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Abstract The metric dimension is the minimum cardinality of a subset of the vertex set of a graph G that uniquely
represents each vertex in a graph. The central set is a set of vertices with minimum eccentricity. This central set concept can
be used to determine strategic public service locations, such that accessible transportation can be reached from all regions.
The central metric dimension is the minimum cardinality of a resolving set that includes the central set. This study aims
to determine the central metric dimension in k-corona graph. The k-corona operation of G and H denoted by G⊙k H is a
generalization of the corona operation, where a new graph is formed by connecting each vertex of a graph G to k copies of
graph H . The results show that the central metric dimension of the k-corona graph depends on the central set of G, the order
of G, the value of k, and the metric dimension of H .
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1. Introduction

Graph theory is a mathematical concept that falls under the field of algebra. This theory studies elements

represented as vertices and edges, where edges represent the relationship between two vertices. According to

Chartrand and Lesniak, graph theory was first introduced in 1736 by Swiss mathematician Leonhard Euler, who

discussed the problem of the Seven Bridges of Königsberg [1].

Over time, graph theory developed several important concepts such as distance, paths, cycles, and others, which are

further detailed and are interesting topics of discussion in this field. In recent years, the study of metric dimension

and its variants has been extended to a wide range of graph operations. Several works have investigated the metric

dimension of corona products and related constructions. For instance, Saputro etal.[2] studied the metric dimension

of comb product graphs, while Susilowati etal. [3] [4] considered rooted product and corona-type graphs in relation

to local metric dimension. More recently, Prabhu and collaborators [5, 6, 7, 8, 9, 10] examined fault-tolerant metric

dimension in various interconnection networks. These studies show that corona type operations provide a fertile

ground for exploring metric dimension and its generalizations. Another concept that has developed within graph

∗Correspondence to: Liliek Susilowati (Email: liliek-s@fst.unair.ac.id). Department of Mathematics, Faculty of Science and Technology,
Universitas Airlangga, Jl. Ir. Soekarno, Surabaya.

ISSN 2310-5070 (online) ISSN 2311-004X (print)

Copyright © 202x International Academic Press



L. SUSILOWATI, A.N. FITRIA, I. KUSWANDARI, S. PRABHU AND DARMAJI 1

theory is the concept of the central set. According to Sooryanarayana etal., the central set is the set of all central

vertices whose eccentricities are equal to the radius of the graph [11].

This central set concept can be used to determine strategic locations of public services so that accessible

transportation can be reached from all regions.

Drawing from these two concepts —metric dimension and central set— a new idea emerged to combine them,

known as the central metric dimension. One of the efforts to merge these concepts was conducted by Susilowati

etal.. Their research discussed the concept of the central metric dimension, namely a resolving set that also contains

the central set in specific types of graphs. One of these is the special graph resulting from the k-corona operation

[12].

The k-corona operation is an extension of the corona operation that was introduced earlier. This development lies in

the inclusion of a positive integer k. The k-corona operation creates a new graph by taking one copy of graph G and

k copies of graph H for each vertex in G. Then, each vertex in G is connected to every vertex in its corresponding

k copies of H .

The k-corona operation expands the applications and research potential of corona operations by offering more

flexibility in graph composition. Therefore, this study focuses on the integration of the metric dimension and the

concepts of central set in the k-corona graph. The specific graphs used in this research include path graphs, star

graphs, complete graphs, and cycle graphs.

In recent developments, various extensions of the metric dimension have been introduced to capture different

structural properties of graphs, such as fault-tolerant metric dimension [7, 9]. However, studies that integrate

these distance-based approaches with the concept of the central set remain relatively limited. The central metric

dimension provides a new perspective by requiring the resolving set to also contain the central vertices of the graph.

Furthermore, while several works have examined the metric dimension of the standard corona product G⊙H
[13, 14], the inclusion of a positive integer parameter k in the k-corona operation introduces new structural

challenges. The interaction between the central vertices of G and the replicated structures of H under the k-corona

construction has not been widely analyzed in existing literature. Hence, this study contributes by determining

the central metric dimension of k-corona graphs involving fundamental families such as paths, stars, cycles, and

complete graphs, thereby extending prior results on corona-type operations.

