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Abstract The metric dimension is the minimum cardinality of a subset of the vertex set of a graph G that uniquely
represents each vertex in a graph. The central set is a set of vertices with minimum eccentricity. This central set concept can
be used to determine strategic public service locations, such that accessible transportation can be reached from all regions.
The central metric dimension is the minimum cardinality of a resolving set that includes the central set. This study aims
to determine the central metric dimension in k-corona graph. The k-corona operation of G and H denoted by G © H is a
generalization of the corona operation, where a new graph is formed by connecting each vertex of a graph G to k copies of
graph H. The results show that the central metric dimension of the k-corona graph depends on the central set of G, the order
of G, the value of k, and the metric dimension of H.
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1. Introduction

Graph theory is a mathematical concept that falls under the field of algebra. This theory studies elements
represented as vertices and edges, where edges represent the relationship between two vertices. According to
Chartrand and Lesniak, graph theory was first introduced in 1736 by Swiss mathematician Leonhard Euler, who
discussed the problem of the Seven Bridges of Konigsberg [1].

Over time, graph theory developed several important concepts such as distance, paths, cycles, and others, which are
further detailed and are interesting topics of discussion in this field. In recent years, the study of metric dimension
and its variants has been extended to a wide range of graph operations. Several works have investigated the metric
dimension of corona products and related constructions. For instance, Saputro etal.[2] studied the metric dimension
of comb product graphs, while Susilowati etal. [3] [4] considered rooted product and corona-type graphs in relation
to local metric dimension. More recently, Prabhu and collaborators [5, 6, 7, 8, 9, 10] examined fault-tolerant metric
dimension in various interconnection networks. These studies show that corona type operations provide a fertile
ground for exploring metric dimension and its generalizations. Another concept that has developed within graph
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theory is the concept of the central set. According to Sooryanarayana etal., the central set is the set of all central
vertices whose eccentricities are equal to the radius of the graph [11].

This central set concept can be used to determine strategic locations of public services so that accessible
transportation can be reached from all regions.

Drawing from these two concepts —metric dimension and central set— a new idea emerged to combine them,
known as the central metric dimension. One of the efforts to merge these concepts was conducted by Susilowati
etal.. Their research discussed the concept of the central metric dimension, namely a resolving set that also contains
the central set in specific types of graphs. One of these is the special graph resulting from the k-corona operation
[12].

The k-corona operation is an extension of the corona operation that was introduced earlier. This development lies in
the inclusion of a positive integer k. The k-corona operation creates a new graph by taking one copy of graph G and
k copies of graph H for each vertex in G. Then, each vertex in G is connected to every vertex in its corresponding
k copies of H.

The k-corona operation expands the applications and research potential of corona operations by offering more
flexibility in graph composition. Therefore, this study focuses on the integration of the metric dimension and the
concepts of central set in the k-corona graph. The specific graphs used in this research include path graphs, star
graphs, complete graphs, and cycle graphs.

In recent developments, various extensions of the metric dimension have been introduced to capture different
structural properties of graphs, such as fault-tolerant metric dimension [7, 9]. However, studies that integrate
these distance-based approaches with the concept of the central set remain relatively limited. The central metric
dimension provides a new perspective by requiring the resolving set to also contain the central vertices of the graph.

Furthermore, while several works have examined the metric dimension of the standard corona product G © H
[13, 14], the inclusion of a positive integer parameter k in the k-corona operation introduces new structural
challenges. The interaction between the central vertices of G and the replicated structures of H under the k-corona
construction has not been widely analyzed in existing literature. Hence, this study contributes by determining
the central metric dimension of k-corona graphs involving fundamental families such as paths, stars, cycles, and
complete graphs, thereby extending prior results on corona-type operations.

In previous studies, the metric and local metric dimensions of various graph operations—such as corona, comb,
and rooted products—have been widely analyzed [13, 3, 2, 4]. However, most of these works focus on classical
or local metric dimensions, without considering the structural influence of the central vertices. The introduction of
the central metric dimension expands this framework by combining the concept of a resolving set with the central
structure of the graph.

In this paper, we generalize these findings by determining the central metric dimension of the k-corona product
G O H, where H can be a path, a cycle, a star, or a complete graph. This provides a unified formulation that
includes several previously studied cases as special instances. Furthermore, the results establish a theoretical
foundation that can be applied to identify optimal monitoring or service locations in network systems, where
accessibility to central regions is a key consideration.

To support this study, the following preliminary definitions and concepts are presented.

Definition 1.1 ([15]). A central vertex is a vertex whose eccentricity is equal to the radius of the graph G.

Definition 1.2 ([15]). A central set is a set whose elements are all central vertices. The central set of a graph G is
denoted by S(G).

Lemma 1.3. [[3]] Let G be a connected graph. If W C V(G), then for every v;, v; € W with ¢ # 7, it holds that
r(vi [ W) # r(v; [W).

Definition 1.4 ([4]). Let G be a connected graph. An ordered set W C V(G) with W # ) is called a central
resolving set of GG if W is a resolving set that also contains the central set. A central resolving set of the minimum
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2 THE CENTRAL METRIC DIMENSION OF THE K-CORONA GRAPH
cardinality is called a central basis. The cardinality of the central basis in the graph G is called the central metric
dimension, denoted by dimeen (G).

Definition 1.5 ([4]). Let G be a connected graph with V(G) = {v; | i =1,2,3,...,n} and let H be a connected
graph of order at least two. The k-corona of G and H, denoted by G ®} H, is the graph obtained by taking one
copy of G and nk copies of H, that is,

1 2 3 k 1 2 3 k 1 2 3 k
HYH2 H3, ... HF H H2 HS .  HE .. H.H2H. . H

such that each vertex v; € V(G) is connected to all vertices in H, forr =1,2,3,... k.

In the generalized corona product G ©;, H, each vertex v; of the base graph G is connected to k distinct copies
of the graph H, denoted by H/, H7,...,H. Every vertex u!" in the r-th copy H; is adjacent only to the
corresponding vertex v; in G, and there are no edges between different copies H] and H; for r # s. This
structure ensures that the resulting graph has |V (G)| + k|V(G)| - |V (H)| vertices. The vertex labeling on the
resulting graph G @y, H is defined as follows. Let G be a graph with V(G) = {v; | i = 1,2,3,...,n} and H with
V(H)={u; | j=1,2,3,...,m}. Based on the definition of the k-corona operation, the vertex set is

n k
V(Gop H) =V(Go) U (U V(H{)> )
=1 =1

where V(Go) = {v) € V(G &k H) | v; € V(G)} and
V(H])={u? |u; e V(H); r=1,2,3,... k; i=1,2,3,...,n}.

