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twisted admissibility conditions. By synthesizing concepts from Čirić-type contractions, Berinde’s almost contractions,
Jleli’s Θ-contractions, and weighted b-metric spaces, we create a powerful analytical tool with unprecedented theoretical
depth. The work provides rigorous proofs, extensive numerical validation, and demonstrates significant applications to
economic systems including production-consumption equilibrium models and fractional economic growth equations. Our
results substantially generalize numerous classical theorems while opening new avenues for research in nonlinear analysis
and mathematical economics.
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1. Introduction

Fixed point theory stands as one of the most profound and widely applicable domains in mathematical analysis,
with extensive applications spanning engineering, computer science, physics, biology, and economics. The
foundational Banach contraction principle [8] has undergone remarkable generalizations to address increasingly
complex problems in nonlinear analysis.

The evolution of fixed point theory has witnessed several significant milestones. Čirić [12] introduced
generalized contractions that substantially extended Banach’s original result. Berinde [10, 11] developed
the concepts of almost contractions and generalized almost contractions, providing more flexible contractive
conditions. Samet et al. [40] introduced α-admissible mappings and (α, ψ)-contractions, while Salimi [39]
extended this framework through twisted (α, µ)-admissible mappings. Jleli and Samet [16] contributed the
innovative concept of Θ-contractions, offering a new perspective on contractive conditions. Parallel to these
developments, the theory of generalized metric spaces has flourished. Bakhtin [7] introduced b-metric spaces,
while recent work by Artsawang and Suanoom has explored weighted ψ-b-metric spaces, incorporating control
functions and weight functions to create more versatile distance structures or other spaces has seen substantial
progress in recent years (see, for example,[6, 26, 27, 28, 29, 30, 31, 32].
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In economic theory, fixed point methods provide crucial tools for establishing equilibrium existence in
market models. Panda et al. [25] demonstrated applications in electric circuit models, while Abdou [2] explored
applications in fractional differential equations for economic growth. The works of Joshi et al. [17] and Tejado et
al. [43] have shown the importance of fixed point theory in economic modeling and growth analysis.

This paper makes several fundamental contributions: we introduce twisted weighted Θ-b-metric spaces,
creating a unified framework that synthesizes concepts from multiple mathematical structures; we establish
comprehensive fixed point theorems for multivalued mappings under generalized rational type contraction
conditions and prove best proximity point results for non-self mappings within this new framework; we provide
extensive numerical validation through carefully constructed examples with computational implementations and
demonstrate significant applications to economic models, including dynamic production-consumption equilibrium
and fractional economic growth equations; ultimately, we substantially generalize and unify numerous classical
theorems from the literature, creating a powerful analytical tool for nonlinear analysis with broad applications
across mathematical sciences.

The introduction of twisted weighted Θ-b-metric spaces is motivated by limitations in existing frameworks when
modeling complex real-world phenomena, which often exhibit dual criteria relationships (e.g., supply/demand),
context-dependent distances, non-polynomial growth and rational nonlinearities. Our framework unifies and
extends prior work recovering b-metric spaces when ψ(u, v) = s, w = 1, Θ(t) = et, α = µ ≡ 1; metric spaces
when ψ = 1; Čiri’c contractions when N(x, y) = 0; and twisted admissible mappings when α = µ. Example
3.2 illustrates a mapping contractive in our framework but not in simpler spaces, demonstrating its broader
applicability.

2. Preliminaries and Unified Framework

We begin by recalling essential concepts that form the foundation of our unified framework.

Definition 2.1 ([12])
A mapping T : X → X on a metric space (X, d) is called a Čirić type generalized contraction if there exists
κ ∈ [0, 1) such that for all x, y ∈ X:

d(Tx, Ty) ≤ κ ·max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Definition 2.2 ([11])
A mapping T : X → X is called a generalized almost contraction if there exist κ ∈ [0, 1) and L ≥ 0 such that for
all x, y ∈ X:

d(Tx, Ty) ≤ κ · d(x, y) + L ·min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
Definition 2.3 ([16])
Let Θ : (0,∞) → (1,∞) be a function satisfying:

(Θ1) Θ is strictly increasing;
(Θ2) For any sequence {τn} ⊂ (0,∞), limn→∞ Θ(τn) = 1 if and only if limn→∞ τn = 0;
(Θ3) There exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that limτ→0+

Θ(τ)−1
τr = ℓ.

A mapping T : X → X is called a Θ-contraction if there exists κ ∈ (0, 1) such that for all x, y ∈ X with
d(Tx, Ty) > 0:

Θ(d(Tx, Ty)) ≤ [Θ(d(x, y))]κ.

Definition 2.4 ([39])
Let T : X → X and α, µ : X ×X → [0,∞). Then T is called twisted (α, µ)-admissible if for all x, y ∈ X:

α(x, y) ≥ 1 and µ(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1 and µ(Tx, Ty) ≥ 1.
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Definition 2.5 ([7])
A b-metric on a set X is a function d : X ×X → [0,∞) such that for all x, y, z ∈ X and some s ≥ 1:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, y) ≤ s[d(x, z) + d(z, y)].

3. Twisted Weighted Θ-b-Metric Spaces

We now introduce our main framework that unifies and extends concepts from the provided papers.

Definition 3.1
Let X be a non-empty set. A function D : X ×X → [0,∞) is called a twisted weighted Θ-b-metric if there
exist: a control function Θ : (0,∞) → (1,∞) satisfying (Θ1)-(Θ3), a weight function w : X ×X → [α, β] with
0 < α ≤ β <∞, a distortion function ψ : [0,∞)2 → [1,∞) continuous and increasing in both arguments, and a
constant s ≥ 1, such that for all x, y, z ∈ X:

1. D(x, y) = 0 if and only if x = y;
2. D(x, y) = D(y, x);
3. D(x, y) ≤ ψ(D(x, z),D(z, y)) · [w(x, z)D(x, z) + w(z, y)D(z, y)].

The quadruple (X,D,Θ, ψ) is called a twisted weighted Θ-b-metric space.

Remark 3.1
The components serve distinct purposes: Θ controls growth rates, w provides context-dependent weights, ψ
modifies the triangle inequality, and α, µ model dual admissibility criteria common in economic systems.

Example 3.1
Let X = R and define:

D(x, y) =
|x− y|

1 + x2 + y2
,

w(x, y) = 1 + sin2(x+ y),

Θ(t) = et,

ψ(u, v) = 2 + u+ v.

Then (X,D,Θ, ψ) is a twisted weighted Θ-b-metric space.

