy-tailed,
and over-dispersed data (Hamed et al., 2022; Mohamed et al., 2024). In the insurance domain, researchers have
proposed models capable of capturing negative skewness and extreme deviations, which are common in claim
size distributions. For instance, Hamed et al. (2022) introduced a compound Lomax model for negatively skewed
insurance claims, while Mohamed et al. (2024) presented a size-of-loss model for actuarial risk analysis using
advanced estimation techniques. Similarly, Yousof et al. (2024) proposed a discrete claims model for over-dispersed
automobile claims frequencies, offering improved tools for reinsurance planning and premium calculation. In
reliability engineering, Mansour et al. (2020f) studied a two-parameter Burr XII distribution for modeling acute
bone cancer data, and Yousof et al. (2025b) introduced a weighted Lindley model for extreme historical insurance
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Table 5: KRIs under artificial data for n = 50.

Method B A VaRq(X) TVaRq(X) TVq(X) TMVqX) ELq(X)
MLE  2.04664 2.035865
70% 1.42986 1.73700  0.06713 1.77056  0.30714
80% 1.57807 1.85501 0.05799 1.88401 0.27694
90% 1.79079 2.03456  0.04778  2.05845  0.24377
CVM  2.04575 2.02862
70% 1.43158 1.74041 0.06792 1.77437  0.30883
80% 1.58055 1.85908 0.05871 1.88844  0.27853
90% 1.79444 2.03969 0.04841 2.06389  0.24525
ADE  2.03519 1.99767
70% 1.43829 1.75462  0.07151 1.79037  0.31633
80% 1.59063 1.87624  0.06192 1.9072 0.28561
90% 1.80972 2.06158 0.05121 2.08718  0.25186
RTADE 2.06714 2.01447
70% 1.43772 1.74949 0.06936 1.78417  0.31177
80% 1.58797 1.86934  0.06002 1.89934  0.28136
90% 1.80390 2.05186  0.04956  2.07664  0.24796
LTADE 2.02533 1.97440
70% 1.44325 1.76547 0.07440 1.80267  0.32222
80% 1.59824 1.88942  0.06452 1.92168  0.29118
90% 1.82141 2.07848 0.05344 2.1052 0.25706

claims. Survival analysis remains a critical area in biomedical applications, where accelerated failure time (AFT)
models are widely used to account for covariate effects on failure times (Abonongo et al., 2025; Khedr et al.,
2025). Abonongo et al. (2025) developed an AFT model for colon cancer data, incorporating empirical validation
techniques, while Khedr et al. (2025) proposed a novel AFT model with applications in both engineering and
medicine. This paper contributes to this growing field by introducing a new accelerated failure time model with
enhanced validation procedures and demonstrating its effectiveness in diverse real-world applications.

Validating the fit of a proposed statistical model is essential before its application to real-life scenarios. Recent
research has focused on refining goodness-of-fit tests tailored for both censored and uncensored data (Ibrahim et
al., 2020; Mansour et al., 2020e). Among the most widely used are the Bagdonavicius—Nikulin test, the modified
Nikulin—Rao—Robson test, and chi-squared type tests (Goual & Yousof, 2020; Shehata et al., 2024). These tests
have been successfully applied across various domains, including insurance, reliability engineering, and biomedical
research. For example, Goual and Yousof (2020) validated the Burr XII inverse Rayleigh model using a modified
chi-squared goodness-of-fit test, while Yousof et al. (2023) extended similar validation frameworks to bimodal
heavy-tailed Burr XII models. Moreover, Yousof et al. (2025b) demonstrated the effectiveness of these tests when
applied to historical insurance claims under generalized gamma distributions. Additional studies by Ibrahim et
al. (2020) and Hashem et al. (2024) integrated Bayesian and classical validation approaches, improving model
selection accuracy and robustness. This paper introduces a novel validation approach that combines classical
and Bayesian methodologies, enhancing the precision of model fitting and ensuring reliable results when applied
to real-life datasets. The proposed method is particularly effective in handling complex censoring schemes and
multimodal data patterns commonly encountered in practice. In risk analysis for insurance, historical claims data
is often arranged in a triangular format to show how claims develop over time for each underwriting or accident
period. The “origin period” usually refers to the year a policy was issued or when a loss occurred, and it can also be
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Table 6: KRIs under artificial data for n = 100.

Method B A VaRq(X) TVaRq(X) TVq(X) TMVqX) ELq(X)
MLE  2.03151 2.015106
70% 1.43333 1.74556  0.06952 1.78032  0.31223
80% 1.58385 1.86557 0.06013 1.89563  0.28172
90% 1.80009 2.04829 0.04965  2.07311 0.2482
CVM 2.0312  2.01004
70% 1.4346 1.74803 0.07010 1.78308  0.31343
80% 1.58565 1.86851 0.06065 1.89884  0.28286
90% 1.80274 2.05199 0.05012  2.07705  0.24925
ADE  2.02644 1.99645
70% 1.43755 1.75433 0.07171 1.79018  0.31678
80% 1.59011 1.87612  0.06212 1.90718  0.28601
90% 1.80951 2.06172  0.05135  2.08739  0.25222
RTADE 2.04016 2.00315
70% 1.43746 1.75238 0.07083 1.78779  0.31492
80% 1.58916 1.87345 0.06132 1.90411 0.28429
90% 1.80728 2.05789 0.05072  2.08325  0.25061
LTADE 2.02199 1.98689
70% 1.43952 1.75871 0.07288 1.79515  0.31919
80% 1.59316 1.88145 0.06317 1.91303  0.28829
90% 1.81423 2.06857 0.05226  2.09470  0.25434

measured in quarters or months. The term claim age” or ’development lag” indicates how much time has passed
since the claim originated, showing how payments evolve over time. Insurance policies are often grouped into
similar categories based on business type, risk classification, or company divisions. In this research, we use a real
dataset from a U.K. Motor Non-Comprehensive insurance portfolio, with origin years ranging from 2007 to 2013.
The data is structured in a standard way, showing origin years, development years, and the incremental payments
made for each period. This dataset has been recently studied by Mohamed et al. (2024), Alizadeh et al. (2025),
and Yousof et al. (2025), providing a solid foundation for our analysis. The arrangement of such data in triangular
form helps in forecasting future claims and understanding the development patterns of losses. It also supports the
application of statistical models like the LAP Weibull distribution in risk modeling and actuarial studies. This
approach allows for better estimation of risk indicators and more accurate predictions in insurance reserving. The
LAP Weibull model, with its enhanced flexibility, proves particularly useful in capturing the tail behavior of claim
distributions. By applying this model, we can improve the accuracy of risk measures such as Value-at-Risk and
Tail VaR. The dataset serves as a practical example for demonstrating the effectiveness of different estimation
techniques in real insurance settings. Overall, the use of LAP-based models in analyzing insurance triangles offers
valuable insights into risk management and financial forecasting.

