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while the second is the opposite. Employing an unconventional approach based on eigenvalues and eigenvectors, we derive
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1. Introduction

The Markov chain-random walk (MC-RW) problem is one of the most well-known and historically significant
issues in probability. It was researched and expanded upon by several probabilists in the early years, becoming
a significant topic in the history of probability and introducing numerous new notions. Moreover, the scientific
community finds it intriguing since it has a wide range of notable applications in many theoretical and applied
areas. Besides, the MC-RW problems with barriers frequently act as simplified representations of considerably
more intricate many-body phenomena. For a broad debate on MC-RW and their applications, we commend books,
e.g., [4, 5, 8, 9] and papers, e.g., [1, 2, 7, 10, 13] and the papers therein. Despite the MC-RW’s extensive literary
history, fresh aspects continue emerging.

The present paper is concerned with finding explicit formulas for the absorption, segregation, and annihilation
probabilities of the trinomial MC-RW problems between an absorbing and an elastic barrier based on linear algebra
(eigenvalues and eigenvectors), using a methodology similar to that given by Orosi [11]. To specify precisely, we
are investigating two trinomial MC-RW problems. The first has an elastic barrier at state 0 and an absorber barrier
at state N , while the second is the opposite. The elastic barrier at state 0 (state N ) implies the particle is either
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annihilated, segregated, or reflects to state 1 (state N − 1) with probabilities α, ρ0, and ρ1, respectively (β, ω0, and
ω1, respectively). These two problems are generalizations of several MC-RW issues examined in previous works,
e.g., [3, 4, 6, 11, 12, 14]. Besides, many explicit formulas for some intriguing special cases are derived from the
results through certain choices of reflection and segregation probabilities, ρ0 and ρ1 (or ω0 and ω1). We also discuss
the outcomes when the number of states, N , becomes large (N → ∞). The primary motivation for employing the
algebra-based method lies in its relative conceptual clarity, offering a straightforward solution framework for those
proficient in linear algebra, even in the absence of familiarity with classical difference equation techniques. As far
as we know, this work is not covered in existing literature.

Concerning this paper’s structure, Section 2 presents the formulation of the two trinomial MC-RW problems
between absorbing and elastic barriers. In Section 3, the closed-form expressions for the absorption, segregation,
and annihilation probabilities of the two trinomial MC-RW problems are obtained based on linear algebra. Section
4 exhibits certain interesting particular cases and the case when N → ∞. The final section concludes the paper.

2. Trinomial MC-RW problem with absorbing and elastic barriers

The trinomial MC-RW problem between an absorbing and an elastic barrier (see Figure 1) is essentially formulated
as follows: Consider an MC-RW {Xn, n ≥ 0} on the state space SS = {0, 1, . . . , N}, with one perfect absorber
end-state and other elastic (i.e., partially reflector/ segregated/annihilator) end-state such that a particle when away
from the end-states, moves one step to the right or left or stays in the same state with specified probabilities. Let us
state the underlying presumptions:

(i) The particle starts at the state i, 1 ≤ i ≤ N − 1.

(ii) The one-step right-moving probability is pii+1 = p, the one-step left-moving probability is pii−1 = q, and
thus, the staying probability in the same state is pii = r = 1− (p+ q), for i ∈ SS \ {0, N}, where 0 ≤ r < 1
and 0 < p, q < 1.

(iii) There are two barriers, one of which is perfectly absorbing at the end-state N (end-state 0). The other
is elastic (i.e., partially reflecting/segregating/annihilating), at the end-state 0 (end-state N ), that is, when
the particle reaches the end-state 0 (end-state N ), it is segregated with probability ρ0 (probability ω0), is
reflected to the state 1 (state N − 1) with probability ρ1 (probability ω1), or it is annihilated with probability
α = 1− ρ0 − ρ1, for 0 ≤ α, ρ0, ρ1 ≤ 1 (probability β = 1− ω0 − ω1, for 0 ≤ β, ω0, ω1 ≤ 1)