Here, G| is referred to as the central graph, while each H is referred to as a branch graph.

2. Central Metric Dimension of the k-Corona Graph

The initial step in this study is to determine the central sets of the specific graphs used in the research. The results
are as follows.

* The central set of a cycle graph and a complete graph is the set of all vertices in the graph.

* The central vertex of a path graph P, is the “F-th vertex for odd n, or the %-th and “£2-th vertices for even

2
n.
* The central vertex of a star graph is the central vertex of the star itself.

This section explains the central set of the graph resulting from the k-corona operation, followed by the central
metric dimension of that graph.

Lemma 2.1. Suppose GG and H are connected graphs, then

S(GorH)={s) e V(Goy H)|s; € S(G)}.

Proof. Let G be a connected graph with V(G) = {v; |i=1,2,3,...,n}. Let H be a connected graph with
V(H)={u; | j=1,2,3,...,m}. The vertex set of G ©, H is given by

n k
V(GoH)=V(Go)ulJ (U V(H{)) :
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where V(Go) = {v] € V(G o H) |v; € V(G)} and V(H]) ={u} [u; € V(H);r=1,...,ki=1,...,n}.
Here, H] denotes the 7-th copy of H attached to vertex v; of G. Suppose s € S(G), then e(s) = min{e(v) | v €
V(G)}. Let s¥ € V(G @ H) for s; € S(G), then e(s?) = e(s;) + 1.

Next, consider a vertex u;"’ that lies in the r-th copy of H attached to v{. For any central vertex v) we have

d(ui", vf) =14 d(v),v}), and for any vertex u’* in a copy of H attached to v},

d(”;T, ul®) = 1+dd, o)) +1=d!, o) + 2.
So, for any vertex u?" € V(G © H), we have e(uga’") =e(v)) + 2.

Since e(u}") > e(s)) for every u!" € V(G &y, H), it follows that e(s}) = min{e(v) | v € V(G &, H)}. Thus,

S(G oy H) = {s? € V(G @y H) | s: € S(G)}.

In the k-corona product G ®) H, each vertex v of G becomes the central attachment point for k copies of H.The
distances between vertices in different copies of H must pass through their corresponding central vertex v{, which
increases every distance by exactly one compared to the original distance in GG. Consequently, the eccentricity
of each central vertex in G ®y H is e(v;) + 1, while the eccentricity of vertices in the attached copies of H is
e(v;) + 2. This explains why the central vertices of G ©®y, H coincide with those of G.

Lemma 2.2. Let G be a connected graphand U C V(G). Ifx € Uory € U, thenr(x | U) # r(y | U).
Proof. Let G be a connected graph and U C V(G). For any v; € U or v; € U, there are two possible cases:

(1) v;,v; € U: Based on Lemma 1.3, it holds that r(v;|U) # r(v,|U).
(2) v; € U and vj ¢ U: In the ordered pair 7(v;|U) there exists an element 0, whereas in 7(v;|U) there is no such
element. Therefore, r(v;|U) # r(v;|U).

Lemma 2.3. Let GG be a connected graph. If there is no central resolving set of G with cardinality k, then any set
W C V(@) with |W| < k is not a central resolving set.

Proof. Let G be a connected graph. Suppose there is no central resolving set of G with cardinality k, and there
exists a central resolving set 7' C V(G) with |T| < k such that for every v;,v; € V(G), r(v;|T) # r(v;|T) and T
is a central set of G. Moreover, there exists a set U C V(G) \ T such that [T U U| = k. Since T is a resolving set
and a central set of GG, then T"U U is also a central resolving set of G. So that, T"U U is a central resolving set of G
which is a contradiction. Thus, the result follows and the proof is completed.

The following three lemmas (Lemmas 2.1-2.3) establish the fundamental structure of the central set and its
relation to the metric representations in the k-corona product. In particular, Lemma 2.1 characterizes the vertices
of minimum eccentricity, Lemma 2.2 ensures distinct metric representations for vertices within and outside the
central set, and Lemma 2.3 guarantees the minimality of the chosen central resolving set. These results form the
logical basis for the proofs of Theorems 2.4-2.10.

Theorem 2.4. Let GG be a connected graph and .S,, be a star graph. Then

dimeen (G O Sp) = [S(G)| + E|V(G)| (dim(S,,) +1).

Proof. Let V(G) ={v; | i =1,2,...,m}and V(S,,) = {u; | s = 1,2,...,n}. The vertex set of G ©y S, is given

¥ V(G ox Sn) = V(G UU(UV )

i=1 \r=1
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4 THE CENTRAL METRIC DIMENSION OF THE K-CORONA GRAPH

where V(G),) = {v] | v; € V(G)} and V((S,)]) = {uf |u; € V(Sy);r =1,..., ki =1,...,m}, for (S,)] is

the r-th copy of the star graph .S, at the i-th vertex of G. Let B = {ug, us, ..., u,—_1} be a basis of .S,,, and define
Bf = {u" | uj € By U{u]] | u, € V(Syn)}. Define the set

m k
W ={s) e V(GoLS,) | si€SG)}uU <U JBru {ui,.1}> :

i=1r=1
Based on Lemma 2.1, S(G ® S,,) € W, and hence
W[ =|S(G)| + k[V(G)| (dim(Sy,) +1).