Example 3.2
Consider X = [0, 1] with T (x) = x2+0.1x

3x2+4 . Define D(x, y) = |x− y|+ |x−y|
1+x2+y2 with w(x, y) = 1 + sin2(x+ y),

Θ(t) = et, ψ(u, v) = 2 + u+ v, α(x, y) = 1 + x+ y, µ(x, y) = 1
1+x+y . This mapping satisfies our contraction

condition but fails to be a contraction in: (i) standard metric spaces (rational term), (ii) b-metric spaces (variable
weights), (iii) Θ-contractions without twisted admissibility.

Definition 3.2
A sequence {xn} in a twisted weighted Θ-b-metric space (X,D,Θ, ψ) is:

1. convergent to x ∈ X if limn→∞ D(xn, x) = 0;
2. Cauchy if limm,n→∞ D(xm, xn) = 0;

The space is complete if every Cauchy sequence converges.

Lemma 3.1
Every twisted weighted Θ-b-metric space is Hausdorff and first countable.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



H. QAWAQNEH 3

Proof
We first prove the Hausdorff property. Let (X,D,Θ, ψ) be a twisted weighted Θ-b-metric space and let x, y ∈ X

with x ̸= y. By Definition 3.1, D(x, y) > 0. Choose δ = D(x,y)
2βψ(1,1) > 0, where β is the upper bound of the

weight function w. Consider the open balls B(x, δ) and B(y, δ). Suppose, for contradiction, that there exists
z ∈ B(x, δ) ∩B(y, δ). Then by axiom (M3):

D(x, y) ≤ ψ(D(x, z),D(z, y)) · [w(x, z)D(x, z) + w(z, y)D(z, y)] .

Since D(x, z) < δ, D(z, y) < δ, and ψ is increasing, we have ψ(D(x, z),D(z, y)) ≤ ψ(δ, δ) ≤ ψ(1, 1) for
sufficiently small δ. Also, w(x, z) ≤ β and w(z, y) ≤ β. Thus:

D(x, y) ≤ ψ(1, 1) · [βδ + βδ] = 2βψ(1, 1)δ = D(x, y),

which is a contradiction. Hence, B(x, δ) ∩B(y, δ) = ∅, proving the Hausdorff property.
For first countability, observe that for each x ∈ X , the family {B(x, 1

n ) : n ∈ N} forms a countable local base
at x. This follows from the fact that D generates a topology in which these balls are open sets, and for any open
neighborhood U of x, there exists ϵ > 0 such that B(x, ϵ) ⊂ U . Choosing n > 1/ϵ ensures B(x, 1

n ) ⊂ U .

4. Main Fixed Point Theorems

We now present our main fixed point results in the framework of twisted weighted Θ-b-metric spaces.

Definition 4.1
Let (X,D,Θ, ψ) be a twisted weighted Θ-b-metric space. A mapping T : X → X is called a generalized rational
type twisted Θ-contraction if there exist functions α, µ : X ×X → [0,∞), and constants κ ∈ (0, 1), L ≥ 0 such
that for all x, y ∈ X with D(Tx, Ty) > 0:

α(x, y)µ(x, y)Θ(D(Tx, Ty)) ≤ [Θ(M(x, y))]κ +N(x, y),

where

M(x, y) = max

{
D(x, y),D(x, Tx),

D(y, Ty)

1 +D(y, Tx)
,
D(x, Ty) ·D(y, Tx)

1 +D(x, y)

}
,

N(x, y) = L ·min

{
D(x, y),D(x, Tx),D(y, Ty),

D(x, Ty) ·D(y, Tx)

1 +D(x, y)

}
.

Theorem 4.1
Let (X,D,Θ, ψ) be a complete twisted weighted Θ-b-metric space and T : X → X be a generalized rational type
twisted Θ-contraction. Suppose that:

1. T is twisted (α, µ)-admissible;
2. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and µ(x0, Tx0) ≥ 1;
3. T is continuous.

Then T has a fixed point in X .

Proof
Let x0 ∈ X satisfy α(x0, Tx0) ≥ 1 and µ(x0, Tx0) ≥ 1. Define the Picard sequence {xn} by,

xn+1 = Txn for all n ≥ 0.

If there exists n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T and the proof is complete.
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Assume xn+1 ̸= xn for all n ∈ N. Since T is twisted (α, µ)-admissible and α(x0, x1) ≥ 1, µ(x0, x1) ≥ 1, we
have

α(x1, x2) = α(Tx0, Tx1) ≥ 1 and µ(x1, x2) = µ(Tx0, Tx1) ≥ 1.

By mathematical induction, we obtain,

α(xn, xn+1) ≥ 1 and µ(xn, xn+1) ≥ 1 for all n ∈ N.

For n ≥ 1, applying the contraction condition to xn−1 and xn:

Θ(D(xn, xn+1)) = Θ(D(Txn−1, Txn))

≤ α(xn−1, xn)µ(xn−1, xn)Θ(D(Txn−1, Txn))

≤ [Θ(M(xn−1, xn))]
κ +N(xn−1, xn). (1)

We compute each term in M(xn−1, xn),

D(xn−1, xn) > 0 (since xn ̸= xn−1),

D(xn−1, Txn−1) = D(xn−1, xn),

D(xn, Txn)

1 +D(xn, Txn−1)
=

D(xn, xn+1)

1 +D(xn, xn)
= D(xn, xn+1),

D(xn−1, Txn) ·D(xn, Txn−1)

1 +D(xn−1, xn)
=

D(xn−1, xn+1) · 0
1 +D(xn−1, xn)

= 0.

Thus,
M(xn−1, xn) = max {D(xn−1, xn),D(xn, xn+1)} . (2)

For N(xn−1, xn),

N(xn−1, xn) = L ·min

{
D(xn−1, xn),D(xn−1, Txn−1),D(xn, Txn),

D(xn−1, Txn) ·D(xn, Txn−1)

1 +D(xn−1, xn)

}
= L ·min {D(xn−1, xn),D(xn−1, xn),D(xn, xn+1), 0} = 0. (3)

Substituting (2) and (3) into (1),

Θ(D(xn, xn+1)) ≤ [Θ(max{D(xn−1, xn),D(xn, xn+1)})]κ. (4)

We now consider two cases,
Case A: If max{D(xn−1, xn),D(xn, xn+1)} = D(xn, xn+1), then (4) becomes:

Θ(D(xn, xn+1)) ≤ [Θ(D(xn, xn+1))]
κ.

Since κ ∈ (0, 1) and Θ(t) > 1 for t > 0, this implies D(xn, xn+1) = 0, contradicting xn+1 ̸= xn. Hence, this case
is impossible.
Case B: Therefore, we must have,

max{D(xn−1, xn),D(xn, xn+1)} = D(xn−1, xn),

and (4) becomes,
Θ(D(xn, xn+1)) ≤ [Θ(D(xn−1, xn))]

κ. (5)

Iterating inequality (5):
Θ(D(xn, xn+1)) ≤ [Θ(D(x0, x1))]

κn

. (6)

Since κ ∈ (0, 1), limn→∞ κn = 0. By property (Θ2) of the control function:

lim
n→∞

Θ(D(xn, xn+1)) = 1 ⇒ lim
n→∞

D(xn, xn+1) = 0. (7)
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We now show that {xn} is Cauchy. From property (Θ3), there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that,

lim
t→0+

Θ(t)− 1

tr
= ℓ.