Consider the first situation depicted in Figure 1(a). Let U0(k; ρ0, ρ1) (and UN (k; ρ0, ρ1)) be the probability
of the number of steps necessary for the particle to reach and segregate at 0 before reaching N (or reaches N
before reaching and segregating at 0), given that the particle started in state k. In other words, U0(k; ρ0, ρ1) and
UN (k; ρ0, ρ1) are the probabilities of partially segregated at state 0 and ultimate absorption at state N , respectively,
given that the initial state is k. Then, by conditioning on the first move, it can be readily demonstrated that the
probabilities U0(k; ρ0, ρ1) and UN (k; ρ0, ρ1) satisfy the following recurrence relations, respectively:

U0(k; ρ0, ρ1) = pU0(k + 1; ρ0, ρ1) + r U0(k; ρ0, ρ1) + q U0(k − 1; ρ0, ρ1), (1)

for k = 1, 2, . . . , N − 1, with the boundary conditions{
U0(0; ρ0, ρ1) = ρ1 U0(1; ρ0, ρ1) + ρ0,

U0(N ; ρ0, ρ1) = 0,
(2)

and

UN (k; ρ0, ρ1) = pUN (k + 1; ρ0, ρ1) + r UN (k; ρ0, ρ1) + q UN (k − 1; ρ0, ρ1), (3)
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Figure 1. Trinomial MC-RW between an absorbing and an elastic barrier

for k = 1, 2, . . . , N − 1, with the boundary conditions{
UN (0; ρ0, ρ1) = ρ1 UN (1; ρ0, ρ1),

UN (N ; ρ0, ρ1) = 1.
(4)

Besides, the probability of partially annihilated at state 0, denoted by Uh
0 (k; ρ0, ρ1), fulfills

Uh
0 (k; ρ0, ρ1) = 1− [U0(k; ρ0, ρ1) + UN (k; ρ0, ρ1)] . (5)

Similarly, the following recurrence relations can be deduced for the situation where there is a perfectly absorbing
barrier at the origin and an elastic barrier at the end-state N , shown in Figure 1(b):

U0(k;ω0, ω1) = pU0(k + 1;ω0, ω1) + r U0(k;ω0, ω1) + q U0(k − 1;ω0, ω1), (6)

for k = 1, 2, . . . , N − 1, with the boundary conditions{
U0(0;ω0, ω1) = 1,

U0(N ;ω0, ω1) = ω1 U0(N − 1;ω0, ω1),
(7)

and

UN (k;ω0, ω1) = pUN (k + 1;ω0, ω1) + r UN (k;ω0, ω1) + q UN (k − 1;ω0, ω1), (8)

for k = 1, 2, . . . , N − 1, with the boundary conditions{
UN (0;ω0, ω1) = 0,

UN (N ;ω0, ω1) = ω1 U0(N − 1;ω0, ω1) + ω0.
(9)

where U0(k;ω0, ω1) (and UN (k;ω0, ω1)) be the probability of the number of steps necessary for the particle to
reach 0 before reaching and segregating at N (or reach and segregate at N before reaching 0), given that the particle
started in state k. In other terms, U0(k;ω0, ω1) and UN (k;ω0, ω1) are the probabilities of ultimate absorption at state
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0 and partially segregated at state N , respectively, given that the initial state is k, in situation (b) in Figure 1. While
the probability of partially annihilated at state N , represented by Uh

N (k;ω0, ω1), can be obtained by

Uh
N (k;ω0, ω1) = 1− [U0(k;ω0, ω1) + UN (k;ω0, ω1)] . (10)

Notice that the two cases (a) and (b) in Figure 1 can be easily derived from each other by reversing p and q, as
well as substituting N − k, ρ0, and ρ1 with k, ω0, and ω1, respectively. Therefore, in the next section, we address
the first of them in some detail and then briefly provide the results related to the second case.