In previous studies, the metric and local metric dimensions of various graph operations—such as corona, comb,

and rooted products—have been widely analyzed [13, 3, 2, 4]. However, most of these works focus on classical

or local metric dimensions, without considering the structural influence of the central vertices. The introduction of

the central metric dimension expands this framework by combining the concept of a resolving set with the central

structure of the graph.

In this paper, we generalize these findings by determining the central metric dimension of the k-corona product

G⊙k H , where H can be a path, a cycle, a star, or a complete graph. This provides a unified formulation that

includes several previously studied cases as special instances. Furthermore, the results establish a theoretical

foundation that can be applied to identify optimal monitoring or service locations in network systems, where

accessibility to central regions is a key consideration.

To support this study, the following preliminary definitions and concepts are presented.

Definition 1.1 ([15]). A central vertex is a vertex whose eccentricity is equal to the radius of the graph G.

Definition 1.2 ([15]). A central set is a set whose elements are all central vertices. The central set of a graph G is

denoted by S(G).

Lemma 1.3. [[3]] Let G be a connected graph. If W ⊆ V (G), then for every vi, vj ∈ W with i 6= j, it holds that

r(vi |W ) 6= r(vj |W ).

Definition 1.4 ([4]). Let G be a connected graph. An ordered set W ⊆ V (G) with W 6= ∅ is called a central

resolving set of G if W is a resolving set that also contains the central set. A central resolving set of the minimum
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cardinality is called a central basis. The cardinality of the central basis in the graph G is called the central metric

dimension, denoted by dimcen(G).

Definition 1.5 ([4]). Let G be a connected graph with V (G) = {vi | i = 1, 2, 3, . . . , n} and let H be a connected

graph of order at least two. The k-corona of G and H , denoted by G⊙k H , is the graph obtained by taking one

copy of G and nk copies of H , that is,

H1
1 , H

2
1 , H

3
1 , . . . , H

k
1 , H

1
2 , H

2
2 , H

3
2 , . . . , H

k
2 , . . . , H

1
n, H

2
n, H

3
n, . . . , H

k
n,

such that each vertex vi ∈ V (G) is connected to all vertices in Hr
i , for r = 1, 2, 3, . . . , k.

In the generalized corona product G⊙k H , each vertex vi of the base graph G is connected to k distinct copies

of the graph H , denoted by H1
i , H

2
i , . . . , H

k
i . Every vertex uir

j in the r-th copy Hr
i is adjacent only to the

corresponding vertex vi in G, and there are no edges between different copies Hr
i and Hs

i for r 6= s. This

structure ensures that the resulting graph has |V (G)|+ k|V (G)| · |V (H)| vertices. The vertex labeling on the

resulting graph G⊙k H is defined as follows. Let G be a graph with V (G) = {vi | i = 1, 2, 3, . . . , n} and H with

V (H) = {uj | j = 1, 2, 3, . . . ,m}. Based on the definition of the k-corona operation, the vertex set is

V (G⊙k H) = V (G0) ∪

n
⋃

i=1

(

k
⋃

r=1

V (Hr
i )

)

,

where V (G0) = {v0i ∈ V (G⊙k H) | vi ∈ V (G)} and

V (Hr
i ) = {uir

j | uj ∈ V (H); r = 1, 2, 3, . . . , k; i = 1, 2, 3, . . . , n}.

Here, G0 is referred to as the central graph, while each Hr
i is referred to as a branch graph.

2. Central Metric Dimension of the k-Corona Graph

The initial step in this study is to determine the central sets of the specific graphs used in the research. The results

are as follows.

• The central set of a cycle graph and a complete graph is the set of all vertices in the graph.

• The central vertex of a path graph Pn is the n+1

2
-th vertex for odd n, or the n

2
-th and n+2

2
-th vertices for even

n.

• The central vertex of a star graph is the central vertex of the star itself.

This section explains the central set of the graph resulting from the k-corona operation, followed by the central

metric dimension of that graph.

