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Abstract A Wagstaff prime is a prime number that can be written in a special exponential form involving powers of two.
For any integer greater than or equal to two, the so-called k-generalized Fibonacci sequence is a linear sequence in which
each term is obtained by adding together the preceding k terms, beginning with a fixed set of initial values. In this paper,
we prove that the number three is the only Wagstaff prime that appears in any of these generalized Fibonacci sequences.
Our proof makes use of lower bounds for linear forms in logarithms of algebraic numbers and a refined version of the
Baker—Davenport reduction method, originally developed by Dujella and Pethd.
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1. Introduction

Consider an integer k£ > 2. The k—generalized Fibonacci (GF) sequence (W,(Lk)), alternatively referred to as the
k-bonacci or k—step Fibonacci sequence, is a recurrence sequence of order &k defined as

k k
W7()k) == W'I(L )1 + e + Wrgjk’

where the initial conditions are given by Wik()k_% = Ek&_?)) =...= O(k) =0, and Wl(k) =1.

For each value of k, the GF sequence produces a distinct sequence. Notably, when k& = 2, it corresponds to the
classical Fibonacci sequence, for £ = 3, these sequences are known as Tribonacci, and for &k = 4, we observe the
Tetranacci sequence. For further clarification, we can outline a successive definition of the GF sequence W,(lk) for
k = 2, 3, and 4 in the table below.

For an in—depth explanation of the initial non—zero terms of this sequence as k takes on smaller values, the details
can be found in reference [6]. Also, we can directly extract Table 1.

The investigation of Diophantine equations incorporating linear recurrence sequences has emerged as a pivotal
research domain in number theory in recent decades, owing to its significant contributions to understanding
the distribution of prime numbers and the structural properties of generalized Fibonacci and Lucas sequences.

*Correspondence to: Haitham Qawaqneh (Email: h.alqgawaqneh @zuj.edu.jo). Department of Basic Sciences, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



L. REZAIGUIA, H. QAWAQNEH, M. S. ABDELOUAHAB 1

k Name Initial conditions Recurrence relation

2 | Fibonacci Fyo=0, F; =1 F,=F, 1+ F, >

3 | Tribonacci To=0,T1 =T, =1 Tn=Th 1+Th o+T,_3

4 | Tetranacci | W =w® =0, W =w =1 | w» =w, + w, + w, + w,

Table 1. The definition of k-Fibonacci sequences for k = 2, 3, 4.

. Particularly, the analysis of the distribution of distinct numbers defined by explicit formulas, notably prime
numbers within the confines of linear recurrence sequences, has attracted substantial scholarly attention. For
further exploration of studies on these equations, in [6] Jhon J. Bravo and Jose L. Herrera determine all £-Fibonacci
and k-Lucas numbers which are Fermat numbers, and provide further results that generalize these findings to
broader classes of recurrence sequences. In [10], the authors explore a generalization of the classical Pell sequence,
referred to as the k-generalized Pell sequence, which is defined by a higher-order recurrence relation. Recently,
in [13], the authors established that 44 is the largest Tribonacci number containing only a single distinct digit.
Motivated by the approach presented in [16], Bravo.J.J, and Luca.F in [14] investigated the powers of two that
appear in k-generalized Fibonacci sequences.

The study of special prime numbers within linear recurrence sequences has long attracted attention due to its
intersection of algebraic, analytic, and computational number theory. Investigating whether primes of specific
forms—such as Wagstaff or Mersenne primes—occur among dense recurrence sequences like the k-generalized
Fibonacci or Lucas sequences provides insight into the rarity of such primes in structured numerical systems.
Beyond the intrinsic arithmetic interest, this direction contributes to a broader understanding of how special
primes are distributed within classical sequences and tests the limits of current Diophantine methods, including
linear forms in logarithms and the Baker—Davenport reduction. Moreover, there exist potential, albeit speculative,
connections with cryptographic applications, since primes of these forms are sometimes candidates in contexts
related to the discrete logarithm problem and related hardness assumptions. These motivations collectively
underline the natural and multifaceted importance of the present investigation. For further exploration of studies
on these equations, we direct the readers to references [1, 2, 4, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Furthermore, in the theory of prime numbers, a Wagstaff prime is characterized as a prime number of the form

27?1, where m is an odd prime. Notable examples of Wagstaff primes include:

3, 11, 43, 683, 2731, 43691,174763, 2796203, 715827883,
2932031007403, 768614336404564651, . ...