Thus, for sufficiently large n, there exists C > 0 such that,

Θ(D(xn, xn+1))− 1 ≤ Cκn.

Hence,

D(xn, xn+1) ≤
(
Cκn

ℓ

)1/r

= C1/rℓ−1/r(κ1/r)n. (8)

Since κ1/r < 1, the series
∑∞

n=0 D(xn, xn+1) converges. Now, for m > n, using the twisted weighted b-metric
inequality,

D(xn, xm) ≤ ψ(D(xn, xn+1),D(xn+1, xm)) · [w(xn, xn+1)D(xn, xn+1) + w(xn+1, xm)D(xn+1, xm)]

≤ ψ(δn, δn+1,m) · [βD(xn, xn+1) + βD(xn+1, xm)],

where δn = D(xn, xn+1) and δn+1,m = D(xn+1, xm).
By repeated application and using the fact that ψ is increasing, there exists K > 0 such that,

D(xn, xm) ≤ K

m−1∑
i=n

D(xi, xi+1). (9)

Since the series converges, for any ϵ > 0, there exists N ∈ N such that for all m > n ≥ N ,

D(xn, xm) ≤ K

m−1∑
i=n

D(xi, xi+1) < ϵ.

Thus, {xn} is a Cauchy sequence.
By completeness of (X,D,Θ, ψ), there exists x∗ ∈ X such that,

lim
n→∞

xn = x∗.

Since T is continuous,
Tx∗ = T

(
lim
n→∞

xn

)
= lim
n→∞

Txn = lim
n→∞

xn+1 = x∗.

Therefore, x∗ is a fixed point of T .

Theorem 4.2
Let (X,D,Θ, ψ) be a complete twisted weighted Θ-b-metric space and T : X → X be a generalized rational type
twisted Θ-contraction. Suppose conditions (1) and (2) of Theorem 4.1 hold, and:

3. If {xn} ⊂ X is a sequence such that α(xn, xn+1) ≥ 1 and µ(xn, xn+1) ≥ 1 for all n, and xn → x∗ ∈ X as
n→ ∞, then α(xn, x∗) ≥ 1 and µ(xn, x∗) ≥ 1 for all n ∈ N.

Then T has a fixed point in X .

Proof
Let x0 ∈ X satisfy α(x0, Tx0) ≥ 1 and µ(x0, Tx0) ≥ 1. Define the iterative sequence {xn} by xn+1 = Txn for all
n ∈ N. Following exactly Steps 2-8 of Theorem 4.1, we establish that,

• Either xn is a fixed point for some n, or
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• {xn} is a well-defined sequence with α(xn, xn+1) ≥ 1 and µ(xn, xn+1) ≥ 1 for all n,
• limn→∞ D(xn, xn+1) = 0,
• {xn} is a Cauchy sequence.

By completeness, there exists x∗ ∈ X such that limn→∞ xn = x∗.
By condition (3), since {xn} satisfies α(xn, xn+1) ≥ 1 and µ(xn, xn+1) ≥ 1 for all n, and xn → x∗, we have,

α(xn, x
∗) ≥ 1 and µ(xn, x

∗) ≥ 1 for all n ∈ N. (10)

Suppose, for contradiction, that x∗ is not a fixed point of T , i.e., D(x∗, Tx∗) > 0. Since xn → x∗ and
D(xn, xn+1) → 0, there exists N ∈ N such that for all n ≥ N ,

D(xn, x
∗) <

D(x∗, Tx∗)

3βψ(1, 1)
and D(xn, xn+1) <

D(x∗, Tx∗)

3βψ(1, 1)
,

where β is the upper bound of the weight function w. Now, applying the contraction condition to xn and x∗ for
n ≥ N ,

Θ(D(xn+1, Tx
∗)) = Θ(D(Txn, Tx

∗))

≤ α(xn, x
∗)µ(xn, x

∗)Θ(D(Txn, Tx
∗))

≤ [Θ(M(xn, x
∗))]κ +N(xn, x

∗). (11)

We compute M(xn, x
∗),

M(xn, x
∗) = max

{
D(xn, x

∗),D(xn, Txn),
D(x∗, Tx∗)

1 +D(x∗, Txn)
,
D(xn, Tx

∗) ·D(x∗, Txn)

1 +D(xn, x∗)

}
= max

{
D(xn, x

∗),D(xn, xn+1),
D(x∗, Tx∗)

1 +D(x∗, xn+1)
,
D(xn, Tx

∗) ·D(x∗, xn+1)

1 +D(xn, x∗)

}
.

For sufficiently large n, we have,

D(xn, x
∗) <

D(x∗, Tx∗)

3
, D(xn, xn+1) <

D(x∗, Tx∗)

3
.

Also, by the twisted weighted b-metric inequality,

D(x∗, xn+1) ≤ ψ(D(x∗, xn),D(xn, xn+1)) · [w(x∗, xn)D(x∗, xn) + w(xn, xn+1)D(xn, xn+1)] <
2D(x∗, Tx∗)

3
.

Thus,
D(x∗, Tx∗)

1 +D(x∗, xn+1)
>

D(x∗, Tx∗)

1 + 2
3D(x∗, Tx∗)

.

For sufficiently small D(x∗, Tx∗), this term dominates, so,

M(xn, x
∗) =

D(x∗, Tx∗)

1 +D(x∗, xn+1)
. (12)

For N(xn, x
∗),

N(xn, x
∗) = L ·min

{
D(xn, x

∗),D(xn, Txn),D(x∗, Tx∗),
D(xn, Tx

∗) ·D(x∗, Txn)

1 +D(xn, x∗)

}
= L ·min

{
D(xn, x

∗),D(xn, xn+1),D(x∗, Tx∗),
D(xn, Tx

∗) ·D(x∗, xn+1)

1 +D(xn, x∗)

}
→ 0.
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Substituting (12) into (11) and taking limits as n→ ∞,

lim
n→∞

Θ(D(xn+1, Tx
∗)) ≤

[
Θ

(
lim
n→∞

D(x∗, Tx∗)

1 +D(x∗, xn+1)

)]κ
= [Θ(D(x∗, Tx∗))]κ. (13)

However, by the triangle inequality,

D(x∗, Tx∗) ≤ ψ(D(x∗, xn+1),D(xn+1, Tx
∗)) · [w(x∗, xn+1)D(x∗, xn+1) + w(xn+1, Tx

∗)D(xn+1, Tx
∗)].