Lemma 2.1. Suppose G and H are connected graphs, then

S(G⊙k H) = {s0i ∈ V (G⊙k H) | si ∈ S(G)}.

Proof. Let G be a connected graph with V (G) = {vi | i = 1, 2, 3, . . . , n}. Let H be a connected graph with

V (H) = {uj | j = 1, 2, 3, . . . ,m}. The vertex set of G⊙k H is given by

V (G⊙k H) = V (G0) ∪

n
⋃

i=1

(

k
⋃

r=1

V (Hr
i )

)

,
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where V (G0) = {v0i ∈ V (G⊙k H) | vi ∈ V (G)} and V (Hr
i ) = {uir

j | uj ∈ V (H); r = 1, . . . , k; i = 1, . . . , n}.

Here, Hr
i denotes the r-th copy of H attached to vertex vi of G. Suppose s ∈ S(G), then e(s) = min{e(v) | v ∈

V (G)}. Let s0i ∈ V (G⊙k H) for si ∈ S(G), then e(s0i ) = e(si) + 1.

Next, consider a vertex uir
j that lies in the r-th copy of H attached to v0i . For any central vertex v0t we have

d
(

uir
j , v0t

)

= 1 + d(v0i , v
0
t ), and for any vertex uts

j in a copy of H attached to v0t ,

d
(

uir
j , uts

j

)

= 1 + d(v0i , v
0
t ) + 1 = d(v0i , v

0
t ) + 2.

So, for any vertex uir
j ∈ V (G⊙k H), we have e(uir

j ) = e(v0i ) + 2.

Since e(uir
j ) ≥ e(s0i ) for every uir

j ∈ V (G⊙k H), it follows that e(s0i ) = min{e(v) | v ∈ V (G⊙k H)}. Thus,

S(G⊙k H) = {s0i ∈ V (G⊙k H) | si ∈ S(G)}.

In the k-corona product G⊙k H , each vertex v0i of G becomes the central attachment point for k copies of H . The

distances between vertices in different copies of H must pass through their corresponding central vertex v0i , which

increases every distance by exactly one compared to the original distance in G. Consequently, the eccentricity

of each central vertex in G⊙k H is e(vi) + 1, while the eccentricity of vertices in the attached copies of H is

e(vi) + 2. This explains why the central vertices of G⊙k H coincide with those of G.

Lemma 2.2. Let G be a connected graph and U ⊆ V (G). If x ∈ U or y ∈ U , then r(x | U) 6= r(y | U).

Proof. Let G be a connected graph and U ⊆ V (G). For any vi ∈ U or vj ∈ U , there are two possible cases:

(1) vi, vj ∈ U : Based on Lemma 1.3, it holds that r(vi|U) 6= r(vj |U).
(2) vi ∈ U and vj /∈ U : In the ordered pair r(vi|U) there exists an element 0, whereas in r(vj |U) there is no such

element. Therefore, r(vi|U) 6= r(vj |U).

Lemma 2.3. Let G be a connected graph. If there is no central resolving set of G with cardinality k, then any set

W ⊆ V (G) with |W | < k is not a central resolving set.

Proof. Let G be a connected graph. Suppose there is no central resolving set of G with cardinality k, and there

exists a central resolving set T ⊆ V (G) with |T | < k such that for every vi, vj ∈ V (G), r(vi|T ) 6= r(vj |T ) and T
is a central set of G. Moreover, there exists a set U ⊆ V (G) \ T such that |T ∪ U | = k. Since T is a resolving set

and a central set of G, then T ∪ U is also a central resolving set of G. So that, T ∪ U is a central resolving set of G
which is a contradiction. Thus, the result follows and the proof is completed.

The following three lemmas (Lemmas 2.1–2.3) establish the fundamental structure of the central set and its

relation to the metric representations in the k-corona product. In particular, Lemma 2.1 characterizes the vertices

of minimum eccentricity, Lemma 2.2 ensures distinct metric representations for vertices within and outside the

central set, and Lemma 2.3 guarantees the minimality of the chosen central resolving set. These results form the

logical basis for the proofs of Theorems 2.4–2.10.