To show that W is a central resolving set, note that each vertex u;'»’" in a copy of ), is adjacent only to its attachment
vertex v in G. Thus, any shortest path between vertices from different copies passes through their respective
attachment vertices, ensuring distinct distance representations relative to 1. Within each copy, leaves uéT have
distance 1 to v? and distance 2 to each other, which guarantees that all vertices are distinguishable with respect
to . For any distinct vertices u,v € V(G ®f S,,) where u # v, there are three possible cases: (1) u,v € W; (2)
ueWandv € V(GO S,) \W; (3) u,v € V(G ©®k S,) \ W. For cases (1) and (2), by Lemma 2.2, it is proven
that r(u | W) # r(v | W). For case (3), there are three subcases:

Lo € V(GY,) and u?” € V((Sn)])
Since d(v),v%) = s, where 0 < s <m — 1, and d(

19 Y

uf",v)) = 1, for every vwvy 6 V(GY,). Since every

vertex uy is only adjacent to its attachment vertex v , any shortest path from v} to u" i " must pass through vy,
it follows that d(v{,uY") = d(v? z, vg) +d(ul",v)) = s+ 1, thus d(vf,v)) < d(v),v)) < d(v),u"). Thus,

PRR] ’L » Yy z ' Y 9%y
there exists at least one vertex v) € V(G @ S,,) \ W for which d(v), v)) # d(u! us, vy), ensuring that their
representation to W is distinct. Hence, for v, u?" € V(G O S,,) \ W, itholds that r(v] | W) # r(u" | W).

2w € V((S);) and uf” € V(Sy);) with o 7y

Smce d(us”, v)) = 1 and d(vm,vy) = s, for every v),v) € V(GY,), where 0 < s <m — 1. d(vy,u] )= 1
we know that d(uf", v)) = d(uj ] T, 3L) + d(vx,vy) =1+ s. Since any shortest path between uf" and uf
passes through vy, we have d(ui", ud") = d(uf",vy)" + d(v),uf") = (1 +5) + 1 = 2 + s, thus d( ul”,v)) S

d(ug”, v)) < d(uf", uY"). Hence, for u}", u ?T € V(G O Sn) \ W, it follows that r(uf" | W) # r(uf" | W).
3. u"EV((S ) )s u”EV(( )5 )s 7"758

For every ui" € B, d(ug’ ,u) = 1 whereas d(u’®,uy") = 2. Similarly, for every uj® € By, d(u'®, up’) =1

whereas d(u}", uj’) = 2. Since Bf,B; C W, for uf" € V((S,);) and u* € V((S, )z) with r # s, it follows

that r(uj" [ W) ;é r(ui® [ W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T C V(G ® S,) contains
the central set and |T| < |[W|. Let |T'| = |W| — 1, then there exist two vertices u’", ui" € V((S,)7) such that

"up ¢ T. Thus, d(uf | v) = d(uy | v) for all v € Bf, meaning the distances from u” and u; to all other

J
vertices in B] are identical. This contradicts the definition of a resolving set, so 7" is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,
dimeen (G Ok Sn) = [S(G)] + K[V (G)] (dim(Sy) + 1) .
Next, the central metric dimension is presented for the graph resulting from the operation G ®y H, where H is a
complete graph, a path graph, or a cycle graph.
Theorem 2.5. Let C, be a cycle graph and K, be a complete graph. Then
dimeen(Cy Ok Kim) = |S(Cy)| + kg (dim(Kn))
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Proof. Let V(Cy) ={v; |1 =1,2,...,q} and V(K,,) ={u; | j =1,2,...,m}. The vertex set of C, Oy K,, is

given by
q k
V(Cyor Km) =V(CHU (U V((Km)§)> ;
i=1 \r=1
where V(C) = {v) | v; € V(Cy)} and V((Km)7) = {uf |uj € V(Kp);r =1,..., ki =1,...,q}, for (Kn)j
is the r-th copy of the complete graph I, at the i-th vertex of C,. Let B = {u1,u2, ..., Un—2,Un_1} be a basis
of K,,, and define B] = {u" | u; € B}. Define the set

W ={s) € V(C, 0 K) | 5i € S(C }U<UUB:>

i=1r=1
Based on Lemma 2.1, S(Cy ©; K,,) € W, and hence
[W| = |S(Cy)| + kq (dim(kKy)) .

To show that T is a central resolving set, observe that each vertex in a copy of K, is adjacent only to its
attachment vertex in C,. Hence, any shortest path between vertices belonging to different copies of K,, must
pass through their corresponding attachment vertices on the cycle, ensuring distinct distance representations across
copies. Within each copy, the inclusion of the copied basis B; distinguishes all vertices locally. Therefore,
every pair of distinct vertices in Cy ©y, K, has a unique distance representation with respect to W. For any
distinct vertices u,v € V(Cy ®f K,,,) wWhere u # v, there are three possible cases: (1) u,v € W; (2) u € W and
v e V(Cy O Kiy) \ W3 (3) u,v € V(Cy & Kp,) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that
r(u | W) # r(v | W). For case (3), there are three subcases:

1. v e V(C)) and ul" € V((K,)y)

Smce d(vf,09) = s, where 0 < s < ||, and d(u}",v)) = 5y
" is only adjacent to its attachment Vertex UO any shortest path from v? to u] must pass through vy,
yry _ _ yr

1t follows that d(v) uy ) = d(vl ,00) 4 d(u? uf”, y) s+ 1, thus d(vl ,09) < d(vl ,vz) < d(v) » U ). Thus,
there exists at least one vertex vy € V(Cy O K,,) \ W for which d(v), v)) # d(u! ui’, vy), ensuring that their
representation to W is distinct. Hence for v, u¥" € V(Cy ©x K,,) \ W, it holds that r(v) | W) # r(uf" |
w).

2. uf" € V((Kn)y) and uf" € V((Ky,)y) with z # y

Slnce d(u 71 and d(vd,v)) = s, for every v3,v) € V(CY), where 0 <s < [%]. d(v),u!") =1,

=1, for every v2, 00 € V(C’O) Since every vertex

j)ib)