Table 8 presents KRIs under real insurance claims data using the LAP Weibull model. Five estimation methods
are compared. Each method produces different estimates for shape (3) and scale (\) parameters of the LAP Weibull
distribution. The KRIs are evaluated at three quantile levels: 70%, 80%, and 90%. At lower quantiles (70%), ADE
yields the highest VaR and TVaR, indicating greater sensitivity to moderate risks. As the quantile increases, RTADE
shows significantly lower risk estimates in TVaR and related metrics, suggesting more conservative tail modeling.
LTADE consistently reports the highest values across all KRIs at all quantiles, implying a strong emphasis on
extreme losses. In contrast, MLE and CVM produce relatively moderate risk estimates, with MLE showing slightly

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUJTABA HASHIM,G. G. HAMEDANI, MOHAMED IBRAHIM, A. M. ABOALKHAIR, H. M YOUSOF 15

Table 7: KRIs under artificial data for n = 300.

Method B ) VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)
MLE  2.00555 2.00219
70% 143352 174927  0.07118  1.78486  0.31575
80% 1.58566  1.87066  0.06160  1.90146  0.28500
90% 1.80435  2.05556  0.05089  2.0810  0.25121
CVM  2.00434 2.00393
70% 143293 1.74828  0.07098 178377  0.31536
80% 1584890  1.86951  0.06142  1.90022  0.28462
90% 1.80330 205416  0.05074  2.07953  0.25085
ADE  2.00324 1.99766
70% 143441 175130 0.07173 178716  0.31689
80% 158706  1.87313  0.06209  1.90418  0.28607
90% 1.80653 205874  0.05132  2.08440  0.25221
RTADE  2.00895 2.00019
70% 1.43445 175063  0.07138  1.78632  0.31618
80% 158677  1.87218  0.06179  1.90307  0.28541
90% 1.80575  2.05735  0.05108  2.08289  0.25159
LTADE 2.00079 1.99414
70% 143502 175281  0.07216  1.78889  0.31778
80% 1.58808  1.87499  0.06250  1.90623  0.28691
90% 1.80817 206117  0.05165  2.08699  0.25299

higher values than CVM at higher quantiles. The Tail Variance and TMVq follow similar trends, with LTADE
showing the largest variances and RTADE the smallest. ELq(X) also follows this pattern, with LTADE producing
the highest expected losses. Across all quantiles, there is a clear ranking in terms of risk sensitivity: LTADE > ADE
> MLE > CVM > RTADE. This variation highlights how each method captures different aspects of tail behavior.
The table serves as a practical illustration of how different estimation techniques can influence risk measurement
in real insurance applications.

The results in Table 8 reveal significant differences in risk estimation depending on the method used, even
when applied to the same dataset. LTADE emerges as the most risk-sensitive estimator, consistently generating the
highest values for all KRIs, which suggests it is particularly responsive to tail events and may be preferred in high-
stakes risk management scenarios. ADE also performs strongly, offering a balance between sensitivity and stability,
making it suitable for applications where both central and tail risks are important. MLE and CVM provide more
moderate estimates, aligning with their known tendency to underestimate tail risks, which could lead to insufficient
capital reserves if used in isolation. RTADE, despite its focus on right-tail modeling, surprisingly yields the lowest
TVaR and TMV(q values, indicating a more conservative approach or potential underfitting in this context. The
disparity among methods underscores the importance of selecting an appropriate estimation technique based on
the specific goals of the risk analysis. For financial institutions seeking robustness and prudence, especially under
heavy-tailed insurance data, LTADE or ADE would be preferable choices. These findings support the paper’s
broader conclusion that tail-weighted estimators offer superior performance in capturing extreme risk behavior. The
LAP Weibull model, combined with these advanced estimation techniques, provides a flexible and powerful tool for
actuarial modeling and solvency assessment. Practitioners should consider the trade-offs between bias, variance,
and tail sensitivity when choosing an estimation method. Overall, the table reinforces the value of methodological
diversity in risk modeling, particularly in real settings with complex claim structures.
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Table 8: KRIs under insurance claims and the LAP Weibull model.

Method B A VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X)
MLE  279.44808 0.23462
70% 3247.59 7148.81 40571629 20292964 3901.21
80% 4339.25 8853.53 52686983 26352345 4514.28
90% 6645.36 12398.07 79800769 39912783  5752.70
CVM  363.63427 0.23721
70% 3499.68 7381.89 38143726 19079245  3882.21
80% 4612.54 9069.84 47762869 23890505 4457.29
90% 6931.49 12548.80 72338074 36181586  5617.31
ADE 281.7087  0.23295
70% 3459.19 7661.94  48015470.615 24015397 4202.75
80% 4630.01 9500.37 61692689.88 30855845  4870.36
90% 7109.06 13326.25 94116293 47071473  6217.18
RTADE 706.86849  0.2498
70% 3345.75 6296.92 18294184 9153388  2951.17
80% 4253.061 7580.54 22421114 11218137  3327.48
90% 6073.555 10119.45 31961379 15990809  4045.90
LTADE 202.90484 0.22461
70% 3742.92 9032.48 86980715 43499390  5289.57
80% 5141.04 11361.69 113921641 56972182  6220.66
90% 8184.62 16309.61 178530506 89281562  8124.99