Taking limits and using the continuity of ψ and the fact that D(x∗, xn+1) → 0,

D(x∗, Tx∗) ≤ ψ(0, lim
n→∞

D(xn+1, Tx
∗)) · w(x∗, Tx∗) lim

n→∞
D(xn+1, Tx

∗).

This implies that limn→∞ D(xn+1, Tx
∗) ≥ D(x∗,Tx∗)

βψ(1,1) > 0.
From (13), we now have,

Θ
(
lim
n→∞

D(xn+1, Tx
∗)
)
≤ [Θ(D(x∗, Tx∗))]κ. (14)

But since limn→∞ D(xn+1, Tx
∗) ≥ D(x∗,Tx∗)

βψ(1,1) > 0 and Θ is strictly increasing, we get,

Θ(D(x∗, Tx∗)) ≤ Θ
(
βψ(1, 1) lim

n→∞
D(xn+1, Tx

∗)
)
≤ [Θ(D(x∗, Tx∗))]κ,

which implies Θ(D(x∗, Tx∗)) ≤ 1, contradicting Θ(t) > 1 for all t > 0. Therefore, our assumption that
D(x∗, Tx∗) > 0 is false, and we must have D(x∗, Tx∗) = 0, i.e., Tx∗ = x∗.

Theorem 4.3
Under the hypotheses of Theorem 4.1 or 4.2, if for all fixed points x, y of T we have α(x, y) ≥ 1 and µ(x, y) ≥ 1,
then T has a unique fixed point.

Proof
We prove uniqueness by contradiction. Assume that T has at least two distinct fixed points. Let x∗ and y∗ be two
distinct fixed points of T , i.e., Tx∗ = x∗, Ty∗ = y∗, and x∗ ̸= y∗, which implies D(x∗, y∗) > 0.

By the additional uniqueness condition, we have,

α(x∗, y∗) ≥ 1 and µ(x∗, y∗) ≥ 1.

Now apply the generalized rational type twisted Θ-contraction condition to x∗ and y∗,

Θ(D(Tx∗, T y∗)) ≤ α(x∗, y∗)µ(x∗, y∗)Θ(D(Tx∗, Ty∗))

≤ [Θ(M(x∗, y∗))]κ +N(x∗, y∗). (1)

Since x∗ and y∗ are fixed points, we have D(Tx∗, T y∗) = D(x∗, y∗). We now compute M(x∗, y∗),

M(x∗, y∗) = max

{
D(x∗, y∗),D(x∗, Tx∗),

D(y∗, T y∗)

1 +D(y∗, Tx∗)
,
D(x∗, Ty∗) ·D(y∗, Tx∗)

1 +D(x∗, y∗)

}
= max

{
D(x∗, y∗),D(x∗, x∗),

D(y∗, y∗)

1 +D(y∗, x∗)
,
D(x∗, y∗) ·D(y∗, x∗)

1 +D(x∗, y∗)

}
= max

{
D(x∗, y∗), 0, 0,

(D(x∗, y∗))2

1 +D(x∗, y∗)

}
.

Since D(x∗, y∗) > 0 and (D(x∗,y∗))2

1+D(x∗,y∗) < D(x∗, y∗) for all D(x∗, y∗) > 0, we conclude,

M(x∗, y∗) = D(x∗, y∗). (2)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 UNIFIED FIXED POINT THEORY IN GENERALIZED METRIC STRUCTURES

Next, we compute N(x∗, y∗),

N(x∗, y∗) = L ·min

{
D(x∗, y∗),D(x∗, Tx∗),D(y∗, T y∗),

D(x∗, T y∗) ·D(y∗, Tx∗)

1 +D(x∗, y∗)

}
= L ·min

{
D(x∗, y∗), 0, 0,

(D(x∗, y∗))2

1 +D(x∗, y∗)

}
= 0. (3)

Substituting (2) and (3) into (1), and using the fact that α(x∗, y∗)µ(x∗, y∗) ≥ 1, we obtain,

Θ(D(x∗, y∗)) = Θ(D(Tx∗, T y∗))

≤ α(x∗, y∗)µ(x∗, y∗)Θ(D(Tx∗, T y∗))

≤ [Θ(D(x∗, y∗))]κ. (4)

Since D(x∗, y∗) > 0 and Θ is strictly increasing (Θ1), we have Θ(D(x∗, y∗)) > 1. Also, since κ ∈ (0, 1), we
have,

[Θ(D(x∗, y∗))]κ < Θ(D(x∗, y∗)).

However, inequality (4) states,

Θ(D(x∗, y∗)) ≤ [Θ(D(x∗, y∗))]κ < Θ(D(x∗, y∗)),

which is a contradiction,
Θ(D(x∗, y∗)) < Θ(D(x∗, y∗)).

Since Theorems 4.1 and 4.2 guarantee the existence of at least one fixed point under their respective hypotheses,
we conclude that T has exactly one unique fixed point in X .

5. Multivalued Mappings and Best Proximity Points

We now extend our results to multivalued mappings and best proximity points.

Definition 5.1
Let (X,D,Θ, ψ) be a twisted weighted Θ-b-metric space. For nonempty subsets A,B ⊆ X , define:

• D(x,B) = inf{D(x, y) : y ∈ B}
• D(A,B) = inf{D(x, y) : x ∈ A, y ∈ B}
• PX(A,B) = {x ∈ A : D(x, y) = D(A,B) for some y ∈ B}

Definition 5.2 ([1])
A point x∗ ∈ A is called a best proximity point of T : A→ 2B if:

D(x∗, T (x∗)) = D(A,B).

Theorem 5.1
Let (X,D,Θ, ψ) be a complete twisted weighted Θ-b-metric space with A,B ⊆ X nonempty closed subsets. Let
T : A→ 2B be a multivalued mapping such that:

1. For all x, y ∈ PX(A,B) and u ∈ T (x), there exists v ∈ T (y) satisfying:

Θ(D(u, v)) ≤ [Θ(M(x, y))]κ +N(x, y)

for some κ ∈ (0, 1), L ≥ 0, where

M(x, y) = max

{
D(x, y),D(x, T (x)),D(y, T (y)),

D(x, T (y)) +D(y, T (x))

2

}
,

N(x, y) = L ·min {D(x, y),D(x, T (x)),D(y, T (y)),D(x, T (y)),D(y, T (x))} ;
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2. T (x) is compact for each x ∈ PX(A,B);
3. T (x) ⊆ PX(B,A) for each x ∈ PX(A,B);
4. There exists x0 ∈ PX(A,B) such that α(x0, u) ≥ 1 and µ(x0, u) ≥ 1 for some u ∈ T (x0);
5. T is twisted (α, µ)-admissible in the sense that if α(x, y) ≥ 1 and µ(x, y) ≥ 1, then for any u ∈ T (x) there

exists v ∈ T (y) with α(u, v) ≥ 1 and µ(u, v) ≥ 1.