3. Closed-form solution derivation using linear algebra

The main concern behind this section is to find explicit expressions for U0(k; ρ0, ρ1) and UN (k; ρ0, ρ1) by solving
the difference equation (1) with (2) (or (3) with (4)) algebraically, using the known method of eigenvalues,
eigenvectors, and matrix diagonalization. The pivotal idea is to employ a matrix representation for expressing
U0(k + 1; ρ0, ρ1) (or UN (k + 1; ρ0, ρ1)) in terms of U0(k; ρ0, ρ1) and U0(k − 1; ρ0, ρ1) (or UN (k; ρ0, ρ1) and
UN (k − 1; ρ0, ρ1)). Firstly, rearranging formula (1) as

U0(k + 1; ρ0, ρ1) =
1− r

p
U0(k; ρ0, ρ1)−

q

p
U0(k − 1; ρ0, ρ1), for k = 1, 2, . . . , N − 1. (11)

The difference equation (11) can be reformulated in the equivalent matrix representation as(
U0(k + 1; ρ0, ρ1)
U0(k; ρ0, ρ1)

)
= M

(
U0(k; ρ0, ρ1)

U0(k − 1; ρ0, ρ1)

)
, for k = 1, 2, . . . , N − 1, (12)

where M =

(
1−r
p − q

p

1 0

)
, 0 ≤ r < 1 and r = 1− (p+ q). Furthermore,(

U0(k + 1; ρ0, ρ1)
U0(k; ρ0, ρ1)

)
= Mk

(
U0(1; ρ0, ρ1)
U0(0; ρ0, ρ1)

)
, (13)

Hence, by diagonalizing the matrix M, a simple form for Mk can be obtained. Let λi be the ith-eigenvalue of M,
and ui is the corresponding eigenvector, for i = 1, 2.

Case I: When p ̸= q
The eigenvalues of M are the solutions of the following characteristic equation

det(M − λI) = (λ− 1)

(
λ− 1− r − p

p

)
= 0. (14)

Thus, there are two distinct eigenvalues of M: λ1 = 1−r−p
p and λ2 = 1. Subsequently, we have

M − λ1I =

(
1 − 1−r−p

p

1 − 1−r−p
p

)
and M − λ2I =

( 1−r−p
p − 1−r−p

p

1 −1

)

that can be transformed into the reduced Echelon forms
(
1 − 1−r−p

p

0 0

)
and

(
1 −1
0 0

)
, respectively. Therefore,

the eigenvectors corresponding to λ1 = 1−r−p
p and λ2 = 1 are given by u1 =

(
1−r−p

p

1

)
and u2 =

(
1
1

)
,

respectively. Consequently, the diagonal decomposition of M is given by

M = PDP−1 =
(
u1 u2

)(λ1 0
0 λ2

)(
u1 u2

)−1
=

( q
p 1

1 1

)( q
p 0

0 1

)
· 1

q − p

(
p −p
−p q

)
, (15)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 ALGEBRAIC SOLUTION OF TRINOMIAL MC-RW BETWEEN ABSORBING AND ELASTIC BARRIERS

where q = 1− r − p, and after some matrix computations, a simple form for Mk can be derived

Mk = PDkP−1 =
p

q − p


(

q
p

)k+1

− 1 −
(

q
p

)k+1

+ q
p(

q
p

)k
− 1 −

(
q
p

)k
+ q

p

 . (16)

Substituting from (16) in formula (13), we get

(
U0(k + 1; ρ0, ρ1)
U0(k; ρ0, ρ1)

)
=

1

q − p

p

[(
q
p

)k+1

− 1

]
−p
(

q
p

)k+1

+ q

p

[(
q
p

)k
− 1

]
−p
(

q
p

)k
+ q

(U0(1; ρ0, ρ1)
U0(0; ρ0, ρ1)

)
. (17)

Thus

U0(k; ρ0, ρ1) =
1

q − p

{
p

[(
q

p

)k

− 1

]
U0(1; ρ0, ρ1)−

[
p

(
q

p

)k

− q

]
U0(0; ρ0, ρ1)

}
. (18)

Using the boundary condition at 0 in (2) and by some simple calculations, (18) becomes

U0(k; ρ0, ρ1) =
1

q − p

{[
p

(
q

p

)k

(1− ρ1)− p+ qρ1

]
U0(1; ρ0, ρ1)− ρ0

[
p

(
q

p

)k

− q

]}
. (19)

Applying the second condition in (2), one can conclude that

U0(1; ρ0, ρ1) =

ρ0

(
q
p

)[
1−

(
q
p

)N−1
]

1− ρ1

(
q
p

)
− (1− ρ1)