Theorem 2.4. Let G be a connected graph and Sn be a star graph. Then

dimcen(G⊙k Sn) = |S(G)|+ k|V (G)| (dim(Sn) + 1) .

Proof. Let V (G) = {vi | i = 1, 2, . . . ,m} and V (Sn) = {uj | j = 1, 2, . . . , n}. The vertex set of G⊙k Sn is given

by

V (G⊙k Sn) = V (G0
m) ∪

m
⋃

i=1

(

k
⋃

r=1

V ((Sn)
r
i )

)

,
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where V (G0
m) = {v0i | vi ∈ V (G)} and V ((Sn)

r
i ) = {uir

j | uj ∈ V (Sn); r = 1, . . . , k; i = 1, . . . ,m}, for (Sn)
r
i is

the r-th copy of the star graph Sn at the i-th vertex of G. Let B = {u2, u3, . . . , un−1} be a basis of Sn, and define

Br
i = {uir

j | uj ∈ B} ∪ {uir
n | un ∈ V (Sn)}. Define the set

W = {s0i ∈ V (G⊙k Sn) | si ∈ S(G)} ∪

(

m
⋃

i=1

k
⋃

r=1

Br
i ∪ {uir1}

)

.

Based on Lemma 2.1, S(G⊙k Sn) ⊆ W , and hence

|W | = |S(G)|+ k|V (G)| (dim(Sn) + 1) .

To show that W is a central resolving set, note that each vertex uir
j in a copy of Sn is adjacent only to its attachment

vertex v0i in G. Thus, any shortest path between vertices from different copies passes through their respective

attachment vertices, ensuring distinct distance representations relative to W . Within each copy, leaves uir
j have

distance 1 to v0i and distance 2 to each other, which guarantees that all vertices are distinguishable with respect

to W . For any distinct vertices u, v ∈ V (G⊙k Sn) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2)

u ∈ W and v ∈ V (G⊙k Sn) \W ; (3) u, v ∈ V (G⊙k Sn) \W . For cases (1) and (2), by Lemma 2.2, it is proven

that r(u | W ) 6= r(v | W ). For case (3), there are three subcases:

1. v0i ∈ V (G0
m) and uyr

j ∈ V ((Sn)
r
y)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ m− 1, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (G0

m). Since every

vertex uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (G⊙k Sn) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (G⊙k Sn) \W , it holds that r(v0i | W ) 6= r(uyr

j | W ).
2. uxr

j ∈ V ((Sn)
r
x) and uyr

j ∈ V ((Sn)
r
y) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (G0

m), where 0 ≤ s ≤ m− 1. d(v0y, u
yr
j ) = 1,

we know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (G⊙k Sn) \W , it follows that r(uxr

j | W ) 6= r(uyr
j | W ).

3. uir
j ∈ V ((Sn)

r
i ), u

is
j ∈ V ((Sn)

s
i ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Sn)
r
i ) and uis

j ∈ V ((Sn)
s
i ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (G⊙k Sn) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Sn)
r
i ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(G⊙k Sn) = |S(G)|+ k|V (G)| (dim(Sn) + 1) .

Next, the central metric dimension is presented for the graph resulting from the operation G⊙k H , where H is a

complete graph, a path graph, or a cycle graph.

Theorem 2.5. Let Cq be a cycle graph and Km be a complete graph. Then

dimcen(Cq ⊙k Km) = |S(Cq)|+ kq (dim(Km))

Stat., Optim. Inf. Comput. Vol. x, Month 202x



L. SUSILOWATI, A.N. FITRIA, I. KUSWANDARI, S. PRABHU AND DARMAJI 5

Proof. Let V (Cq) = {vi | i = 1, 2, . . . , q} and V (Km) = {uj | j = 1, 2, . . . ,m}. The vertex set of Cq ⊙k Km is

given by

V (Cq ⊙k Km) = V (C0
q ) ∪

q
⋃

i=1

(

k
⋃

r=1

V ((Km)ri )

)

,

where V (C0
q ) = {v0i | vi ∈ V (Cq)} and V ((Km)ri ) = {uir

j | uj ∈ V (Km); r = 1, . . . , k; i = 1, . . . , q}, for (Km)ri
is the r-th copy of the complete graph Km at the i-th vertex of Cq. Let B = {u1, u2, . . . , um−2, um−1} be a basis

of Km, and define Br
i = {uir

j | uj ∈ B}. Define the set

W = {s0i ∈ V (Cq ⊙k Km) | si ∈ S(Cq)} ∪

(

q
⋃

i=1

k
⋃

r=1

Br
i

)

.