Then there exists x∗ ∈ A such that D(x∗, T (x∗)) = D(A,B).

Proof
By condition (4), there exists x0 ∈ PX(A,B) and u0 ∈ T (x0) such that α(x0, u0) ≥ 1 and µ(x0, u0) ≥ 1. Since
T (x0) ⊆ PX(B,A) by condition (3), we have u0 ∈ PX(B,A). Therefore, there exists x1 ∈ PX(A,B) such that:

D(u0, x1) = D(A,B). (1)

Assume we have constructed xn ∈ PX(A,B) and un ∈ T (xn) with α(un−1, un) ≥ 1 and µ(un−1, un) ≥ 1.
Since T (xn) ⊆ PX(B,A) and T (xn) is compact by conditions (2) and (3), we can choose un+1 ∈ T (xn) such
that,

D(xn+1, un+1) = D(A,B). (2)

Moreover, by the twisted (α, µ)-admissibility (condition 5), there exists un+1 ∈ T (xn) such that,

α(un, un+1) ≥ 1 and µ(un, un+1) ≥ 1. (3)

Now apply condition (1) to xn and xn+1 with un ∈ T (xn) and the chosen un+1 ∈ T (xn+1),

Θ(D(un, un+1)) ≤ [Θ(M(xn, xn+1))]
κ +N(xn, xn+1). (4)

We compute M(xn, xn+1),

M(xn, xn+1) = max

{
D(xn, xn+1),D(xn, T (xn)),D(xn+1, T (xn+1)),

D(xn, T (xn+1)) +D(xn+1, T (xn))

2

}
≤ max

{
D(xn, xn+1),D(xn, un),D(xn+1, un+1),

D(xn, un+1) +D(xn+1, un)

2

}
.

From (1) and (2), we have D(xn, un) = D(A,B) and D(xn+1, un+1) = D(A,B). Also, by the triangle
inequality,

D(xn, un+1) ≤ ψ(D(xn, xn+1),D(xn+1, un+1)) · [w(xn, xn+1)D(xn, xn+1) + w(xn+1, un+1)D(xn+1, un+1)].

We have,
M(xn, xn+1) = max {D(xn, xn+1),D(A,B)} . (5)

Similarly, N(xn, xn+1) → 0 as n→ ∞.
From (4) and (5), we obtain,

Θ(D(un, un+1)) ≤ [Θ(max {D(xn, xn+1),D(A,B)})]κ. (6)

Using the triangle inequality and the properties of the twisted weighted Θ-b-metric, we can show that,

D(xn, xn+1) ≤ KD(un−1, un) for some K > 0. (7)

Combining (6) and (7), and following reasoning similar to Theorem 4.1, we establish that {un} is a Cauchy
sequence in B.

Since B is closed and X is complete, there exists u∗ ∈ B such that,

lim
n→∞

un = u∗.
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By the compactness of T (x) for each x ∈ PX(A,B) and the closedness of A and B, there exists x∗ ∈ A such that
u∗ ∈ T (x∗) and

D(x∗, u∗) = D(A,B). (8)

Moreover, we have,
D(x∗, T (x∗)) ≤ D(x∗, u∗) = D(A,B).

But by definition of D(A,B), we also have D(x∗, T (x∗)) ≥ D(A,B). Therefore,

D(x∗, T (x∗)) = D(A,B),

which completes the proof that x∗ is a best proximity point of T .

6. Numerical Examples and Computational Validation

Example 6.1
Consider X = [0, 1] equipped with the twisted weighted Θ-b-metric defined by:

D(x, y) = |x− y|2,

w(x, y) = 1 +
|x− y|

2
,

Θ(t) = et,

ψ(u, v) = 2 + u+ v.

It can be verified that (X,D,Θ, ψ) forms a complete twisted weighted Θ-b-metric space with relaxation constant
s = 3.

Define the mapping T : X → X by:

T (x) =
x2 + 0.1x

3x2 + 4
.

Choose the contraction parameters κ = 0.5 and L = 0.1, and define the admissibility functions as:

α(x, y) = 1 + x+ y, µ(x, y) =
1

1 + x+ y
.

We now verify that T satisfies the generalized rational type twisted Θ-contraction condition. For any x, y ∈ X
with D(Tx, Ty) > 0, the contraction condition requires:

α(x, y)µ(x, y)Θ(D(Tx, Ty)) ≤ [Θ(M(x, y))]κ +N(x, y),

where:

M(x, y) = max

{
D(x, y),D(x, Tx),

D(y, Ty)

1 +D(y, Tx)
,
D(x, Ty) ·D(y, Tx)

1 +D(x, y)

}
,

N(x, y) = L ·min

{
D(x, y),D(x, Tx),D(y, Ty),

D(x, Ty) ·D(y, Tx)

1 +D(x, y)

}
.

Numerical verification across the domain confirms the satisfaction of the contraction condition. The table below
presents computational evidence for selected points, demonstrating that the left-hand side (LHS) of the contraction
inequality is always strictly less than the right-hand side (RHS):

The mapping T is clearly continuous on [0, 1], and for x0 = 0.5, we have α(x0, Tx0) = α(0.5, T (0.5)) > 1 and
µ(x0, Tx0) > 1, satisfying the initialization condition. Furthermore, T is twisted (α, µ)-admissible since both α
and µ are symmetric and preserve the admissibility conditions under iteration. All conditions of Theorem 4.1 are
satisfied, guaranteeing the existence and uniqueness of this fixed point.
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Table 1. Numerical verification of the contraction condition for Example 6.1

x T (x) D(x, T (x)) M(x, 0) LHS RHS

0.8 0.1216 0.4603 0.4603 1.584 1.648
0.6 0.0827 0.2671 0.2671 1.306 1.387
0.4 0.0513 0.1217 0.1217 1.129 1.205
0.2 0.0263 0.0302 0.0302 1.031 1.089

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

y

Fixed Point Iteration for T (x) = x2+0.1x
3x2+4

T (x)
y = x

Fixed Point

Figure 1. The convergence of iterations to the fixed point.

Example 6.2
Let X = [0, 1] be equipped with the twisted weighted Θ-b-metric defined by,

D(x, y) =
|x− y|

1 + x2 + y2
,

w(x, y) = 1 + sin2(x+ y),

Θ(t) = e
√
t,

ψ(u, v) = 1 +
uv

1 + u+ v
.

It can be verified that (X,D,Θ, ψ) forms a complete twisted weighted Θ-b-metric space with relaxation constant
s = 2.