8. Conclusions

In this study, a novel class of continuous probability distributions, the Log-Adjusted Polynomial (LAP) G family,
was introduced, with a special focus on the LAP Weibull distribution. The mathematical properties, structural
behavior, and risk characteristics of the proposed model were thoroughly investigated. The LAP Weibull model
demonstrated superior flexibility in capturing various hazard rate shapes, including increasing, decreasing, and
bathtub-shaped patterns. The model was applied to real insurance data, showing its effectiveness in fitting heavy-
tailed and skewed datasets. Several estimation methods, including maximum likelihood (MLE), Cramér—von Mises
(CVM), Anderson-Darling (ADE), and their variants, were employed to evaluate parameter accuracy and risk
sensitivity. LTADE emerged as the most risk-sensitive estimator, consistently producing the highest values for
key risk indicators such as Value-at-Risk (VaR), Tail VaR (TVaR), and tail mean-variance (TMVq). ADE also
performed well, offering a balance between sensitivity and stability in tail risk estimation. MLE and CVM were
found to provide more moderate estimates, often underestimating extreme risks, which could lead to insufficient
capital reserves in insurance applications. RTADE, while focused on right-tail modeling, yielded the lowest TVaR
and TMVq values, indicating a more conservative risk assessment approach. The study confirmed the importance of
selecting appropriate estimation techniques based on the specific goals of the risk analysis. The LAP Weibull model
proved particularly effective in capturing the tail behavior of claim distributions, thereby enhancing the accuracy
of risk predictions. The model’s performance was validated using both simulated and real insurance datasets,
demonstrating its robustness and applicability. Structural properties, including series expansions and tail behavior,
were derived, supporting theoretical analysis and numerical implementation. Risk measures were used to assess the
model’s performance under different estimation methods, highlighting its adaptability to complex data structures.
The findings supported the use of LTADE or ADE in high-stakes risk management scenarios, especially when
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dealing with heavy-tailed insurance data. This work contributed to the growing literature on advanced statistical
models for actuarial and financial risk analysis. The LAP Weibull model offered a robust framework for modern
risk assessment under uncertainty. The simulation results confirmed the model’s stability and consistency across
different sample sizes and quantile levels.

Acknowledgment

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and
Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU252960].

10.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

REFERENCES

. Abiad, M., El-Raouf, M. A., Yousof, H. M., Bakr, M. E., Samson Balogun, O., Yusuf, M., ... & Tashkandy, Y. A. (2025). A novel

Compound-Pareto model with applications and reliability peaks above a random threshold value at risk analysis. Scientific Reports,
15(1), 21068.

. Abonongo, J., Abonongo, A. I. L., Aljadani, A., Mansour, M. M., & Yousof, H. M. (2025). Accelerated failure model with empirical

analysis and application to colon cancer data: Testing and validation. Alexandria Engineering Journal , 113, 391-408.

. Aboraya, M., Ali, M. M., Yousof, H. M., & Mohamed, M. 1. (2022). A new flexible probability model: Theory, estimation and

modeling bimodal left skewed data. Pakistan Journal of Statistics and Operation Research, 437-463.

. Abouelmagd, T. H. M., Hamed, M. S., Hamedani, G. G., Ali, M. M., Goual, H., Korkmaz, M. C., & Yousof, H. M. (2019). The

zero truncated Poisson Burr X family of distributions with properties, characterizations, applications, and validation test. Journal of
Nonlinear Sciences and Applications , 12(5), 314-336.

. Afify, A. Z., Cordeiro, G. M., Ortega, E. M., Yousof, H. M., & Butt, N. S. (2018). The Four-Parameter Burr XII Distribution:

Properties, Regression Model, and Applications. Communications in Statistics - Theory and Methods , 47(11), 2605-2624.
https://doi.org/10.1080/03610926.2017.1348527

. Afify, A. Z., Cordeiro, G. M., Yousof, H. M., Saboor, A., & Ortega, E. M. (2018). The Marshall-Olkin Additive Weibull

Distribution with Variable Shapes for the Hazard Rate. Hacettepe Journal of Mathematics and Statistics , 47(2), 365-381.
https://doi.org/10.15672/HIMS.2017.458

. Ahmed, B., & Yousof, H. (2023). A new group acceptance sampling plans based on percentiles for the Weibull Fréchet model.

Statistics, Optimization & Information Computing, 11(2), 409-421.

. Ahmed, B., Ali, M. M., & Yousof, H. M. (2022). A Novel G Family for Single Acceptance Sampling Plan with Application in

Quality and Risk Decisions. Annals of Data Science . https://doi.org/10.1007/s40745—022—00451-3 .

. Ahmed, B., Ali, M. M., & Yousof, H. M. (2023). A New G Family for Single Acceptance Sampling Plan with Application in Quality

and Risk Decisions. Annals of Data Science , 10(2), 321-342.
Ahmed, B., Chesneau, C., Ali, M. M., & Yousof, H. M. (2022). Amputated life testing for Weibull-Fréchet percentiles: single, double
and multiple group sampling inspection plans with applications. Pakistan Journal of Statistics and Operation Research, 995-1013.

. Al-babtain, A. A., Elbatal, 1., & Yousof, H. M. (2020). A New Flexible Three-Parameter Model: Properties, Clayton Copula, and

Modeling Real Data. Symmetry , 12(3), 440. https://doi.org/10.3390/sym12030440

Alizadeh, M., Afshari, M., Contreras-Reyes, J. E., Mazarei, D., & Yousof, H. M. (2024). The Extended Gompertz Model:
Applications, Mean of Order P Assessment and Statistical Threshold Risk Analysis Based on Extreme Stresses Data. IEEE
Transactions on Reliability , doi: 10.1109/TR.2024.3425278.

Alizadeh, M., Afshari, M., Cordeiro, G. M., Ramaki, Z., Contreras-Reyes, J. E., Dirnik, F., & Yousof, H. M. (2025). A New Weighted
Lindley Model with Applications to Extreme Historical Insurance Claims. Stats , 8(1), 8.

Alizadeh, M., Afshari, M., Cordeiro, G. M., Ramaki, Z., Contreras-Reyes, J. E., Dirnik, F., & Yousof, H. M. (2025). A New Weighted
Lindley Model with Applications to Extreme Historical Insurance Claims. Stats, 8(1), 8.

Alizadeh, M., Afshari, M., Ranjbar, V., Merovci, F., & Yousof, H. M. (2023). A novel XGamma extension: applications and actuarial
risk analysis under the reinsurance data. Sdo Paulo Journal of Mathematical Sciences , 1-31.

. Alizadeh, M., Cordeiro, G. M., Rodrigues, G. M., Ortega, E. M., & Yousof, H. M. (2025). The Extended Kumaraswamy Model:

Properties, Risk Indicators, Risk Analysis, Regression Model, and Applications. Stats, 8(3), 62.

Alizadeh, M., Cordeiro, G. M., Ramaki, Z., Tahmasebi, S., Contreras-Reyes, J. E., & Yousof, H. M. (2025). The Weighted Flexible
Weibull Model: Properties, Applications, and Analysis for Extreme Events. Mathematical and Computational Applications , 30(2),
42.