(
q
p

)N . (20)

Finally, substituting from (20) into (19), we obtain a formal solution to the difference equation (1) that meets
the boundary conditions (2). It is a closed-form formula for the probability U0(k; ρ0, ρ1) of the trinomial MC-RW
problem between an elastic barrier at 0 and an absorbing barrier at N , in the case p ̸= q, where q = 1− r − p:

U0(k; ρ0, ρ1) =

ρ0

[(
q
p

)k
−
(

q
p

)N]
1− ρ1

(
q
p

)
− (1− ρ1)

(
q
p

)N . (21)

Case II: When p = q

The matrix M becomes M =

(
2 −1
1 0

)
. It has one repeated eigenvalue, η1 = 1 = η2, which are the roots of the

following characteristic equation

det(M − ηI) = (η − 1)2 = 0. (22)

Consequently, there exists a single eigenvector that corresponds to the duplicated eigenvalue, η1 = 1, given

by v1 =

(
1
1

)
. To continue diagonalizing the matrix M, a generalized eigenvector must be acquired by solving

(M − η2I) v2 = v1 for v2. Straightforward calculations led to v2 =

(
1
0

)
. Therefore, the Jordan decomposition of

M is given by

M = PJP−1 =
(
v1 v2

)(η1 1
0 η2

)(
v1 v2

)−1
=

(
1 1
1 0

)(
1 1
0 1

)(
0 1
1 −1

)
. (23)
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After some matrix algebra, a simple form for Mk can be obtained

Mk = PJkP−1 =

(
k + 1 −k
k 1− k

)
. (24)

Substituting from (24) in formula (13), we have(
U0(k + 1; ρ0, ρ1)
U0(k; ρ0, ρ1)

)
=

(
k + 1 −k
k 1− k

)(
U0(1; ρ0, ρ1)
U0(0; ρ0, ρ1)

)
. (25)

Hence,

U0(k; ρ0, ρ1) = k U0(1; ρ0, ρ1) + (1− k)U0(0; ρ0, ρ1). (26)

The first boundary condition in (2) implies that (26) becomes

U0(k; ρ0, ρ1) = [(1− ρ1)k + ρ1]U0(1; ρ0, ρ1)− ρ0(k − 1). (27)

Employing the second condition in (2), one can deduce that

U0(1; ρ0, ρ1) =
ρ0(N − 1)

(1− ρ1)N + ρ1
. (28)

Substituting from (28) into (27), we finally obtain the following closed-form formula for the partially segregated
probability at state 0 of the considered MC-RW problem in the case p = q, for 0 ≤ r < 1:

U0(k; ρ0, ρ1) =
ρ0(N − k)

(1− ρ1)N + ρ1
. (29)

Notice that the same form of (29) (in the case p = q) can be obtained from (21) (in the case p ̸= q) by using
L’Hospital’s rule with limit as a = 1−r−p

p → 1.

Similarly, by considering the difference equation (3) with (4), we can derive a closed-form formula for
UN (k; ρ0, ρ1) (the probability of ultimate absorption at N given that the initial state is k for 0 ≤ r < 1). Then, by
substituting for U0(k; ρ0, ρ1) and UN (k; ρ0, ρ1) into (5), we can obtain a closed-form formula for Uh

0 (k; ρ0, ρ1)
(the probability of partially annihilated at state 0 given that the initial state is k). Theorem 1 presents the findings.

Theorem 1. In the trinomial MC-RW between an elastic barrier at state 0 and an absorbing barrier at state N ,
the probability of

(i) segregating partially at 0, given that k was its initial position, is given by

U0(k; ρ0, ρ1) =

 ρ0

[(
q

p

)k

−
(
q

p

)N
]
K−1, for p ̸= q

ρ0(N − k)Λ−1, for p = q

(30)

(ii) annihilating partially at 0, given that k was its initial position, is given by

Uh
0 (k; ρ0, ρ1) =

 (1− ρ0 − ρ1)

[(
q

p

)k

−
(
q

p

)N
]
K−1, for p ̸= q

(1− ρ0 − ρ1)(N − k)Λ−1, for p = q

(31)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 ALGEBRAIC SOLUTION OF TRINOMIAL MC-RW BETWEEN ABSORBING AND ELASTIC BARRIERS

(iii) ultimate absorption at N , given that k was its initial position, is given by

UN (k; ρ0, ρ1) =


[
1− ρ1

(
q

p

)
− (1− ρ1)

(
q

p

)k
]
K−1, for p ̸= q

[(1− ρ1)k + ρ1] Λ
−1, for p = q

(32)

where K = 1− ρ1

(
q
p

)
− (1− ρ1)

(
q
p

)N
and Λ = (1− ρ1)N + ρ1, for q = 1− r − p and 0 ≤ r < 1.