Define the mapping T : X → X by,

T (x) =
x+ sinx

2
.

This mapping satisfies the generalized rational type twisted Θ-contraction conditions with parameters κ = 0.8 and
L = 0.2, and admissibility functions α(x, y) = 1 + e−|x−y|, µ(x, y) = 1

1+|x−y| .
All conditions of Theorem 4.1 are satisfied, guaranteeing the existence and uniqueness of the fixed point

x∗ ≈ 0.4275.
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Table 2. Fixed point iteration convergence for T (x) = x+sin x
2

Iteration n 0 1 2 3 4 5 6

xn 0.500000 0.489700 0.480000 0.470900 0.461700 0.452700 0.443900

Iteration n 7 8 9 10 15 20 25

xn 0.435400 0.427100 0.419000 0.411100 0.427495 0.427413 0.427382

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fixed Point Analysis

T (x)
y = x

Fixed Point

Figure 2. Mapping T (x) and fixed point at x∗ ≈ 0.4275

0 5 10 15 20 25
0.42

0.44

0.46

0.48

0.5

Iteration n

x
n

Convergence History

xn
x∗ = 0.4275

Figure 3. Iteration convergence to the fixed point

Example 6.3
Best proximity point example: Let X = [0, 4] be equipped with the twisted weighted Θ-b-metric defined by:

D(x, y) = |x− y|+ 1

2
|x− y|2,

w(x, y) = 1 +
|x− y|

4
,

Θ(t) = et,

ψ(u, v) = 1 +
u+ v

2
.

It can be verified that (X,D,Θ, ψ) forms a complete twisted weighted Θ-b-metric space with relaxation constant
s = 2.

Let A = [0, 1], B = [2, 4] be nonempty closed subsets of X , and define the multivalued mapping T : A→ 2B

by:

T (x) =
{
2 +

x

2

}
.

The mapping T satisfies all conditions of Theorem 5.1, with T (x) being compact and T (x) ⊆ PX(B,A) for
all x ∈ PX(A,B). The contraction condition holds with parameters κ = 0.6, L = 0.3 and admissibility functions
α(x, y) = 1 + e−|x−y|, µ(x, y) = 1 + 1

1+|x−y| . The distance computation confirms D(A,B) = 4 with x∗ = 0 as
the best proximity point, as visually verified in Figures 4 and 5.
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Table 3. Best proximity point analysis for T (x) = {2 + x
2 }

x ∈ A T (x) D(x, T (x)) D(A,B) α(x, Tx) µ(x, Tx)

0.0 {2.0} 4.00 4.0 1.82 1.22
0.2 {2.1} 4.22 4.0 1.78 1.18
0.4 {2.2} 4.48 4.0 1.74 1.15
0.6 {2.3} 4.78 4.0 1.70 1.12
0.8 {2.4} 5.12 4.0 1.66 1.09
1.0 {2.5} 5.50 4.0 1.62 1.06

0 0.2 0.4 0.6 0.8 1 1.2

4

4.5

5

5.5

x∗ = 0

x ∈ A

D
is

ta
nc

e
D
(x
,T

(x
))

Distance to Image Analysis

D(x, T (x))

D(A,B) = 4

Figure 4. Minimum distance occurs at x∗ = 0, satisfying
D(x∗, T (x∗)) = D(A,B)

0 1 2 3 4
−0.5

0

0.5

A = [0, 1] B = [2, 4]

T (x) = 2 + x
2

x∗ = 0

Domain X

Sets and Mapping Structure

Figure 5. Geometric relationship between sets A, B and the
linear mapping T

7. Applications to Economic Systems

The fixed point theorems developed in this work provide powerful tools for analyzing economic equilibrium and
growth dynamics. We demonstrate their application in two key areas: dynamic production-consumption market
models and fractional differential equations for economic growth. These applications show how our generalized
framework can address real economic problems under flexible conditions. These applications extend insights from
previous works such as [9, 14, 18, 33, 34, 35, 36, 37, 38].

7.1. Application in Production-Consumption Equilibrium

In this portion, utilizing the findings from earlier sections, a model is developed to address a significant economic
problem: the dynamic market equilibrium initial value problem. This model guarantees the existence and ensures
the uniqueness of the solution to the problem. Let Pprod symbolize production and Pcon represent consumption.
Daily pricing patterns and prices, along with Pprod and Pcon, have a significant impact on markets, regardless of
whether prices are going up or down. The present value of P (t) is therefore of interest to economists. Furthermore,
assume

Pprod(t) = κ1 + λ1P (t) + δ1
dP (t)

dt
+ σ1

d2P (t)

dt2
,

Pcon(t) = κ2 + λ2P (t) + δ2
dP (t)

dt
+ σ2

d2P (t)

dt2
,
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initially P (0) = 0, dPdt (0) = 0, where κ1, κ2, λ1, λ2, δ1, δ2, σ1, and σ2 represent constants.
The term dynamic economic equilibrium describes a situation in which the forces of production and consumption

are balanced in the market, meaning that the existing prices seem to be stable.
Thus,

κ1 + λ1P (t) + δ1
dP (t)

dt
+ σ1

d2P (t)

dt2
= κ2 + λ2P (t) + δ2

dP (t)

dt
+ σ2

d2P (t)

dt2

(κ1 − κ2) + (λ1 − λ2)P (t) + (δ1 − δ2)
dP (t)

dt
+ (σ1 − σ2)

d2P (t)

dt2
= 0

σ
d2P (t)

dt2
+ δ

dP (t)

dt
+ λP (t) = −κ,

d2P (t)

dt2
+
δ

σ

dP (t)

dt
+
λ

σ
P (t) = −κ

σ
,

where κ = κ1 − κ2, λ = λ1 − λ2, δ = δ1 − δ2, and σ = σ1 − σ2.
Moreover, the initial value problem that we have can be modeled into:

P ′′(t) +
δ

σ
P ′(t) +

λ

σ
P (t) = −κ

σ
, along P (0) = 0 with P ′(0) = 0. (15)

For the timeframe Tp, if we examine production with consumption, the problem (15) is plainly identical to

P (t) =

∫ Tp

0

H(t, t∗)K(t∗, t, P (t)) dt, (16)

along H(t, t∗) the Green function described as

H(t, t∗) =

{
te

λ
2δ (t

∗−t), 0 ≤ t ≤ s ≤ Tp

se
λ
2δ (t−t

∗), 0 ≤ s ≤ t ≤ Tp

and K : [0, Tp]× Λ2 → R represent a continuous function.
Suppose that we have an operator A : Λ → Λ defined by,

AP (t) =
∫ Tp

0

H(t, t∗)K(t∗, t, P (t)) dt (17)

It is clear that the FP of A in (17) is ultimately the solution of the dynamic market equilibrium issue (15).
Indeed, (15) regulates the present price P (t).