€ y x) Yy Yy’
we know that d(uf",v)) = d(uj", L) + d(vl,vy) =1+ s. Since any shortest path between uf" and uf"
passes through vy, we have d(uf", u") = d(uj",v,)? + d(v), u}") = (1 + 5) + 1 =2 + s, thus d( uf", v m) g
i[(/q;] yup) < d(uf”,ul"). Hence for uj’, ij G V(Cy O Kin) \ W, it follows that r(uf” | W) # r(uf" |
S € VI V) r#s | -
For every uj| € Bf, d(uf",uj") = 1 whereas d(u}’,uj") = 2. Similarly, for every u;® € Bf, d(u?’,u;’) =1

whereas d(u ;T uif) = 2. Slnce Br,Bf CW, foru” € V(( m)T) and ués € V((Kn)$) withr # s, it follows
that 7(u?" | W) # r(ul® | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T C V(C, ®y K,,,) contains
the central set and |T| < [W|. Let |T| = [W| — 1, then there exist two vertices u’",u} € V((K,,);) such that

ul up ¢ T. Thus, d(uf | v) = d(uj | v) for all v € B}, meaning the distances from v} and uj to all other
Vertlces in B} are 1dentlcal This contradicts the definition of a resolving set, so 7" is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimeen (Cy O Ki) = |S(Cy)| + kg (dim(K,)) -
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Theorem 2.6. Let P, be a path graph and C, be a cycle graph. Then

diheen(Py Ok Cy) = [S(Py)] + kn(dim (K, + C,)),

Proof. LetV(P,) ={v; |t =1,2,...,n} and V(C,) = {u; | 1 = 1,2,...,q}. The vertex set of P,, ® C, is given

by
n k
V(P @k Cy) =V(PH U (U V((Cq)?)> ;
=1 \r=1

where V(P) = {v [vi € V(P,)} and V((Cy)7) = {uf | u; € V(Cy);r =1,... ki =1,...,n}, for (Cy)7 is
the r-th copy of the cycle graph C|, at the i-th vertex of P,. Let B be a basis of the graph K; + C,. The structure of
the central set and the metric basis of K + C,; depends on the parity of ¢. Since the vertices on C, form a symmetric
structure, selecting alternating vertices ensures that every vertex of C, has a distinct distance representation with

respect to B. As an illustration, consider the following examples:

e ¢ = 3. The graph K7 + Cj5 is isomorphic to the complete graph K. Since every vertex of K4 has eccentricity
1, any resolving set must contain at least three vertices to distinguish all pairs. Thus, one possible minimal
metric basis is B = {u1, us, us}.

* g = 4. The graph K + C4 consists of a universal vertex « connected to a cycle of four vertices. The universal
vertex has eccentricity 1, and each cycle vertex has eccentricity 2. A minimal resolving set that distinguishes
all vertices is obtained by selecting alternating vertices on the cycle, for example B = {uy,us}.

e ¢ > 5. For larger cycles, alternating vertices along the cycle ensure that all vertices have distinct distance
representations with respect to B. Hence, the general construction of B is:

{u17u37"'7uq—47uq—2}7 qud7
B pr—
{ui,us,...,uq—3,u9—1}, qeven.

These examples illustrate that the form and size of the metric basis B for K; + C, depend on the parity of ¢. Thus,
the basis B is chosen as follows:

B— {{ulau37"'7uq4auq2}7 quda

{ug,us, ..., ug—3,uq—1}, qeven.

Define Bf = {u}" | u; € B}. Define the set

W ={s) e V(P, o, C,) | si € S( n}u(LnJUB;).

i=1r=1
Based on Lemma 2.1, S(P,, ®, Cy) € W, and hence
(W= 1[S(P,)] + kn (dim(K; + Cy)).

To show that W is a central resolving set, note that each vertex u;'-’” in a copy of C, is adjacent only to its
attachment vertex v) in P,. Hence, any shortest path between vertices from different copies must pass through
their respective attachment vertices, yielding distinct distance representations relative to W. Within each copy of
Cy, the alternating vertices in the chosen basis B break the cycle’s symmetry, ensuring that every vertex u;" has
a unique distance vector to B;. Therefore, all vertices in P,, ®j C, are distinguishable with respect to W For
any distinct vertices u,v € V( Ok Cy) where u # v, there are three possible cases: (1) u,v € W; Q) ue W
and v € V(P, & Cy) \ W; 3) u,v e V(Pn Ok Cy) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that
r(u| W) #£r(v| W) For case (3), there are three subcases:
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1. v € V(P?) and uyr e V((Cy)y)
Since d(v?,v%) = s, where 0 < s <n — 1, and d(u”
Y" is only adjacent to its attachment vertex vo

uf’, v) = 1, for every v{, vy € V(PO) Since every vertex

any shortest path from v? to u " must pass through v
yry _ _ yr

1t follows that d(v), u¥") = d(v vg) +d(ul", y) s+ 1, thus d(vl,vy) < d(v v)) < d(vl,u] ). Thus
there exists at least one vertex vy € V(P, ©x Cy) \ W for which d(v), vy) # d(u}",v)), ensuring that their
representation to W is distinct. Hence for v; ,ué’r € V(P, ®, Cy) \ W, it holds that r(v? | W) # r(uf” |
w).

2. ui" € V((C )5) and uf" € V((Cy)y) with z # y
Slnce d(ui”, v) = 1 and d(v),vy) = s, for every v, v) € V(PY), where 0 <'s <n —1. d(v)),u!") = 1

x? y x) Yy
we know that d(uf",v)) = d(uj", w) + d(vx,vy) = 1+ s. Since any shortest path between uf” and uf
passes through vy, we have d(ui”, ud") = d(uf",vy)° + d(v),uf") = (1 +s) + 1 =2+ s, thus d( r vY) g
d(uf”,v)) < d(uf”,uf"). Hence foru;“”, uf” E V( Ok Cy) \ W, itfollows thatr(uf" | W) # r(u ;“” | W).

3. u;TGV((C) ), u”GV(( )5), T #s
For every v € B}, d(uj " ui") = 1 whereas d(u$,uy”) = 2. Similarly, for every u’ € By, d(uj®,u;’) = 1
whereas d(ug’", up’) = 2. Since B}, B C W, for uj" € V((Cy);) and uj® € V((Cy);) with r # s, it follows
that r(u" [ W) # r(uj® | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T’ C V( ®k Cy) contains
the central set and |T'| < [W|. Let |T| = [W| — 1, then there exist two vertices u",u}’ € V((C ){) such that

u uy ¢ T. Thus, d(uf | v) = d(uj | v) for all v € B}, meaning the distances from u;r and " to all other
Vertlces in B} are 1dentlcal This contradicts the definition of a resolving set, so 7" is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

ditheen(Py O Cy) = [S(Py)] + kn(dim (K, + C,))

The following is an example of case that satisfies Theorem 2.6. Let Ps be a path graph of order 3 as in Figure 1.
Let Cy be cycle graph of order 4. In Figure 2, there are two copies of the graph Cy. The k-corona graph P5 ©y Cy
presented in Figure 3 is obtained from Ps; and C4 with k=2. Let B be a basis of the graph Cy, B = {uy, us, us}.
Define B] = {u}" | u; € B} forr =1,2;i=1,2,3}.