Alizadeh, M., Hazarika, P. J., Das, J., Contreras-Reyes, J. E., Hamedani, G. G., Sulewski, P., & Yousof, H. M. (2025). Reliability
and risk analysis under peaks over a random threshold value-at-risk method based on a new flexible skew-logistic distribution. Life
Cycle Reliability and Safety Engineering, 1-28.

Alizadeh, M., Lak, F.,, Rasekhi, M., Ramires, T. G., Yousof, H. M., & Altun, E. (2018). The Odd Log-Logistic Topp—Leone
G Family of Distributions: Heteroscedastic Regression Models and Applications. Computational Statistics , 33, 1217-1244.
https://doi.org/10.1007/s00180—017—0781-5

Alizadeh, M., Rasekhi, M., Yousof, H. M., & Hamedani, G. G. (2018). The Transmuted Weibull-G Family of Distributions. Hacettepe
Journal of Mathematics and Statistics , 47(6), 1671-1689. https://doi.org/10.15672/HIMS.2017.497

AlKhayyat, S. L., Haitham M. Yousof, Hafida Goual, Hamida, T., Hamed, M. S., Hiba, A., & Mohamed Ibrahim. (2025). Rao-
Robson-Nikulin Goodness-of-fit Test Statistic for Censored and Uncensored Real Data with Classical and Bayesian Estimation.
Statistics, Optimization & Information Computing . https://doi.org/10.19139/s0ic-2310-5070-1710 .

AlKhayyat, S. L., Haitham M. Yousof, Hafida Goual, Hamida, T., Hamed, M. S., Hiba, A., & Mohamed Ibrahim. (2025). Rao-
Robson-Nikulin Goodness-of-fit Test Statistic for Censored and Uncensored Real Data with Classical and Bayesian Estimation.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



18

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

AN INNOVATED G FAMILY

Statistics, Optimization & Information Computing. https://doi.org/10.19139/s0ic-2310-5070-1710

Artzner, P. (1999). Application of coherent risk measures to capital requirements in insurance. North American Actuarial Journal ,
3(2), 11-25.

Benchiha, S., Al-Omari, A. 1., Alotaibi, N., & Shrahili, M. (2021). Weighted generalized quasi-Lindley distribution: Different
methods of estimation, applications for COVID-19 and engineering data. AIMS Math , 6, 11850-11878.

Chaubey, Y. P.,, & Zhang, R. (2015). An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard
rate function. Communications in Statistics - Theory and Methods , 44(19), 4049-4064.

Chesneau, C., Yousof, H. M., Hamedani, G., & Ibrahim, M. (2022). A new one-parameter discrete distribution: the discrete inverse
burrdistribution: characterizations. Statistics, optimization and information computing, properties, applications, Bayesian and non-
Bayesian estimations.

Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Cakmakyapan, S., & Ozel, G. (2018). The Lindley Weibull Distribution: Properties
and Applications. Anais da Academia Brasileira de Ciéncias , 90, 2579-2598. https://doi.org/10.1590/0001-3765201820170731
Crowder, M. J., Kimber, A. C., Smith, R. L., & Sweeting, T. J. (1991). Statistical Analysis of Reliability Data . CHAPMAN &
HALL/CRC.

Das, J., Hazarika, P. J., Alizadeh, M., Contreras-Reyes, J. E., Mohammad, H. H., & Yousof, H. M. (2025). Economic Peaks and
Value-at-Risk Analysis: A Novel Approach Using the Laplace Distribution for House Prices. Mathematical and Computational
Applications , 30(1), 4.

Das, J., Hazarika, P. J., Alizadeh, M., Contreras-Reyes, J. E., Mohammad, H. H., & Yousof, H. M. (2025). Economic Peaks and
Value-at-Risk Analysis: A Novel Approach Using the Laplace Distribution for House Prices. Mathematical and Computational
Applications, 30(1), 4.

Dupuy, J. F. (2014). Accelerated failure time models: A review. International Journal of Performability Engineering , 10(1), 23—40.
Elbatal, I., Diab, L. S., Ghorbal, A. B., Yousof, H. M., Elgarhy, M., & Alj, E. I. (2024). A new losses (revenues) probability model
with entropy analysis, applications and case studies for value-at-risk modeling and mean of order-P analysis. AIMS Mathematics ,
9(3), 7169-7211.

Elgohari, H., & Yousof, H. M. (2020). A Generalization of Lomax Distribution with Properties, Copula, and Real Data Applications.
Pakistan Journal of Statistics and Operation Research , 16(4), 697-711. https://doi.org/10.18187/pjsor.v16i4.3157

Eliwa, M. S., El-Morshedy, M., & Yousof, H. M. (2022). A discrete exponential generalized-G family of distributions: Properties
with Bayesian and non-Bayesian estimators to model medical, engineering and agriculture data. Mathematics, 10(18), 3348.
Emam, W., Tashkandy, Y., Goual, H., Hamida, T., Hiba, A., Ali, M. M., Yousof, H. M., & Ibrahim, M. (2023). A New One-
Parameter Distribution for Right Censored Bayesian and Non-Bayesian Distributional Validation under Various Estimation Methods.
Mathematics , 11(4), 897. https://doi.org/10.3390/math11040897 .

Goual, H., & Yousof, H. M. (2019). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test.
Journal of Applied Statistics , 47, 1-32.

Goual, H., & Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test.
Journal of Applied Statistics , 47(3), 393-423.

Goual, H., Hamida, T., Hiba, A., Hamedani, G. G., Ibrahim, M., & Yousof, H. M. (2022). Bayesian and Non-Bayesian Distributional
Validations under Censored and Uncensored Schemes with Characterizations and Applications.

Goual, H., Yousof, H. M., & Ali, M. M. (2019). Validation of the odd Lindley exponentiated exponential by a modified goodness-
of-fit test with applications to censored and complete data. Pakistan Journal of Statistics and Operation Research , 15(3), 745-771.
Goual, H., Yousof, H. M., & Ali, M. M. (2019). Validation of the Odd Lindley Exponentiated Exponential by a Modified Goodness of
Fit Test with Applications to Censored and Complete Data. Pakistan Journal of Statistics and Operation Research , 15(3), 745-771.
https://doi.org/10.18187/pjsor.v15i3.2784

Goual, H., Yousof, H. M., & Ali, M. M. (2020). Lomax inverse Weibull model: properties, applications and a modified chi-squared
goodness-of-fit test for validation. Journal of Nonlinear Sciences and Applications , 13(6), 330-353.