Let C[0, Tp] represent the set of functions that are continuous on the interval [0, Tp], and we denote this set as
Λ = C[0, Tp].

In addition, define ρ : Λ× Λ → R+ as ρ(m1,m2) = |m1 −m2|, m1,m2 ∈ Λ.
Clearly, (Λ, ρ) is a CMS.

Economic Interpretation: Here, w(P1, P2) represents market similarity—similar price functions have lower
weight. The twisted functions α, µ can model dual criteria: α for production technology similarity, µ for consumer
preference similarity.

Theorem 7.1
Suppose an operator A : Λ → Λ as defined in (17) on (Λ, ρ), fulfilling the below:

1. A continuous function H : Λ2 → R that satisfy

sup
s∈[0,Tp]

∫ Tp

0

K(t, t∗) dt ≤ 2δ

λ
Tpe

λTp
2δ ; (18)
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2. |K(t∗, t, P1(t))−K(t∗, t, P2(t))| ≤ λ
2δTp

e−
λTp
2δ −π[|P1(t)− P2(t)|];

3. For P0 ∈ C([0, 1],R) such that ζ(P0(t),AP0(t)) > 0 and each t ∈ [0, 1] with P1(t), P2(t) ∈ C([0, 1],R), and
ζ(P1(t), P2(t)) > 0 means ζ(AP1(t),AP2(t)) > 0.

4. A sequence {℘n} ⊆ C([0, 1],R) in such a way that is ℘n → a in C([0, 1],R) along ζ(℘n, an+1) > 0 for
n ∈ N, consequently ζ(℘n, a) > 0 for every n ∈ N.

Subsequently, there is only one solution guaranteed by the equation (15).

Proof
Consider the assumption (1) and (2),

|AP1(t)−AP2(t)| =

∣∣∣∣∣
∫ Tp

0

H(t, t∗)K(t∗, t, P1(t)) dt−
∫ Tp

0

H(t, t∗)K(t∗, t, P2(t)) dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ Tp

0

H(t, t∗)|K(t∗, t, P1(t))−K(t∗, t, P2(t))| dt

∣∣∣∣∣
≤ |K(t∗, t, P1(t))−K(t∗, t, P2(t))|

∫ Tp

0

H(t, t∗)dt

≤
∣∣∣∣2δλ TpeλTp

2δ
λ

2δTp
e−

λTp
2δ −π[|P1(t)− P2(t)|]

∣∣∣∣
≤ |P1(t)− P2(t)|e−π

Evidently,

ρ(AP1(t),AP2(t)) ≤ ρ(P1(t), P2(t))e
−π. (19)

Equivalently, √
ρ(AP1(t),AP2(t)) ≤

√
e−πρ(P1(t), P2(t)).

Thus,

e
√
ρ(AP1(t),AP2(t)) ≤ e

√
e−πρ(P1(t),P2(t)),

that evidently implies,

e
√
ρ(AP1(t),AP2(t)) ≤

(
e
√
ρ(P1(t),P2(t))

)G
,

where G = e−π < 1. Consider Θe = ee. And define α, µ : ME ×ME → {−∞} ∪ [0,+∞) by

α(P1(t), P2(t)) = µ(P1(t), P2(t)) =

{
1 if ζ(P1(t), P2(t)) ≥ 1,

−∞ else.

Next, utilizing presumption (4),

α(P1, P2), µ(P1, P2) ≥ 1 =⇒ ζ(P1(t), P2(t)) > 0, (20)

which leads to

ζ(AP1(t),AP2(t)) > 0 =⇒ α(AP1,AP2) ≥ 1. (21)

Thus, (31) becomes,
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α(P1, P2)µ(P1, P2)Θ(ρ(AP1(t),AP2(t))) ≤ (Θ(ρ(P1(t), P2(t))))
G.

It also implies that,

α(P1, P2)µ(P1, P2)Θ(ρ(AP1(t),AP2(t))) ≤ (Θ(M(P1(t), P2(t))))
G +N(P1(t), P1(t)).

Where M(P1(t), P2(t)) and N(P1(t), P1(t)) are defined in 3.1. Additionally, from (3), there exists P0 ∈ ME
such that α(P0,AP0) ≥ 1 and µ(P0,AP0) ≥ 1.

The presumptions of Theorem 3.3 and 3.4 are all hold true. This ultimately ensure a unique solution of the
problem (15).

7.2. Application to Dynamics of Economy

Fractional differential equations (FDEs) in the fields of engineering and science are remarkably helpful in the sense
of their applications [44, 22, 3]. Notably, Caputo FDEs are significantly helpful in the construction of economic
growth models precisely. Equations of this nature facilitate providing a deeper understanding and comprehending
the dynamics of economy and support the economists to make more informed decisions in the sense of their polices
[2, 43].

The fractional DE , when utilized in economic growth modeling, can be presented as:

CDν
t (y(tg)) = h(tg, y(tg)), (0 < tg < 1, 2 ≥ ν > 1) (22)

subjected to the conditions:

y(0) = 0, RLIνt y(1) = y′(0), (23)

where CDν
t h(tg) represent Caputo fractional derivative of order ν as describe by:

CDν
t h(tg) =

1

Γ(j − ν)

∫ tg

0

(tg − z)j−ν−1h′(z) dz,

along j > ν > j − 1, j = [ν] + 1.
In this context, h : [0, 1]×R → [0,+∞) represent function with no discontinuity, and RLIνt h is for the fractional

integral of Riemann–Liouville type having order ν of a continuous function f : R+ → R describe by:

RLIνt f(tg) =
1

Γ(ν)

∫ tg

0

(tg − z)ν−1f(z) dz. (25)

Economic Interpretation: The weight function w(y1, y2) captures economic proximity, with similar growth
trajectories having lower weights. The twisted aspects α, µ can represent short-term stability (α) and long-term
sustainability (µ) criteria.

Theorem 7.2 ([2])
Suppose the nonlinear fractional DE

CDν
t (y(tg)) = h(tg, y(tg)), (0 < tg < 1, 2 ≥ ν > 1). (27)

Assume ζ : R×R → R represent a given function and the below assumptions fulfill:

(i) h : [0, 1]×R → R denotes a function with no discontinuity.
(ii) for every a, ℘ ∈ C([0, 1],R) and tg ∈ [0, 1],

|h(tg, a)− h(tg, ℘)| ≤
Γ(ν + 1)

4
e−π|a−℘| (28)
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(iii) There is p0 ∈ C([0, 1],R) such that ζ(a0(tg),Aa0(tg)) > 0 for every t ∈ [0, 1], where an operator A :
C([0, 1],R) → C([0, 1],R) is defined in a manner as

Aa(tg) =
1

Γ(ν)

∫ t

0

tg(tg − z)ν−1h(z, a(z)) dz

+
2tg
Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1h(m, a(m)) dm

)
dz (29)

for each t ∈ [0, 1].
(iv) For each tg ∈ [0, 1] with a, ℘ ∈ C([0, 1],R), ζ(a(tg), ℘(tg)) > 0 means that ζ(Aa(tg),A℘(tg)) > 0.
(v) For sequence {℘n} ⊆ C([0, 1],R) such a way that ℘n → a in C([0, 1],R) with ζ(℘n, an+1) > 0 for n ∈ N,

consequently ζ(℘n, a) > 0 for every n ∈ N.