Recalling that the largest known Wagstaff prime in 2021 was (21°136397 4+ 1)/3, discovered by Ryan Propper,
which comprised exactly 4556209 digits, we recommend referring to reference [17] for verification. This leads us
to the classic inquiry in prime number theory about whether there exists an infinite number of primes following a
particular formula. As of now, the question of whether Wagstaff primes are infinite remains unanswered. However,
Marshall, S has put forth a proposed proof on this issue in [7]. Additionally, in [5], Berrizbeitia et al. derived a
necessary condition for primality of the Wagstaff primes in their study. The significance of Wagstaff primes in
number theory stems from their connection to Mersenne primes, as postulated by the Bateman—Selfridge—Wagstaff
conjecture (refer to [3]).

Mersenne numbers have been integral to various equations and play a crucial role in their development, it has
also proven to be a fruitful approach for studying even perfect numbers. For instance, in [18], Altassan and Alan
explored Mersenne numbers within k—Lucas sequences, while another study delved into Mersenne numbers as
terms in k—Fibonacci sequences (see [19]). Bachabi and Togbé [20] concentrated on solving equations involving
Padovan, Perrin, Narayana, Fermat, and Mersenne numbers. Building upon these efforts, we will introduce a novel
examination of the GF sequences. This approach may yield results that further enhance our understanding of the
relationship between Wagstaff and Mersenne primes, and potentially shed light on the conjectured connections
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2 ON THE WAGSTAFF PRIME NUMBERS IN K-FIBONACCI SEQUENCES

between them mentioned above . And this by answering the natural question of which k-Fibonacci numbers are
Wagstaff primes, a question we address in this paper.

In this present study, our primary objective is to discover Wagstaff primes present in GF sequences and this
represents a novel study on exponential Diophantine equations concerning the distribution of Wagstaff prime
numbers in generalized Fibonacci sequences., particularly through the scrutiny of the Diophantine equation

2777. + 1

W) — ,
" 3

(1.1)

where n, k, and m are positive integers, with m being an odd prime and k£ > 2.

Interestingly, to the best of our comprehension, no previous study initiative has examined this specific
investigation.

2. Main result

The central outcome of this investigation is encapsulated in the ensuing theorem.

Theorem 2.1

The number 3 is the only Wagtaff prime number in the k—Fibonacci sequences. Alternatively, we will demonstrate
that the Diophantine equation (1.1) has a single positive integer solution given by (n,k,m) = (4,2, 3), where
k> 2.

To prove Theorem 2.1, we will extensively utilize the properties of the algebraic number logarithmic height,
specifically employing Baker’s theory, which elegantly links an algebraic number to its degree and conjugates.
Furthermore, we will employ the results established by Dresden and Du [12], along with the lower bound obtained
by Matveev (Theorem 2 in [8]), to derive a logarithmic estimation of the variables associated with Equation (1.1).
As a result, our proof strategy will involve a case—by—case analysis of the variable k. In the case when the number
k is small, we have developed a guide based on the Matveev theorem, while when the number k is large, in this
case we present a strategy based on the principle of contradiction. The accounts presented in this paper were made
using the Mathematica program.

3. Preliminary results

In this section, we present the foundational results that will support our main findings. These results aim to lay the
groundwork and facilitate the proofs and analyses that follow in this study.

3.1. Linear forms in logarithms

The linear forms theorems in algebraic number logarithms are a crucial tool primarily used in transcendental
number theory. Developed by A. Baker in 1975, this theory has become the principal method for studying the
solutions of certain Diophantine equations defined by recurrence sequences. Considering any algebraic number
1 # 0 of degree s over Q, the logarithmic height of 7 is defined by the formula

h(n) := % <loga0 + Zlog(max{|77(i)|7 1})) ,

i=1

S
with agz® + 1251 4+ a5 = ao [[ (= — 7)) being the minimal primitive polynomial over Z having positive
i=1
leading coefficient ag and 7 as a root, and 1) denotes the conjugates of 7.
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Note that if n = p/q € Q, the above definition leads to h(n) = log max{|p|, ¢}. Below are several properties of

the logarithmic height function that will be utilized throughout this paper without further reference.

Let n, § algebric numbers, we have

3.1)
(3.2)
(3.3)

With this notation, the following result, proven by Matveev in [8] and by Bugeaud et al. [9] (Theorem 9.4),

serves as the central theorem in the proof of Theorem 2.1.

Theorem 3.1
Given real algebraic numbers d1, . .., d in an algebraic number field K of degree D over Q, assume that ¢, . . .
are non—zero integers, and let B be a real number such that B > max{|qi|, ..., |qs|}. If [[;_, 67 # 1, then

> —1.4-30-30"" . 5. D (14 log D)(1 +log B) - [ | 4i,
=1

log

o 1
i=1

where A; (for a fixed 7) is a real number satisfying the condition

A; = max{Dh(d;),|logd;|,0.16} for j =1,...,s.