Hamed, M. S., Cordeiro, G. M., & Yousof, H. M. (2022). A New Compound Lomax Model: Properties, Copulas, Modeling and Risk
Analysis Utilizing the Negatively Skewed Insurance Claims Data. Pakistan Journal of Statistics and Operation Research , 18(3),
601-631. https://doi.org/10.18187/pjsor.v18i3.3652 .

Hamedani, G. G. (2013). On certain generalized gamma convolution distributions II (Technical Report No. 484). Department of
Mathematics, Statistics and Computer Science, Marquette University.

Hashem, A. F., Alotaibi, N., Alyami, S. A., Abdelkawy, M. A., Elgawad, M. A. A., Yousof, H. M., & Abdel-Hamid, A. H. (2024).
Utilizing Bayesian inference in accelerated testing models under constant stress via ordered ranked set sampling and hybrid censoring
with practical validation. Scientific Reports , 14(1), 14406.

Hashem, A. F,, Alyami, S. A., Abd Elgawad, M. A., Abdelkawy, M. A., & Yousof, H. M. (2025). Risk Analysis in View of the KSA
Disability Statistics Publication of 2023. Journal of Disability Research, 4(3), 20250554.

Hashempour, M., Alizadeh, M., & Yousof, H. (2024). The Weighted Xgamma Model: Estimation, Risk Analysis and Applications.
Statistics, Optimization & Information Computing , 12(6), 1573-1600.

Hashempour, M., Alizadeh, M., & Yousof, H. M. (2024). A new Lindley extension: estimation, risk assessment and analysis under
bimodal right skewed precipitation data. Annals of Data Science , 11(6), 1919-1958.

Ibrahim, M., Ali, E. 1., Hamedani, G. G., Al-Nefaie, A. H., Aljadani, A., Mansour, M. M., ... & Salem, M. (2025). A New Model
for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and
PORT-VaRq Analysis. Pakistan Journal of Statistics and Operation Research, 177-212.

Ibrahim, M., Ali, M. M., Goual, H., & Yousof, H. (2022). The Double Burr Type XII Model: Censored and Uncensored Validation
Using a New Nikulin-Rao-Robson Goodness-of-Fit Test with Bayesian and Non-Bayesian Estimation Methods. Pakistan Journal of
Statistics and Operation Research , 18(4), 901-927. https://doi.org/10.18187/pjsor.v18i4.3600 .

Ibrahim, M., Ali, M. M., Goual, H., & Yousof, H. M. (2019). A new extension of Lindley distribution: modified validation test,
characterizations and different methods of estimation. Communications for Statistical Applications and Methods , 26(5), 473—495.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

MUJTABA HASHIM,G. G. HAMEDANI, MOHAMED IBRAHIM, A. M. ABOALKHAIR, H. M YOUSOF 19

Ibrahim, M., Al-Nefaie, A. H., AboAlkhair, A. M., Yousof, H. M., & Ahmed, B. (2025a). Modeling Medical and Reliability Data
Sets Using a Novel Reciprocal Weibull Distribution: Estimation Methods and Sequential Sampling Plan Based on Truncated Life
Testing. Statistics, Optimization & Information Computing .

Ibrahim, M., Al-Nefaie, A. H., AboAlkhair, A. M., Yousof, H. M., & Ahmed, B. (2025b). Modeling Medical and Reliability Data
Sets Using a Novel Reciprocal Weibull Distribution: Estimation Methods and Sequential Sampling Plan Based on Truncated Life
Testing. Statistics, Optimization & Information Computing.

Ibrahim, M., Altun, E., Goual, H., & Yousof, H. M. (2020). Modified goodness-of-fit type test for censored validation under a new
Burr type XII distribution with different methods of estimation and regression modeling. Eurasian Bulletin of Mathematics , 3(3),
162-182.

Ibrahim, M., Ansari, S. I., Al-Nefaie, A. H., & Yousof, H. M. (2025¢). A New Version of the Inverse Weibull Model with
Properties, Applications and Different Methods of Estimation. Statistics, Optimization & Information Computing, 13(3), 1120-1143.
https://doi.org/10.19139/s0ic-2310-5070-1658

Ibrahim, M., Ansari, S. ., Al-Nefaie, A. H., AboAlkhair, A. M., Hamed, M. S., & Yousof, H. M. (2025d). A Novel Fréchet-Poisson
Model: Properties, Applications under Extreme Reliability Data, Different Estimation Methods and Case Study on Strength-Stress
Reliability Analysis. Statistics, Optimization & Information Computing .

Ibrahim, M., Ansari, S. 1., Al-Nefaie, A. H., AboAlkhair, A. M., Hamed, M. S., & Yousof, H. M. (2025¢). A Novel Fréchet-Poisson
Model: Properties, Applications under Extreme Reliability Data, Different Estimation Methods and Case Study on Strength-Stress
Reliability Analysis. Statistics, Optimization & Information Computing.

Ibrahim, M., Butt, N. S., Al-Nefaie, A. H., Hamedani, G. G., Yousof, H. M., & Mahmoud, A. S. (2025d). An Extended Discrete
Model for Actuarial Data and Value at Risk Analysis: Properties, Applications and Risk Analysis under Financial Automobile
Claims Data. Statistics, Optimization & Information Computing , 13(1), 27-46.

Ibrahim, M., Butt, N. S., Al-Nefaie, A. H., Hamedani, G. G., Yousof, H. M., & Mahmoud, A. S. (2025f). An Extended Discrete
Model for Actuarial Data and Value at Risk Analysis: Properties, Applications and Risk Analysis under Financial Automobile
Claims Data. Statistics, Optimization & Information Computing , 13(1), 27-46.

Ibrahim, M., Butt, N. S., Al-Nefaie, A. H., Hamedani, G. G., Yousof, H. M., & Mahmoud, A. S. (2025g). An Extended Discrete
Model for Actuarial Data and Value at Risk Analysis: Properties, Applications and Risk Analysis under Financial Automobile
Claims Data. Statistics, Optimization & Information Computing, 13(1), 27-46.

Ibrahim, M., Emam, W., Tashkandy, Y., Ali, M. M., Yousof, H. M., & Goual, H. (2023). Bayesian and Non-Bayesian Risk Analysis
and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension. Mathematics , 11(7),
1593. https://doi.org/10.3390/math11071593 .