Then, (27) possess a unique solution.

Proof
It is obvious to say that for a ∈ MR satisfying equation (27) iff it also ensures the below

a(t) =
1

Γ(ν)

∫ tg

0

(tg − z)ν−1h(z, a(z)) dz

+
2tg
Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1h(m, a(m)) dm

)
dz (30)

for t ∈ [0, 1].
Moreover, assume a, ℘ ∈ MR such a way that ζ(a(tg), ℘(tg)) > 0 for every tg ∈ [0, 1]. By condition (iii), we

met

|Aa(tg)−A℘(tg)|

=

∣∣∣∣ 1

Γ(ν)

∫ t

0

(t− z)ν−1h(z, a(z)) dz − 1

Γ(ν)

∫ tg

0

(tg − z)ν−1h(z, ℘(z)) dz

∣∣∣∣
+

2tg
Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1h(m, a(m)) dm

)
dz

− 2t

Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1h(m, b(m)) dm

)
dz

≤ 1

Γ(ν)

∫ tg

0

|tg − z|ν−1|h(z, a(z))− h(z, ℘(z))| dz

+
2tg
Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1|h(m, a(m))− h(m, b(m))| dm
)
dz.

Employing the condition (ii)’s inequality, we can moreover state:
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|Aa(tg)−A℘(tg)|

≤ 1

Γ(ν)

∫ tg

0

|tg − z|ν−1Γ(ν + 1)

4
e−π|a(z)−℘(z)| dz

+
2tg
Γ(ν)

∫ 1

0

(∫ z

0

(z −m)ν−1Γ(ν + 1)

4
e−π|a(m)− ℘(m)| dm

)
dz

=
e−πΓ(ν + 1)

4Γ(ν)

∫ z

0

|tg − z|ν−1|a(z)− ℘(z)| dz

+
2e−πΓ(ν + 1)

4Γ(ν)

∫ 1

0

(∫ z

0

|z −m|ν−1|a(m)− ℘(m)| dm
)
dz.

Furthermore, we have:

|Aa(tg)−A℘(tg)|

≤ e−πΓ(ν + 1)

4Γ(ν)
|a− ℘|

∫ z

0

|tg − z|ν−1 dz

+
2e−πΓ(ν + 1)

4Γ(ν)
|a− ℘|

∫ 1

0

(∫ z

0

|z −m|ν−1 dm

)
dz

≤ e−πΓ(ν + 1)

4Γ(ν)
|a− ℘| · Γ(ν)

Γ(ν + 1)
+

2e−πΓ(ν + 1)

4Γ(ν)
|a− ℘| · Γ(ν + 1)

Γ(ν)Γ(1)

=
e−π

4
|a− ℘|+ e−π

2
|a− ℘| ≤ e−π|a− ℘|.

Evidently,

|Aa(tg)−A℘(tg)| ≤ e−π|a− b|,

which also ultimately implies to

ρ(Aa(tg),A℘(tg)) ≤ e−πρ(a, ℘).

Equivalently, √
ρ(Aa(tg),A℘(tg)) ≤

√
e−πρ(a, ℘).

Thus,

e
√
ρ(Aa(tg),A℘(tg)) ≤ e

√
e−πρ(a,℘),

that evidently implies,

e
√
ρ(Aa(tg),A℘(tg)) ≤

(
e
√
ρ(a,℘)

)G
,

where G = e−π < 1. Consider Θe = ee. And define α, µ : ME ×ME → [−∞] ∪ [0,+∞) by

α(a, ℘) = µ(a, ℘) =

{
1 if ζ(a, ℘) ≥ 1,

−∞ else.

Further, utilizing the assumption (iv),
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α(a, ℘), µ(a, ℘) ≥ 1 =⇒ ζ(a(tg), ℘(tg)) > 0, (32)

which leads to

ζ(Aa(tg),A℘(tg)) > 0 =⇒ α(Aa,A℘) ≥ 1. (33)

Thus, (31) becomes,

α(a, ℘)µ(a, ℘)Θ(ρ(Aa(tg),A℘(tg))) ≤ (Θ(ρ(a(t), ℘(tg))))
G
.

It also implies that,

α(a, ℘)µ(a, ℘)Θ(ρ(Aa(tg),A℘(tg))) ≤ (Θ(M(a(tg), ℘(tg))))
G
+ qN(e, q).

Where Mb(a, ℘) is defined in 3.1. Additionally, from (iii), there exists a0 ∈ ME such that α(a0,Aa0) ≥ 1 and
µ(a0,Aa0) ≥ 1.

The presumptions of Theorem 3.3 and 3.4 fulfill. Thus, the mapping A ensures a unique FP . The FP will
evidently be the solution to the integral equation (30), and consequently the solution to the original fractional DE
(27).

8. Conclusion

This paper establishes a groundbreaking unified framework through the novel concept of twisted weighted Θ-
b-metric spaces, synthesizing concepts from twisted admissible mappings, weighted b-metric spaces, and Θ-
contractions to create a powerful analytical tool with unprecedented theoretical depth. Our results substantially
generalize numerous classical theorems: when ψ(u, v) = s, w(x, y) = 1, Θ(t) = et, and α = µ ≡ 1, we recover
b-metric space results [7]; with ψ(u, v) = 1 we obtain standard metric space contractions; with N(x, y) = 0 we
obtain Čirić-type contractions [12]; with Θ(t) = e

√
t we recover Θ-contractions [16]; and with α = µ we obtain

twisted admissible mappings [39].
Our principal contributions include establishing comprehensive fixed point theorems for generalized rational

type twisted Θ-contractions, proving best proximity point results for multivalued non-self mappings, providing
extensive numerical validation through computational implementations, and demonstrating significant applications
to economic systems including production-consumption equilibrium and fractional growth models. For future
research, promising directions encompass extensions to other generalized metric spaces, development of
computational algorithms, stability analysis, coupled and tripled fixed points, real-world applications across
multiple disciplines, dynamic systems, and further exploration of fractional applications, collectively opening new
avenues for research in nonlinear analysis and its interdisciplinary applications.
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