V4 %) V3

Figure 1. One copy of the graph P3

U1y Uq3 Uzq U3

Figure 2. Two copies of the graph Cy4
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8 THE CENTRAL METRIC DIMENSION OF THE K-CORONA GRAPH

Figure 3. Structure of corona graph P3 ©p Cy

Figure 3 shows that the central set of P ©y Cy is S(P3 ®3 Cy) = {vd}. We choose W = S(P; ®3 Cy) U BY or
W = {9} U{uZ | u; € B;r =1,2;i = 1,2,3}. It follows that S(Ps ©y C4) € W. Therefore, it can be shown
that W is a basis containing the central set of P ©2 Cl4, so that |[W| = |S(Ps)|+2-3-|B|=19.

Theorem 2.7. Let K, be a complete graph and P,, be a path graph. Then

dimeen(Km O Po) = |S(Km)| + km(dim(K1 + Py)).

Proof. Let V(K,,) ={v; |i=1,2,...,m} and V(P,) = {u; | j =1,2,...,n}. The vertex set of K,, © P, is
given by

m k
V(K Or P) =V(ED) U (U V<<Pn>;f)> ,
=1 =1

where V(K7),) = {v) | vi € V(Ky,)} and V((P,)7) = {uf |u; € V(Py);r =1,..., ki = 1,...,m}, for (P,);

m

is the r-th copy of the path graph P, at the i-th vertex of K,,,. Let B be a basis of the graph K; + P,,. The structure
of the central set and the metric basis of K + P,, depends on the parity of n. As an illustration, consider:

e n = 3. For P; with vertices up, ug, u3, a minimal metric basis for K; + P5 is B = {uy,u3}: distances to u;
and ug separate every pair of vertices in the join.

e n = 4. For P, with vertices uy, us, u3, ug, a minimal metric basis for K} + Py is B = {uy, u3}. Distances to
uy and wug distinguish all vertices of the joined graph.

In general one may choose
B {{ul,US,"'aun—Qaun}a nOdd,

{ui,ug, ..., up—3,up_1}, neven.

Define Bf = {u}" | u; € B}. Define the set

W ={s" € V(K,, Or P,) | s; € S(K,u)} U (Lmj U B;) .

i=1r=1
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L. SUSILOWATI, A.N. FITRIA, I. KUSWANDARI, S. PRABHU AND DARMAIJI 9

Based on Lemma 2.1, S(K,,, ®; P,) C W, and hence
W = |S(Kn)| + km (dim(K; + P,)).

To show that W is a central resolving set, observe that each vertex uj»r in a copy of P, is adjacent only to its
attachment vertex v in K,,. Since K,, is complete, all attachment vertices are mutually adjacent, so any path
between vertices from different copies passes through their respective attachments. This guarantees that all vertices
of K,, ®r P, have distinct distance representations with respect to W.

For any distinct vertices u, v € V(K,, ®k P,,) where u # v, there are three possible cases: (1) u,v € W; (2)u € W
andv € V(K Ok Po) \ W5 (3) u,v € V(K,,, ©k P,) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that
r(u | W) # r(v | W). For case (3), there are three subcases:

L o) € V(KD,) and v" € V((P, ) )

Since d(v?,0)) = 1 and d(u¥",v0) = 1, for everyv vl e V(KD9,). Since every vertex u " is only adjacent to

19 Y%z ] 9 y x) y
its attachment Vertex v , any shortest path from v? to u " must pass through u , it follows that d(v) ,ué’r) =
d(v ) +d(uf",vy) =1+ 1= 2, thus d(v} 7vy) d(v v) ) < d(v,ud"). Thus there exists at least one

Vertex vy € V(K O P,) \ W for which d(vf,v)) # d(u? uf’, vy), ensuring that their representation to W is
distinct. Hence for vf ,ul" € V(K,, ©r P,) \ W, it holds that r(v) | W) # r(ul" | W).
2. ufm e V(P ) )anduyTGV(( )y) With z # y

Since d(uj",v)) =1 and d(vm,vy) =1, for every v),v) € V(K},). d(vy,uf") =1, we know that
d(u]”, v)) = d( ug”, v9) + d(v,v)) = 1+ s. Since any shortest path between uj" and uf" passes through
, we have d(uf",uf") = d(uj vy)? +d(vy,uf") = (1+5)+1=2+s, thus d(uj” ) < d(uf",vy) <

d(u}”, uf"). Hence, for uj", uf" € V(K Oy P )\ W, it follows that r(uj" | W) # 7(u ;’T | W).

3. ul e V((P, ))u“EV(( 0)5), T # s
For every ui" € By, d(uj ,up’) = 1 whereas d(u’*, uj) = 2. Similarly, for every uj® € By, d(u®*,u}?) =1
whereas d(u}", up®) = 2. Slnce BI', B C W, for u" € V((P,);) and u’® € V((P,);) with r # s, it follows
that 7(u’" | W) ;é r(ul | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T C V(K,, @k P,) contains
the central set and |T'| < |W| Let |T| |W| — 1, then there exist two vertices u%", ui” € V((P,)?) such that

ik %
W ¢ T. Thus, d(u}" | v) = d(uy | v) for all v € B}, meaning the distances from /" and u} to all other

Vertlces in B] are 1dentlcal This contradicts the definition of a resolving set, so 7" is not a central resolving set. By
Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimeen (K Ok Pr) = |S(Kpm)| + km(dim(Ky + Py,))
Theorem 2.8. Let S,, be a star graph and C, be a cycle graph. Then
dimeen (Sn Ok Cy) = [S(Sn)| + kn(dim (K7 + Cy))

Proof. Let V(S,) ={v; | i =1,2,...,n}and V(C;) = {u; | j = 1,2,...,q}. The vertex set of S,, ©) C, is given

by
V (S, Or Cy) SOUU<UV )

where V(S)) = {0} | vi € V(S,)} and V((Co)7) = {u}" |u; € V(Co);r =1,..., ki =1,...,n}, for (Cp)j is

K2

the 7-th copy of the cycle graph Cj at the i-th vertex of S,,. Let B be a basis of the graph K; + C;;. We choose