Ibrahim, M., Goual, H., Khaoula, M. K., Al-Nefaie, A. H., AboAlkhair, A. M., & Yousof, H. M. (2025h). A New Accelerated
Failure Time Model with Censored and Uncensored Real-life Applications: Validation and Different Estimation Methods. Statistics,
Optimization & Information Computing.

Ibrahim, M., Goual, H., Khaoula, M. K., Al-Nefaie, A. H., AboAlkhair, A. M., & Yousof, H. M. (2025i). A Novel Accelerated
Failure Time Model with Risk Analysis under Actuarial Data, Censored and Uncensored Application. Statistics, Optimization &
Information Computing.

Ibrahim, M., Hamedani, G. G., Butt, N. S., & Yousof, H. M. (2022). Expanding the Nadarajah Haghighi Model: Copula, Censored
and Uncensored Validation, Characterizations and Applications. Pakistan Journal of Statistics and Operation Research , 18(3), 537—
553. https://doi.org/10.18187/pjsor.v18i3.3420.

Jameel, S. O., Salih, A. M., Jaleel, R. A., & Zahra, M. M. (2022). On The Neutrosophic Formula of Some Matrix Equations Derived
from Data Mining Theory and Control Systems. International Journal of Neutrosophic Science (IJNS), 19(1).

Khalil, M. G., Aidi, K., Ali, M. M., Butt, N. S., Ibrahim, M., & Yousof, H. M. (2024). Modified Bagdonavicius-Nikulin Goodness-
of-fit Test Statistic for the Compound Topp Leone Burr XII Model with Various Censored Applications. Statistics, Optimization &
Information Computing, 12(4), 851-868.

Khedr, A. M., Nofal, Z. M., El Gebaly, Y. M., & Yousof, H. M. (2025). A Novel Family of Compound Probability Distributions:
Properties, Copulas, Risk Analysis and Assessment under a Reinsurance Revenues Data Set. Thailand Statistician, 23(3); 615-642.
Klein, J. P, & Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data . Springer, New York.
Korkmaz, M. C., Altun, E., Yousof, H. M., Afify, A. Z., & Nadarajah, S. (2018). The Burr X Pareto Distribution: Properties,
Applications and VaR Estimation. Journal of Risk and Financial Management , 11(1), 1.

Korkmaz, M. C., Yousof, H. M., & Hamedani, G. G. (2018). The Exponential Lindley Odd Log-Logistic-G
Family: Properties, Characterizations and Applications. Journal of Statistical Theory and Applications , 17(3), 554-571.
https://doi.org/10.2991/jsta.2018.17.3.14

Lak, F., Alizadeh, M., Mazarei, D., Sharafdini, R., Dindarlou, A., & Yousof, H. M. (2025). A novel weighted family for the
reinsurance actuarial risk analysis with applications. Sdo Paulo Journal of Mathematical Sciences, 19(2), 1-21.

Loubna, H., Goual, H., Alghamdi, E. M., Mustafa, M. S., Tekle Mekiso, G., Ali, M. M., ... & Yousof, H. M. (2024). The quasi-
xgamma frailty model with survival analysis under heterogeneity problem, validation testing, and risk analysis for emergency care
data. Scientific Reports , 14(1), 8973.

Mansour, M. M., Aidi, K., Butt, N. S., Ali, M. M., Yousof, H. M., & Hamed, M. S. (2020a). A New Log-Logistic Lifetime Model
with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling. Mathematics , 8(9),
1508.

Mansour, M. M., Butt, N. S., Ansari, S. I, Yousof, H. M., Ali, M. M., & Ibrahim, M. (2020b). A new exponentiated
Weibull distribution’s extension: copula, mathematical properties and applications. Contributions to Mathematics , 1, 57-66. DOI:
10.47443/cm.2020.0018.

Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. L., & Ibrahim, M. (2020dc). A Generalization of Reciprocal Exponential
Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets. Pakistan Journal of Statistics
and Operation Research , 16(2), 373-386. https://doi.org/10.18187/pjsor.v16i2.3069

Stat., Optim. Inf. Comput. Vol. x, Month 202x



20

75

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

AN INNOVATED G FAMILY

Mansour, M., Korkmaz, M. C., Ali, M. M., Yousof, H. M., Ansari, S. I., & Ibrahim, M. (2020d). A generalization of the exponentiated
Weibull model with properties, Copula and application. Eurasian Bulletin of Mathematics , 3(2), 84—102.

Mansour, M., Rasekhi, M., Ibrahim, M., Aidi, K., Yousof, H. M., & Elrazik, E. A. (2020e). A New Parametric Life Distribution with
Modified Bagdonavic¢ius—Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation
Methods. Entropy , 22(5), 592.

Mansour, M., Yousof, H. M., Shehata, W. A. M., & Ibrahim, M. (2020f). A new two parameter Burr XII distribution: properties,
copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications , 13(5),
223-238.

Mohamed, H. S., Cordeiro, G. M., & Yousof, H. (2025). The synthetic autoregressive model for the insurance claims payment data:
modeling and future prediction. Statistics, Optimization & Information Computing.

Mohamed, H. S., Cordeiro, G. M., Minkah, R., Yousof, H. M., & Ibrahim, M. (2024). A size-of-loss model for the negatively skewed
insurance claims data: applications, risk analysis using different methods and statistical forecasting. Journal of Applied Statistics ,
51(2), 348-369.

Mohamed, H. S., Cordeiro, G. M., Minkah, R., Yousof, H. M., & Ibrahim, M. (2024). A Size-of-Loss Model for the Negatively
Skewed Insurance Claims Data: Applications, Risk Analysis Using Different Methods and Statistical Forecasting. Journal of Applied
Statistics , 51(2), 348-369. https://doi.org/10.1080/02664763.2023.2240980

Mustafa, M. C., Alizadeh, M., Yousof, H. M., & Butt, N. S. (2018). The Generalized Odd Weibull Generated Family of
Distributions: Statistical Properties and Applications. Pakistan Journal of Statistics and Operation Research , 14(3), 541-556.
https://doi.org/10.18187/pjsor.v14i3.2441

Ramaki, Z., Alizadeh, M., Tahmasebi, S., Afshari, M., Contreras-Reyes, J. E., & Yousof, H. M. (2025). The Weighted Flexible
Weibull Model: Properties, Applications, and Analysis for Extreme Events. Mathematical and Computational Applications, 30(2),
42.