For the trinomial MC-RW problem between an absorbing barrier at state 0 and an elastic barrier at state N ,
depicted in Figure 1(b), one can follow the same algebraic approach but employ formulas (6)-(10) to derive
closed-form formulas for the probabilities U0(k;ω0, ω1), UN (k;ω0, ω1), and Uh

0 (k;ω0, ω1), defined before.
However, as mentioned before, these probabilities can be directly obtained from the probabilities U0(k; ρ0, ρ1),
UN (k; ρ0, ρ1), and Uh

0 (k; ρ0, ρ1), by replacing N − k, ρ0, and ρ1 with k, q, ω0, and ω1, respectively. The results
are provided by Theorem 2.

Theorem 2. In the trinomial MC-RW between an absorbing barrier at state 0 and an elastic barrier at state N ,
the probability of

(i) ultimate absorption at 0, given that k was its initial position, is given by

U0(k;ω0, ω1) =


[
(1− ω1)

(
q

p

)k

−
(
q

p
− ω1

)(
q

p

)N−1
]
Γ−1, for p ̸= q

[(1− ω1)(N − k) + ω1] ∆
−1, for p = q

(33)

(ii) segregating partially at N , given that k was its initial position is given by

UN (k;ω0, ω1) =

ω0

[
1−

(
q

p

)k
]
Γ−1, for p ̸= q

ω0k∆
−1, for p = q

(34)

(iii) annihilating partially at N , given that k was its initial position, is given by

Uh
N (k;ω0, ω1) =

(1− ω0 − ω1)

[
1−

(
q

p

)k
]
Γ−1, for p ̸= q

(1− ω0 − ω1) k∆
−1, for p = q

(35)

where Γ = 1− ω1 −
(

q
p − ω1

)(
q
p

)N−1

and ∆ = (1− ω1)N + ω1, for q = 1− r − p and 0 ≤ r < 1.

4. Some particular cases

The trinomial MC-RW problem between an absorbing and an elastic barrier being investigated is beneficial as it
seems to be a generalization to several MC-RW issues that can occur in different applied science domains. Thus,
many interesting explicit formulas for absorption, segregation, or annihilating probabilities can be derived from
Theorems 1 and 2 as particular cases through an appropriate choice of the reflecting and segregating probabilities,
ρ0 and ρ1 (or ω0 and ω1). Table 1 presents some formulas for the probabilities U0(k; ρ0, ρ1) extracted from Theorem
1 when p+ q ≤ 1 (or r ̸= 0).
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Table 1. The probabilities U0(k; ρ0, ρ1) for particular cases from Theorem 1, when p+ q ≤ 1 (or r ̸= 0)

Particular Case If The probability U0(k; ρ0, ρ1) given by (30) becomes

Case I ρ0 + ρ1 = 1 U0(k; 1− ρ1, ρ1) =


(1− ρ1)

[
( qp )

k − ( qp )
N
]

1− ρ1(
q
p )− (1− ρ1)(

q
p )

N
, for p ̸= q

(1− ρ1)(N − k)

(1− ρ1)N + ρ1
, for p = q

Case II ρ0 + ρ1 = 1 and ρ1 = 0 U0(k; 1, 0) =


( qp )

k − ( qp )
N

1− ( qp )
N

, for p ̸= q

N − k

N
, for p = q

Case III ρ0 + ρ1 = 1 and ρ1 = 1 U0(k; 0, 1) = 0

Case IV ρ0 + ρ1 = 1 and ρ1 = p U0(k; 1− p, p) =


(1− p)

[
( qp )

k − ( qp )
N
]