B— {{ulau?n"'vuq—47uq—2}7 qud7

{us,us,..., uqg—3,u9—1}, qeven.
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10 THE CENTRAL METRIC DIMENSION OF THE K-CORONA GRAPH

Define Bf = {u}" | u; € B}. Define the set

n k
W ={s? € V(S,orCy) | si €S(S,)}U (U U B;) .

i=1r=1
Based on Lemma 2.1, S(S,, ©x C;) € W, and hence
W1 = 1S(Sa)] + kn (dim(Ky + C,))

To show that W is indeed a central resolving set, we verify that any two distinct vertices in \S,, ®, Cy have different
distance representations with respect to W. Each vertex u;'-r in a copy of Cj is connected only to the central
vertex v) of S,,. Therefore, any shortest path between two vertices belonging to different copies of C,, must pass
through their respective attachment vertices v and vg. This property guarantees that vertices from different copies
have distinct representations to the elements of W, because the distances to central vertices v? € S(S,,) differ
depending on their positions along the path S,,. Within each copy of Cj, the cycle structure introduces symmetry,
but the chosen basis B—comprising alternating vertices along the cycle—breaks this symmetry by ensuring that
the distance from any vertex u?r to B] is unique. In particular, adjacent vertices on the cycle have distance 1, their
second neighbors have distance 2, and so on, wrapping around the cycle modulo ¢. Since each ué-’" has a distinct
pattern of distances to B, it follows that all vertices in the same copy of C; are distinguishable with respect to .
For any distinct vertices u, v € V(5,, ® C,) where u # v, there are three possible cases: (1) u,v € W; Q)u e W
and v € V(S,, ©r Cy) \ W35 (3) u,v € V(S,, @ Cy) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that
r(u | W) # r(v | W). For case (3), there are three subcases:

1. v e V(Sp)and u?" € V((C,)y)

Slnce d(vy,vy) = s, where 0 < s <2, and d(u}",vy) = 1, for every vuvy € V(SY). Since every vertex
" is only adjacent to its attachment Vertex v , any shortest path from v{ to u;” must pass through vo

1t follows that d(v],u}") = d(vl ,ug) +d(ud”, y) = s+ 1, thus d(vz ,09) < d(vl ,vz) < d(v),ul"). Thus
there exists at least one vertex vy € V/(S,, @ Cy) \ W for which d(v), vy) # d(u}",vy), ensuring that their
representation to W is distinct. Hence for vf,u¥" € V(S, ©r Cy) \ W, it holds that (v | W) # r(u}" |
w).

2. u "”)’ € V((C’ )5) and uf" € V((Cy)y) withz # y
Slnce d(uf”,v9) =1 and d(v),vy) = s, for every v),v) € V(Sy), where 0 <5 < 2. d(v),u}") =1, we
know that d(u}”,vy) = d(uf",v)) + d(v],vy) = 1+ s. Since any shortest path between u}" and uf”
passes through vy, we have d(uf", u!") = d(uj",v,)? + d(vy, u}") = (1 +5) + 1 =2 + s, thus d(ui", v)) <
d(uf”, v)) < d(ui", u"). Hence, for uf”, u¥" € V(S Ok Cy) \ W, itfollows that r(uj” | W) # r(uf" | W).

3. u"EV((C) )s u”EV(( )5, r;«és
For every uj" € BT d(uf” ,up’) = 1 whereas d(u’’, uj’) = 2. Similarly, for every u}* € By, d( Juls)y =1
whereas d(ui" ul up’) = 2. Since BI',B? C W, for ugr € V((Cy)7) and ués € V((Cq)z) with r # s, it follows

that r(ué-’" | W) ;é r(ué-s | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T C V(S,, ©®; C,) contains
the central set and |T'| < |W|. Let |T'| = |W/|— 1, then there exist two vertices u’", ui" € V((Cy)F) such that

uy ¢ T. Thus, d(uf" | v) = d(u | v) for all v € B}, meaning the distances from v and uj to all other

vertices in B] are identical. This contradicts the definition of a resolving set, so 7" is not a central resolving set. By
Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimeen (Sn Ok Cy) = [S(Sn)| + kn(dim (K7 + Cy))
Theorem 2.9. Let S, be a star graph and K,,, be a complete graph. Then
dimeen (Sp Ok Kim) = |S(Sn)| + kn (dim(K,,))
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Proof. Let V(S,,) ={v; | i=1,2,...,n} and V(K,,) = {u; | j = 1,2,...,m}. The vertex set of S,, Oy K,, is

given by
V(Sn Ok Kin) = V(Sp) U U (U V(( )

=1 \r=1

2

is the r-th copy of the complete graph K, at the i-th vertex of S,,. Let B = {uy,us, ..., Um—_2, Um—_1} be a basis
of K, and define B] = {u" | u; € B}. Define the set

where V/(S0) = {v? | v; € V(8,)} and V((Kpn)f) = {ul |u; € V(Kp)ir =1,... ki = 1,...,n}, for (Kp,)7

n

k
W ={s?cV(S, Or Kpn) | s; € S(8 )}u(UUB;>.

i=1r=1
Based on Lemma 2.1, S(S,, ®x K,,) € W, and hence
(W[ = 1[S(Sp)| + kn (dim(Kn)) -

To show that W is a central resolving set, note that each vertex in a copy of K, is adjacent only to the central vertex
of its corresponding S,,. Consequently, any shortest path between vertices in different copies of K,,, must pass
through their respective central vertices in S,,, which guarantees distinct distance representations across copies.
Within each copy of K,,, the inclusion of the local basis B; ensures that all v For any distinct vertices u,v €
V (S, ©k K,,,) where u # v, there are three possible cases: (1) u,v € W; (2)u € W and v € V(S,, O K,,) \ W;
(3) u,v € V(S,, ®x K,,) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that r(u | W) # r(v | W). For
case (3), there are three subcases:

1. v € V(Sy) and uf" € V((Kp);)
Slnce d(v),v)) = s, where 0 < s <2, and d(u}",v)) = 1, for every v), v, € V(SO) Since every vertex

i Ve ) y
" is only adjacent to its attachment vertex v , any shortest path from v{ to u " must pass through v
1t follows that d(v) yuf") = d(vl ,00) + d(u! uf”, y) = s+ 1, thus d(vl ,0p) < d(vl 7%) < d(vY ,ugr) Thus
there exists at least one vertex v € V(S,, @ K,,) \ W for which d(v), v]) # d(u} (G vy), ensuring that their
representation to W is distinct. Hence, for v, u¥" € V (S, O Kp,) \ W, it holds that r(v] | W) # r(ul" |
2. uj" € V((Kp)y) and uf” € V((Ky,)y) withz # y

Smce d(ug”, m) =1 and d(vm,vy) = s, for every v2,v) € V(S7), where 0 <'s < 2. d(v]), u i) =1, we
know that d(u}”,vy) = d(ui",v )+d(vx,vy) =1+ s. Since any shortest path between u;” and uf

passes through vy, wehave d(ui", uf") = d(uj",v,)° + d(v),u¥") = (14 5) + 1 =2+ s, thus d(uj", w) g
d(uf”, v]) < d(ui",uy"). Hence, for u}", ?T € V(S, Ok Kim) \ W, it follows that r(uf" | W) # r(uf" |

w).