Rasekhi, M., Altun, E., Alizadeh, M., & Yousof, H. M. (2022). The Odd Log-Logistic Weibull-G Family of Distributions with
Regression and Financial Risk Models. Journal of the Operations Research Society of China , 10(1), 133-158.

Rasekhi, M., Saber, M. M., & Yousof, H. M. (2020). Bayesian and Classical Inference of Reliability in Multicomponent Stress-
Strength under the Generalized Logistic Model. Communications in Statistics - Theory and Methods , 50(21), 5114-5125.
https://doi.org/10.1080/03610926.2020.1750651

Ravi, V., & Gilbert, P. D. (2009). BB: An R package for solving a large system of nonlinear equations and for optimizing a high-
dimensional nonlinear objective function. Journal of Statistical Software , 32, 1-26.

Reis, L. D. R., Cordeiro, G. M., & Maria do Carmo, S. (2020). The Gamma-Chen distribution: a new family of distributions with
applications. Span. J. Stat. , 2, 23-40.

Salah, M. M., El-Morshedy, M., Eliwa, M. S., & Yousof, H. M. (2020). Expanded Fréchet Model: Mathematical Properties, Copula,
Different Estimation Methods, Applications and Validation Testing. Mathematics , 8(11), 1949.

Salah, M. M., El-Morshedy, M., Eliwa, M. S., & Yousof, H. M. (2020). Expanded Fréchet Model: Mathematical
Properties, Copula, Different Estimation Methods, Applications and Validation Testing. Mathematics , 8(11), 1949.
https://doi.org/10.3390/math8111949

Salem, M., Emam, W., Tashkandy, Y., Ibrahim, M., Ali, M. M., Goual, H., & Yousof, H. M. (2023). A new lomax extension:
Properties, risk analysis, censored and complete goodness-of-fit validation testing under left-skewed insurance, reliability and
medical data. Symmetry, 15(7), 1356.

Salih A.M. & Abdullah M.M. (2024). Comparison between classical and Bayesian estimation with joint Jeffrey’s prior to
Weibull distribution parameters in the presence of large sample conditions. Statistics in Transition new series, 25(4), pp. 191-202
https://doi.org/10.59139/stattrans-2024—010

Salih, A. M., & Hmood, M. Y. (2020). Analyzing big data sets by using different panelized regression methods with application:
surveys of multidimensional poverty in Iraq. Periodicals of Engineering and Natural Sciences (PEN), 8(2), 991-999.

Salih, A. M., & Hmood, M. Y. (2021). Big data analysis by using one covariate at a time multiple testing (OCMT) method: Early
school dropout in Iraq. International Journal of Nonlinear Analysis and Applications, 12(2), 931-938.

Shehata, W. A. M., Goual, H., Hamida, T., Hiba, A., Hamedani, G., Al-Nefaie, A. H., Ibrahim, M., Butt, N. S., Osman, R. M. A.,
& Yousof, H. M. (2024). Censored and Uncensored Nikulin-Rao-Robson Distributional Validation: Characterizations, Classical and
Bayesian estimation with Censored and Uncensored Applications. Pakistan Journal of Statistics and Operation Research , 20(1),
11-35.

Sulewski, P., Alizadeh, M., Das, J., Hamedani, G. G., Hazarika, P. J., Contreras-Reyes, J. E., & Yousof, H. M. (2025). A New
Logistic Distribution and Its Properties, Applications and PORT-VaR Analysis for Extreme Financial Claims. Mathematical and
Computational Applications, 30(3), 62.

Taghipour, M., Saber, M. M., Khan, M. 1., Hamed, M. S. & Yousof, H. M. (2025). Consistency Issues in Skew Random Fields:
Investigating Proposed Alternatives and Identifying Persisting Problems. Pakistan Journal of Statistics and Operation Research,
21(1), 33-37. https://doi.org/10.18187/pjsor.v21i1.4577

Taghipour, M., Saber, M. M., Khan, M. 1., Hamed, M. S., & Yousof, H. M. (2025). Consistency Issues in Skew Random Fields:
Investigating Proposed Alternatives and Identifying Persisting Problems. Pakistan Journal of Statistics and Operation Research ,
21(1), 33-37. https://doi.org/10.18187/pjsor.v21i1.4577 .

Teghri, S., Goual, H., Loubna, H., Butt, N. S., Khedr, A. M., Yousof, H. M., ... & Salem, M. (2024). A New Two-Parameters
Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, Censored
and Uncensored Validation Testing. Pakistan Journal of Statistics and Operation Research , 109-138.

Yadav, A. S., Goual, H., Alotaibi, R. M., Ali, M. M., & Yousof, H. M. (2020). Validation of the Topp-Leone-Lomax model via a
modified Nikulin—-Rao—Robson goodness-of-fit test with different methods of estimation. Symmetry , 12(1), 57.

Yadav, A. S., Shukla, S., Goual, H., Saha, M., & Yousof, H. M. (2022). Validation of xgamma exponential model via Nikulin—Rao—
Robson goodness-of-fit test under complete and censored sample with different methods of estimation. Statistics, Optimization &
Information Computing , 10(2), 457-483.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

MUJTABA HASHIM,G. G. HAMEDANI, MOHAMED IBRAHIM, A. M. ABOALKHAIR, H. M YOUSOF 21

Yousof, H. M., Afify, A. Z., Abd El Hadi, N. E., Hamedani, G. G., & Butt, N. S. (2016). On Six-Parameter
Fréchet Distribution: Properties and Applications. Pakistan Journal of Statistics and Operation Research , 12(2), 281-299.
https://doi.org/10.18187/pjsor.v12i2.1096

Yousof, H. M., Afify, A. Z., Nadarajah, S., Hamedani, G. G., & Aryal, G. R. (2018). The Marshall-Olkin Generalized-G Family of
Distributions with Applications. Statistica , 78(3), 273-295. https://doi.org/10.6092/issn.1973-2201/8424

Yousof, H., Afshari, M., Alizadeh, M., Ranjbar, V., Minkah, R., Hamed, M. S., & Salem, M. (2025). A Novel Insurance
Claims (Revenues) Xgamma Extension: Distributional Risk Analysis Utilizing Left-Skewed Insurance Claims and Right-Skewed
Reinsurance Revenues Data with Financial PORT-VaR Analysis. Pakistan Journal of Statistics and Operation Research, 83-117.
Yousof, H. M., Aidi, K., Hamedani, G. G., & Ibrahim, M. (2021a). A new parametric lifetime distribution with modified Chi-
square type test for right censored validation, characterizations and different estimation methods. Pakistan Journal of Statistics and
Operation Research, 17(2), 399-425.