1− q − (1− p)( qp )
N

, for p ̸= q

(1− p)(N − k)

(1− p)N + p
, for p = q

Note. q = 1− r − p

Strikingly, for all particular cases, the probabilities UN (k; ρ0, ρ1) = 1− U0(k; ρ0, ρ1) when ρ0 + ρ1 = 1.
Besides, the probabilities UN (k; ρ0, ρ1) (when ρ0 + ρ1 ≤ 1) are identical to the corresponding probabilities
UN (k; ρ0, ρ1) (when ρ0 + ρ1 = 1). But the probabilities U0(k; ρ0, ρ1) (when ρ0 + ρ1 ≤ 1) are ρ0

1−ρ1
times the

corresponding probabilities U0(k; ρ0, ρ1) (when ρ0 + ρ1 = 1). When p+ q = 1, we obtain the same forms for all
cases but with q = 1− p. Furthermore, the formulas of the corresponding particular cases from Theorem 2 can be
reached by interchanging N − k, p, ρ0, and ρ1 with k, q, ω0, and ω1, respectively.

On the other side, it is of interest to see what happens when the number of states, N , becomes large (N → ∞).
Theorems 1 and 2 can be easily modified to the semi-infinite lattice segment case by taking the limit as (N → ∞).
The following corollaries formulate our results.

Corollary 1. In the semi-infinite lattice segment case of the trinomial MC-RW between an elastic barrier at state
0 and an absorbing barrier at state N , the probability of

(i) segregating partially at the origin, starting from state k, is given by

lim
N→∞

U0(k; ρ0, ρ1) =

ρ0

(
q

p

)k [
1− ρ1

q

p

]−1

, for p ̸= q

ρ0(1− ρ1)
−1, for p = q

(36)

(ii) annihilating partially at the origin, starting from state k, is given by
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lim
N→∞

Uh
0 (k; ρ0, ρ1) =

(1− ρ0 − ρ1)

(
q

p

)k [
1− ρ1

q

p

]−1

, for p ̸= q

(1− ρ0 − ρ1)(1− ρ1)
−1, for p = q

(37)

(iii) escapes to infinity, starting from state k, is given by

U∞(k; ρ0, ρ1) = 1−
[
lim

N→∞
U0(k; ρ0, ρ1) + lim

N→∞
Uh
0 (k; ρ0, ρ1)

]

=


[
1− ρ1

(
q

p

)
− (1− ρ1)

(
q

p

)k
][

1− ρ1

(
q

p

)]−1

, for p ̸= q

0, for p = q

(38)

where q
p < 1, q = 1− r − p, and 0 ≤ r < 1.

Corollary 2. In the semi-infinite lattice segment case of the trinomial MC-RW between an absorbing barrier at
state 0 and an elastic barrier at state N , the probability of

(i) ultimate absorption at the origin, starting from state k, is given by

lim
N→∞

U0(k;ω0, ω1) =


(
q

p

)k

, for p ̸= q

1, for p = q

(39)

(ii) escapes to infinity, starting from state k, is given by

U∞(k;ω0, ω1) = lim
N→∞

UN (k;ω0, ω1) + lim
N→∞

Uh
N (k;ω0, ω1) =

1−
(
q

p

)k

, for p ̸= q

0, for p = q

(40)

where q
p < 1, q = 1− r − p, and 0 ≤ r < 1.

5. Conclusions

This study underscores the potential viability of solving the difference equations that govern the motion of the
trinomial MC-RW problem with absorbing and elastic barriers using principles of linear algebra. Closed-form
expressions for the absorption, segregation, and annihilation probabilities of two trinomial MC-RW problems
between an absorbing and an elastic barrier have been derived utilizing eigenvalues and eigenvectors. Moreover,
some precise and clear explicit formulas have been obtained for some particular cases in addition to the semi-
infinite lattice segment case. While some of the findings were established in existing literature using traditional
methods, others seem “new” and have not been discussed. Notwithstanding that the derivation process based
on linear algebra may be more intricate than traditional methods, this research effectively illustrates how
straightforward the problem can be solved. Further research could explore applying the method to other MC-RW
problems, including those in higher dimensions.
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