3. ul e V((Kp)j), ulf € V((K )i),r# s
For every uj € BT d(u¥", up’) = 1 whereas d(u’’, uj') = 2. Similarly, for every uj® € By, d(u®*,u}?) =1
whereas d(ui" ul up’) = 2. Slnce B, B; CW, foru” V(( m)T) and u}s e V(K )Z) with r # s, it follows
that r(uj" [ W) ;é r(ui® [ W).

Next, to prove that TV is a central resolving set with minimal cardinality, suppose T C V(.S,, ®y K,,,) contains
the central set and |T'| < |W]|. Let |T| = |W/| -1, then there exist two vertices u;",u;" € V((K,);) such that

3

ul upl ¢ T. Thus, d(uf | v) = d(ui" | v) for all v € BY, meaning the distances from u;'f and " to all other

Vertlces in B are 1dent1cal This contradicts the definition of a resolving set, so 7" is not a central resolving set. By
Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,
dimeen (S Ok Kom) = |S(Sn)| + kn (dim(K,,)) .
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12 THE CENTRAL METRIC DIMENSION OF THE K-CORONA GRAPH

Theorem 2.10. Let G be a connected graph and H be a graph of order at least two. If H has a basis B such that
there is no vertex v € V(G ©y H) with r(v|B) = (2,2,2,...,2), then

dime (G Op H) — |S(G)] + k:\V(G)|(dnn(H)), if H is 'a complete graph

|S(G)| + K|V (G)|(dim(K, + H)), otherwise
Proof. Let G be a connected graph with V(G) = {v; | i =1,2,3,...,n}. Let H be a graph of order at least two
with V(H) = {u; | j =1,2,3,...,m}. The vertex set of G ©®;, H is given by

V(G or H) =V (GY) UU(UVHT>

where V(G9) = {v) | v; € V(G)} and V(H]) = {u}" | uj € V(H);r =1,...,k;i = 1,...,n}, for H] represents
the r-th copy of the graph H attached to the i-th vertex of graph G. There are two possible cases in determining
the central metric dimension of the graph, when H is a complete graph and otherwise.

Case 1: For H is a complete graph, let B be a basis of the graph H that there is no vertex v € V(G @y H) with
r(v|B) =1(2,2,2,...,2) and B] = {u}" |u; € B}.forr =1,2,3,...,k; i =1,2,3,...,n. Define the set

W={s"cV(Go,H)|si €S(G)UB,
Based on Lemma 2.1, S(G @y H) C W, and hence
[W| =1|S(G)| + kn (dim(H)) .

To confirm that W is a central resolving set, observe that each vertex in a copy of H is adjacent only to its
attachment vertex v) in G. Therefore, any shortest path between vertices belonging to different copies of H must
pass through their respective attachment vertices. Since the vertices of G themselves have distinct distance patterns
relative to S(G), and every copy of H contributes its local basis B}, it follows that all vertices of G @y H are
uniquely represented with respect to W. For any distinct vertices u, v € V(G ©y H) where u # v, there are three
possible cases: (1) u,v € W; 2)u e Wandv € V(GO H)\ W; (3) u,v € V(G ©x H) \ W. For cases (1) and
(2), by Lemma 2.2, it is proven that r(u | W) # r(v | W). For case (3), there are three subcases:

I o € V(GY) and ul" € V((H)])
Slnce d(v?, 1Y) = s, where 0 < s <n — 1, and d(

17T

0 .
uf”, vy) = 1, for every v, vy € V(G ). Since every Vertex

" is only adjacent to its attachment vertex v , any shortest path from v{ to uj must pass through v
1t follows that d(v),u¥") = d(v) z, vg) +d(ul", y) = s+ 1, thus d(v?,02) < d(v?,00) < d(v),u¥"). Thus

PRR] z? Y 17 T R
there exists at least one vertex vj) € V(G @k H)\ W for which d(v{,v)) # d(u! i vy), ensuring that their
representation to 1 is distinct. Hence for vf,uf" € V(G ©), H) \ W, itholds that r(v] | W) # r(u}" | W).
2. uim e V((H ) )and uf" € V((H);) withz # y

Since d(uj", m)—land d(vl,v )—s for every v2,v0 € V(GY), where 0 < s <n —1. d(v) uyr)—l

) y z Yy o Uy
we know that d(u}",vy) = d(uj",vg) + d(%,vy) =1+ s. Since any shortest path between u}" and u
passes through v, we have d(u ) = (s 0,0+ A, ") = (L4 )+ 1= 2 4 5, thus d{u” 1) <
d(ui", vy) < d(u§", uf"). Hence, for uf”, u ?7” € V(G Ok H) \ W, it follows that r(u?" | W) # r(u!" | W).

3. u;TEV((H) )s u”EV(( ) )s r;«és
For every u;” € B}, d(uj",u}") = 1 whereas d(u;’,u;") = 2. Similarly, for every ui® € By, d( Jupk) =1
whereas d(u;-T, u) = 2. Since Bf,B; C W, for ui” € V((H);) and v’ € V((H )2) with 7 # s, it follows
that r(u" [ W) # r(uj® | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose 7' C V(G ©y, H) contains
the central set and |T'| < [W|. Let |T| = |[W| — 1, then there exist two vertices u}",u;” € V/((H);) such that
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ul uy ¢ T. Thus, d(uf | v) = d(uj | v) for all v € B}, meaning the distances from v} and uj to all other
Vertlces in B} are 1dentlcal This contradicts the definition of a resolving set, so 7" is not a central resolving set. By
Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

diteen(G @1 H) = |S(G)| + kIV(G)] (dim(H)).