3.2. Reduction method

5qS

In our computational analysis, we observe that the variables stemming from our issue, as derived through Baker’s
theory, are excessively large. To mitigate these constraints, we employ the subsequent outcome from Dujella Petho
(refer to [15], Lemma 5a). For a real number «, we denote ||«|| as the minimum of |a — n| for n € Z, representing

the distance between « and the nearest integer.

Lemma 3.2

Let M > 0, and consider p/q to be a convergent of the continued fraction of the irrational number « such that

q>6M,andlet A > 0,B > 1, and p be real numbers. We assume that
€= llugqll — M - [|rgl| .
In the case where e > 0, no solution exists for the inequality
0 < |mk—n+pu|l < AB7F,

log(Ag/€)

where m, n and k are positive integers with m < M and k > =54
g

4. Some properties of the GF sequence

In this section, we will discuss in short some of the main characteristics of the Fibonacci sequence, where the

characteristic polynomial associated with this sequence is given in the following form

ko k-1

Xk(x)zx — o=z —1.

In [10], Bravo et al. established that x; () is irreducible over Q[z] and possesses a single real root Ay located
outside the unit circle, while the remaining roots are strictly confined within the interior of the unit circle.
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4 ON THE WAGSTAFF PRIME NUMBERS IN K-FIBONACCI SEQUENCES

Furthermore, \; falls within the range of 2(1 — 27%) and 2 (refer to [11]). Let Aq,--- , Ay denote the roots of
Xk (x), where we set A := \j. For simplicity, we generally disregard the dependence of A on k in notation.

We are considering the function
r—1

2+ (s+1)(z—2)

fla,s) = @.1)

where s > 2 be an integer.

According to Dresden [12], the "Binet-like” formula

k
W =" Fa kAT,
i=1
holds for all n > 2 — k. Additionally, in [12], a proof was provided for the following approximation

1
IWE — (N kA < 3 holds forVn > 2 — k.

The subsequent lemmas encompass essential properties of the GF sequence (W,(Lk)) and will serve as valuable
tools for bounding the variables.

Lemma 4.1
(see [13]) If A is the dominant root of x (), then the following inequality is satisfied for all n > 1 and k& > 2
)\n—2 S Wr(lk) S )\n—l7 (42)

Lemma 4.2
(see [14]) Let n be a positive integer such that n > 2. Then

Wék) < 271—2.

Furthermore, if n > k + 2, the aforementioned inequality is strict.

Lemma 4.3
(see [14]) Let £ > 2 be a positive integer. The first £ + 1 nonzero terms of the k-generalized Fibonacci sequence

are powers of two. More precisely, we have Wl(k) =1, and
Wk = gi-2

forall2 <i< k+1.

Lemma 4.4
(see [14]) Consider an integer n > 2. Let A denote the dominant root of (), and the function f(z, s) defined in
formula (4.1). The following estimates are established:

L. f(A\, k) <2foralll1 <i<k.
2. h(f(N\ k)) < 4log(k), where h(.) denotes the logarithmic height function.
3. For all n > k + 2, the function f (], s) satisfies the formula

g
FORINT = 2772 4 2 4+ 27+,

where |6] < 2 and || < 2
22
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5. Upper bounds for n and m with respect to k

Before delving into the results derived in this section, it is essential to note that for the remainder of the article, we
can assume n > k + 2 since the initial £ 4+ 1 non—zero terms in the GF sequence (W,gk)) are powers of two (refer to
[14]), implying that n > 4. Given our interest in having the right-hand side of Equation (3.1) as a Wagstaff prime,
we can set m > 3.

Now, we suppose that (n, k, m) constitutes a solution to Equation (3.1). By employing equation (4.2) and Lemma
4.1, we derive
2m7+1 < 9n—2

)\n—2 < W(k) _
> Wy 3

Thus,
log 2
n<(m+1)%+1andm<n.

By using Lemma 4.4, we acquire the following result

3 7
— —. 1
m<n<2m+2 5.1

This initial inequality, derived in relation to specific variables from Equation (3.1), will be notably useful for
subsequent analysis.