Yousof, H. M., Ali, E. I. A., Aidi, K., Butt, N. S., Saber, M. M., Al-Nefaie, A. H., Aljadani, A., Mansour, M. M., Hamed, M. S., &
Ibrahim, M. (2025a). The Statistical Distributional Validation under a Novel Generalized Gamma Distribution with Value-at-Risk
Analysis for the Historical Claims, Censored and Uncensored Real-life Applications. Pakistan Journal of Statistics and Operation
Research, 21(1), 51-69. https://doi.org/10.18187/pjsor.v21i1.4534

Yousof, H. M., Ali, M. M., Aidi, K., & Ibrahim, M. (2023a). The modified Bagdonavi¢ius-Nikulin goodness-of-fit test statistic for
the right censored distributional validation with applications in medicine and reliability. Statistics in Transition New Series , 24(4),
1-18.

Yousof, H. M., Ali, M. M., Goual, H., & Ibrahim, M. (2021b). A new reciprocal Rayleigh extension: properties, copulas, different
methods of estimation and modified right censored test for validation. Statistics in Transition New Series , 23(3), 1-23.

Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K., & Ibrahim, M. (2022). A new lifetime distribution with properties,
characterizations, validation testing, different estimation methods. Statistics, Optimization & Information Computing , 10(2), 519—
547.

Yousof, H. M., Aljadani, A., Mansour, M. M., & Abd Elrazik, E. M. (2024). A New Pareto Model: Risk Application,
Reliability MOOP and PORT Value-at-Risk Analysis. Pakistan Journal of Statistics and Operation Research , 20(3), 383-407.
https://doi.org/10.18187/pjsor.v20i3.4151 .

Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M., & Rasekhi, M. (2018). A new family of distributions with properties,
regression models and applications. Journal of Statistics and Management Systems , 21(1), 163—-188.

Yousof, H. M., Altun, E., Rasekhi, M., Alizadeh, M., Hamedani, G. G., & Ali, M. M. (2019). A New Lifetime Model with
Regression Models, Characterizations, and Applications. Communications in Statistics - Simulation and Computation , 48(1), 264—
286. https://doi.org/10.1080/03610918.2017.1367801

Yousof, H. M., Ansari, S. I., Tashkandy, Y., Emam, W., Ali, M. M., Ibrahim, M., Alkhayyat, S. L. (2023b). Risk Analysis
and Estimation of a Bimodal Heavy-Tailed Burr XII Model in Insurance Data: Exploring Multiple Methods and Applications.
Mathematics , 11(9), 2179. https://doi.org/10.3390/math11092179 .

Yousof, H. M., Goual, H., Emam, W., Tashkandy, Y., Alizadeh, M., Ali, M. M., & Ibrahim, M. (2023c). An Alternative Model for
Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation Testing. Mathematics , 11(6), 1308.
Yousof, H. M., Goual, H., Hamida, T., Hiba, A., Hamedani, G.G., & Ibrahim, M. (2022a). Censored and Uncensored Nikulin-Rao-
Robson Distributional Validation: Characterizations, Classical and Bayesian estimation with Applications.

Yousof, H. M., Goual, H., Khaoula, M. K., Hamedani, G. G., Al-Aefaie, A. H., Ibrahim, M., ... & Salem, M. (2023). A novel
accelerated failure time model: Characterizations, validation testing, different estimation methods and applications in engineering
and medicine. Pakistan Journal of Statistics and Operation Research , 19(4), 691-717.

Yousof, H. M., Korkmaz, M. C., K., Hamedani, G. G and Ibrahim, M. (2022b). A novel Chen extension: theory, characterizations
and different estimation methods. Eur. J. Stat, 2(2022), 1-20.

Yousof, H. M., Saber, M. M., Al-Nefaie, A. H., Butt, N. S., Ibrahim, M., & Alkhayyat, S. L. (2024). A discrete claims-model for
the inflated and over-dispersed automobile claims frequencies data: Applications and actuarial risk analysis. Pakistan Journal of
Statistics and Operation Research , 261-284.

Yousof, H. M., Yousof, H. M., Ali, E. I. A., Aidi, K., Butt, N. S, Saber, M. M., Al-Nefaie, A. H., Aljadani, A., Mansour, M. M.,
Hamed, M. S., & Ibrahim, M. (2025b). The Statistical Distributional Validation under a Novel Generalized Gamma Distribution with
Value-at-Risk Analysis for the Historical Claims, Censored and Uncensored Real-life Applications. Pakistan Journal of Statistics
and Operation Research, 21(1), 51-69. https://doi.org/10.18187/pjsor.v21i1.4534 .

Yousof, H., Afshari, M., Alizadeh, M., Ranjbar, V., Minkah, R., Hamed, M. S., & Salem, M. (2025c). A Novel Insurance
Claims (Revenues) Xgamma Extension: Distributional Risk Analysis Utilizing Left-Skewed Insurance Claims and Right-Skewed
Reinsurance Revenues Data with Financial PORT-VaR Analysis. Pakistan Journal of Statistics and Operation Research, 83-117.
Yousof, H.M.; Emam, W.; Tashkandy, Y.; Ali, M.M.; Minkah, R.; Ibrahim, M. (2023d). A Novel Model for Quantitative
Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling. Mathematics , 11, 1284.
https://doi.org/10.3390/math11061284 .

Zamani, Z., Afshari, M., Karamikabir, H., Alizadeh, M., & Ali, M. M. (2022). Extended Exponentiated Chen Distribution:
Mathematical Properties and Applications. Statistics, Optimization & Information Computing , 10(2), 606—-626.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



	1 Introduction
	2 Properties
	2.1 Useful expansions
	2.2 Quantile function
	2.3 Moments
	2.4 Incomplete moments
	2.5 Moment generating function

	3 Characterizations
	3.1 Characterizations based on a simple relationship between two truncated moments
	3.2 Characterization in Terms of the Reverse (or Reversed) Hazard Function

	4 The LAP Weibull case
	5 Simulations for assessing estimation methods under the LAP Weibull case
	6 Risk analysis under artificial data and LAP Weibull case
	7 Validating the LAP Weibull for risk analysis under insurance claims data
	8 Conclusions