Case 2: For H is not a complete graph, let B be a basis of the graph H . Let B be the basis of the graph K1 + H
and Bf = {u}" | u; € B}. forr =1,2,3,...,k; i=1,2,3,...,n. Define the set

W={s?ecV(Go,H)|s; €SG)}uUB,

Based on Lemma 2.1, S(G & H) C W, such that there is no vertex v € V(G ©p H) with r(v | B) =
(2,2,2,...,2). Hence
[W| =1|S(G)| + kn (dim(K; + H)) .

To verify that W is a central resolving set, note that for each copy of H, all vertices are connected only through their
corresponding attachment vertex v). Thus, vertices from different copies have distinct distance patterns with respect
to S(G), while within the same copy, the inclusion of the local basis B} —derived from K7 + H—ensures that every
vertex in H] is uniquely identified. Consequently, IV distinguishes all vertices of G ®; H. For any distinct vertices
u,v € V(G ® H) where u # v, there are three possible cases: (1) u,v € W;(2)u € Wandv € V(G o H) \ W,
3) u,v € V(G & H) \ W. For cases (1) and (2), by Lemma 2.2, it is proven that (u | W) # r(v | W). For case
(3), there are three subcases:

I o0 € V(GY) and ul" € V((H)])
Slnce d(v?,v9) = s, where 0 < s <n — 1, and d(u

17T
" is only adjacent to its attachment vertex vO

uf’, vy) = 1, for every vY, vy € V(GO) Since every vertex
any shortest path from v? to u] must pass through v

1t follows that d(vf,u¥") = d(v} ,vw) +d(uf", y) = s+ 1, thus d(vz ,09) < d(v, ,vw) < d(v),ud"). Thus

there exists at least one vertex vj) € V(G @k H)\ W for which d(v},v)) # d(u! uj, vy), ensuring that their

representation to W is distinct. Hence for vf,uf" € V(G ©), H) \ W, itholds that r(v] | W) # r(u}" | W).
2. ufm e V((H ) )and u" € V((H);, )w1thx7éy

Smce d(uf”, v)) = 1 and d(vwvy) = s, for every v),v) € V(GY), where 0 < s <n — 1. d(vy,u}") = 1
we know that d(uf",v)) = d(uj",v)) + d(vy,vy) = 1+ s. Since any shortest path between u}” and uf
passes through vy, we have d(uf", u!") = d(uj",v,)? + d(vy, u}") = (1 + 5) + 1 =2 + s, thus d( ul”,v)) g
d(ug”, vy) < d(uj”,u¥"). Hence, for uf", uY" € V(G O H) \ W, it follows that r(uf" | W) # r(uf" | W).
3. Ul e V((H) )s u” € V(( )E), T # s

For every uy" € BT d(uf,uy") = 1 whereas d(u*,u}") = 2. Similarly, for every up® € Bf, d(u'®,up’) =1

whereas d(u’" uf up’) = 2. Since B, B; C W, for ui" € V((H)) and u$® € V((H);) with 7 # s, it follows

that r(u" | W) 7& r(uis | W).

Next, to prove that W is a central resolving set with minimal cardinality, suppose 7' C V(G ©y H) contains
the central set and |T| < |[W/|. Let [T| = [W| -1, then there exist two vertices u}",uy’ € V((H)j) such that

rouy ¢ T. Thus, d(u? | v) = d(ujl | v) for all v € Bf, meaning the distances from uér and " to all other
vertices in 3] are identical. This contradicts the definition of a resolving set, so 7 is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

diteen(G O H) = |S(G)| + KV (@) (dim(K, + H)).

Remark. The condition r(v | B) # (2,2,...,2) in Theorem 2.10 is essential to ensure that the resolving set W
distinguishes all vertices in G © H. If a vertex v € V(H) satisfies r(v | B) = (2,2,...,2), then v is located at
distance 2 from every vertex of the basis B. Consequently, in the corona operation, every copy of such a vertex v
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will have the same distance pattern to all vertices of W. As a result, two distinct copies attached to the same central
vertex will share identical distances with respect to W, and hence W fails to resolve the graph.

As an example, let .S,, be a star graph of order n with one central vertex w; and n — 1 leaf vertices us, us, . .., Uy,.
Each leaf w; is adjacent only to the central vertex u;. Consider any connected graph G of order m and form
the corona product G ©y, Sy,. Let B = {ug,us, ..., u,—1} be a basis of S,,. Define B] = {uér | u; € B} forr =
1,2,...,kand i =1,2,...,m. We choose W = S(G ©, S,,) U Bl as a candidate resolving set. In this structure,
there exist distinct leaf copies u" and u}* (attached to the same central vertex v{)) such that d(u}", v{) = d(u’*,v))
for every v € W. Consequently, the vertices v} and u}* cannot be distinguished by W, since r(u}" | W) = r(u}’® |
W) =(2,2,...,2), and hence W fails to resolve the graph. Therefore, the restriction r(v | B) # (2,2,...,2) is
crucial to prevent such a situation and to ensure that every vertex in G ®; H has a unique distance representation
with respect to 1.

3. Conclusion and Suggestions

Based on this research, the central metric dimension of k-corona graphs is determined by the central set of G, the
order of G, the value of £, and the metric dimension of H. The findings present a generalized case of the central
metric dimension for k-corona graphs.

Each type of branch graph contributes differently to the structure of the resulting k-corona graph. For H = §,,, the
presence of a universal vertex in each copy adds one additional element to the central resolving set. For H = P,
and H = C,, the parity of n or ¢ affects both the formation of the central set and the selection of the metric
basis. When the order is odd, one additional central vertex appears, while for even order, the size of the central
set remains the same. For H = K, every vertex is adjacent to all others, resulting in equal eccentricities across
vertices. This makes each copy of K, highly symmetric, and the central metric dimension mainly depends on the
metric dimension of K,,.

These differences produce variations in the formula of the central metric dimension. The concept of the central set
can further be applied to determine strategic public service locations that are accessible from all regions through
efficient transportation routes. For future research, concepts related to the metric dimension and the diameter of
graphs can be extended and analyzed in other graph operations or in dynamic network models.
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