The crucial result in this section is given by the following lemma.
Lemma 5.1
Let (n,k,m) be a solution in integers of the Diophantine equation (3.1), with k£ > 2 and n > k + 2. Then the

following inequality is hold
m<n <343 x 10" x k* x log® k. (5.2)

Proof: Starting first by merging equations (3.1) and (3.3) yields the following result

'<2m3+ 1> oL R

1
<3 (5.3)

Subsequently, we utilize Lemma 4.4 to divide both sides of the preceding inequality by f(\, k)A"~!, we obtain

3

< T

1
'2771 . gf(/\k)_l . )\—(n—l) ~1

(5.4)

Our aim is to utilize Theorem 3.1 to establish the validity of Inequality (5.2). To achieve this, we consider the
following set of data

1
823,51:2,52:>\,53:gf()\7k)71,Q1:m,fh:*(’”*l)and%zl

Considering that the algebraic number field K := Q(\) contains 41, d2,03, and D =[K: Q] =k, the
aforementioned selections prompt an initial verification that §7* - 63> - 3 — 1 # 0. To accomplish this, we put
A =061-69-69 —1, (5.5)
and we assume that A # 0. This imply that

2m =3 f(\k)- A"
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6 ON THE WAGSTAFF PRIME NUMBERS IN K-FIBONACCI SEQUENCES

By employing the Galois automorphism o : A — A;(¢ > 1), and then taking absolute values to rephrase the
given above relation, we derive
2™ =3 [f(\i, k)| - AP

This leads to a contradiction since the condition |f(\;, k)| < 2 implies that the right-hand side of the
aforementioned equation is less than 6, while the left—hand side is greater than or equal to 8. Therefore, A # 0.

Given that h(d1) = log 2 and h(d;) = % log A < 1052, from this, we can assume that A; := klog2 and A, = 0.7.

We are now required to estimate h(d3), thus, by referencing inequality 2 of lemma 4.4 and considering properties
(3.2) and (3.3), we deduce

h(d3) < h(3) + h(f(A k)
<log3+4logk
< 6logk.

Therefore, it is evident that we can select

As = max{kh(ds3),|log d5],0.16} = 6k log k.

Furthermore, B > max{|by|, |b2|, |b3|}, and considering that m < n as per (5.1), we can take B :=n — 1.
Consequently, we utilize Theorem 3.1 to establish the lower bound of |A[, and based on inequality (5.4), we obtain

3

exp(—C(k) x (1 +1log(n —1) x (klog2) x (0.7) x (4dklogk)) < T

where C'(k) := 1.4 x 305 x 3*4 x k2 x (1 +logk) < 1.5 x 101 x k2 x (1 + logk).
Specifically, by taking logarithms in the aforementioned inequality, we demonstrate that
(n —1)log A < 1.75 x 102 x k* x log®(k) x log(n — 1),

a result derived from the premise 1 + log3 < 3logk, 1+ log(n — 1) < 2log(n — 1), and 1/log A < 2, for k > 3
and n > 4.

Thus,
n—1 12 4 2
— < 3.8 x10°° x k¥ x log” k. 5.6)
log(n — 1)
Conversely, it is straightforward to confirm the monotonicity of the function f(z):= % for all = > e.

Additionally, the inequality % < Aimplies x < 2Alog A forall A > 3.
ogx

Thus, setting A := 3.8 x 10'2 x k* x log® k, inequality (5.6) implies that

n < 2(3.8 x 1012 x k* x log? k) log(3.8 x 1012 x k* x log? k)
< 7.6 x 10" x k*(log(3.8 x 10*?) + 4log k + 2loglog k)
< 3.43 x 10" x k*log® k.

Here, we employed the fact that 2 log log k 4+ 29 < 41log k is true for all k£ > 2. Ultimately, this inequality serves
as the conclusive step in proving the lemma.
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6. The study of the case 2 < k£ < 170

In this section, we focus on the case when k € [2,170], aiming to demonstrate that the Diophantine equation (3.1)
possesses a sole solution represented by (n, k,m) = (4, 2, 3). To achieve this, we aim to reduce the upper bound of
n in (5.2) established in the preceding section. Thus, to leverage Lemma 3.2, we introduce the expression

x=mlog2— (n—1)log A —log(3f (A, k)). (6.1)

Subsequently, e — 1 = A, where A is defined by (5.5). Hence, a comparison of this expression with (5.4) reveals

that 5

As A is non-zero, it follows immediately that x is also non—zero. Thus, we distinguish the following cases:
—1If A > 0, we utilize the property that e¥ — y — 1 > 0 for all y € R, alongside the inequality (6.1), to infer that

3

Utilizing relation (6.1) along with the preceding inequality, and after substituting the value of = and dividing by
log A, we can deduce that

log 2 1 Ak
0<m 0og —n+(1- Og(g.f( ) )) <9.A7(n71)’
log A log A

where we used the fact that 1/log A < 2, for all k > 2.

Now, we define
_log2 | log(Bf(\K)

=== 5= ,A:=9,and B := A.
log)\u log A an

v
Based on the inequality provided above, we have
O<my—n+pu<A B~

Moreover, it is evident that A > 1 is a unit in Ok, hence + is an irrational number. Consequently, A and 2 are
multiplicative independent.

To refine our constraint on n, we utilized the Mathematica program to determine the maximum value of
log(Ag/€)/log(B) for each k € [2,170]. We set M := |3.43 x 10'* x k*log® k|, and the approach involved
computing to ensure the condition ¢ > 6M in Lemma 3.2 was met. If the first convergent with ¢ > 6M did not
satisfy the criterion € > 0, we proceeded to the subsequent convergent until one fulfilled the necessary condition(we
clarify that the value of ¢ is obtained by using the Mathematica function Convergents [x]). Through this
process, we identified that the maximum value of log(Aq/¢)/log B is 176.092 - - -, which, as per Lemma 5.1, serves
as an upper bound for n — 1. Hence, this value indicates that the feasible solutions (n, k, m) of Equation (3.1) with
k € [2,170] and A > 0 satisfy n € [4,177], consequently implying m € [3, 176] immediately given that m < n + 1.

— Now we treat the other case when z < 0. In fact by using the fact 2(1 — 27%) < \, the inequality 2/A" "1 < 1,
easy to check for all n > 4 and k > 2. Thus, based on (6.2) we derive |e* — 1| < 1/2, signifying that elzl < 2.
Consequently, we arrive at the inequality

12

0< x| <ell —1=el"ller — 1| < Y=g
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Applying a similar analysis as in the case when = > 0, we obtain

0O<(n—1)y—m+pu<A-B~(Y, (6.3)
where log A log(3f(\ k
=28 TRES 08(3f(A, )),A::18andB::/\.
log 2 log 2

Here, we replicate the same calculations for the case where 2 < 0. Thus, we set M := |3.42 x 1014 x k4 log3 k|
as an upper bound for n — 1 according to Lemma 5.1. Subsequently, by employing Lemma 3.2 for all k € [2, 170]
and utilizing Mathematica on inequality (6.3), we determine that the maximum value of log(Ag/¢)/log B is
178.657.... This calculation leads us to the feasible solutions (n,k,m) of Equation (3.1) within the specified
range of k € [2,170] and = < 0. Consequently, these results imply that in all cases, n € [4,179] and m € [3,179).
Finally, we have established that 4 <n <179 and 3 <m <179 when k € [2,170]. By implementing a

straightforward code in Mathematica, we can compare Wi and (2™ 4 1)/3 within this interval, ensuring
m < n+1< (3m+ 7)/2, revealing that the sole solution to Equation (3.1) within this scope is (4, 2, 3).

7. The study of the case £k > 170

The objective of this section is to demonstrate that Equation (3.1) does not possess any solutions when £ > 170
andn >k + 2.

— Suppose k > 170, implying n > 3.42 x 10"k*log® k < 25 Utilizing formula 3 from Lemma 4.4 alongside
Inequality (5.3), we can infer that

|2m —3.2"72| = |2m—3f(/\,k)-)\”’1+gé+3-2”’1-n+3n~6\

Lok g 2! +3 2k
2 ok 2% 2%

However, we have 1/2"1 < 1/25 (because n > 2), 12k/2% < 1/2%, 24k/2% < 1/2% for each k > 170, and
by dividing through by 272, we get
9
|27n—n+2 _ 3| < 27& (71)

2

Observing that m — n + 2 < 2 due to m < n + 1, consequently, it follows from Equation (7.1) that

5 9
S< 2t 3l <
2 | | 2%

Therefore, 2% < 15—8, leading to a contradiction since k > 170. Thus, the proof of the desired result is now
complete.

8. Conclusion

This paper delves into the realm of Diophantine equations, focusing on the investigation of instances where
a Wagstaff prime number emerges as one of the terms in the k—Fibonacci sequence. Specifically, we studied
the Diophantine equation W,(Lk) = (2™ + 1)/3 involving the positive integers where m is an odd prime, and the
conditions k£ > 2 and n > k + 2 are satisfied. The outcome of this investigation reveals that the number 3 stands as
the exclusive Wagstaff prime within the k—Fibonacci sequences. Our proof hinges on leveraging certain properties
derived from the theory of continued fractions and a pivotal theory concerning linear forms in logarithms.
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