Based on Lemma 2.1, S(Cq ⊙k Km) ⊆ W , and hence

|W | = |S(Cq)|+ kq (dim(Km)) .

To show that W is a central resolving set, observe that each vertex in a copy of Km is adjacent only to its

attachment vertex in Cq. Hence, any shortest path between vertices belonging to different copies of Km must

pass through their corresponding attachment vertices on the cycle, ensuring distinct distance representations across

copies. Within each copy, the inclusion of the copied basis Br
i distinguishes all vertices locally. Therefore,

every pair of distinct vertices in Cq ⊙k Km has a unique distance representation with respect to W . For any

distinct vertices u, v ∈ V (Cq ⊙k Km) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W and

v ∈ V (Cq ⊙k Km) \W ; (3) u, v ∈ V (Cq ⊙k Km) \W . For cases (1) and (2), by Lemma 2.2, it is proven that

r(u | W ) 6= r(v | W ). For case (3), there are three subcases:

1. v0i ∈ V (C0
q ) and uyr

j ∈ V ((Km)ry)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤

⌊

q

2

⌋

, and d(uyr
j , v0y) = 1, for every v0x, v

0
y ∈ V (C0

q ). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (Cq ⊙k Km) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (Cq ⊙k Km) \W , it holds that r(v0i | W ) 6= r(uyr

j |
W ).

2. uxr
j ∈ V ((Km)rx) and uyr

j ∈ V ((Km)ry) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (C0

q ), where 0 ≤ s ≤
⌊

q

2

⌋

. d(v0y, u
yr
j ) = 1,

we know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (Cq ⊙k Km) \W , it follows that r(uxr

j | W ) 6= r(uyr
j |

W ).
3. uir

j ∈ V ((Km)ri ), u
is
j ∈ V ((Km)si ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Km)ri ) and uis
j ∈ V ((Km)si ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (Cq ⊙k Km) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Km)ri ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(Cq ⊙k Km) = |S(Cq)|+ kq (dim(Km)) .
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Theorem 2.6. Let Pn be a path graph and Cq be a cycle graph. Then

dimcen(Pn ⊙k Cq) = |S(Pn)|+ kn(dim(K1 + Cq)),

Proof. Let V (Pn) = {vi | i = 1, 2, . . . , n} and V (Cq) = {uj | j = 1, 2, . . . , q}. The vertex set of Pn ⊙k Cq is given

by

V (Pn ⊙k Cq) = V (P 0
n) ∪

n
⋃

i=1

(

k
⋃

r=1

V ((Cq)
r
i )

)

,

where V (P 0
n) = {v0i | vi ∈ V (Pn)} and V ((Cq)

r
i ) = {uir

j | uj ∈ V (Cq); r = 1, . . . , k; i = 1, . . . , n}, for (Cq)
r
i is

the r-th copy of the cycle graph Cq at the i-th vertex of Pn. Let B be a basis of the graph K1 + Cq. The structure of

the central set and the metric basis of K1 + Cq depends on the parity of q. Since the vertices on Cq form a symmetric

structure, selecting alternating vertices ensures that every vertex of Cq has a distinct distance representation with

respect to B. As an illustration, consider the following examples:

• q = 3. The graph K1 + C3 is isomorphic to the complete graph K4. Since every vertex of K4 has eccentricity

1, any resolving set must contain at least three vertices to distinguish all pairs. Thus, one possible minimal

metric basis is B = {u1, u2, u3}.

• q = 4. The graph K1 + C4 consists of a universal vertex u connected to a cycle of four vertices. The universal

vertex has eccentricity 1, and each cycle vertex has eccentricity 2. A minimal resolving set that distinguishes

all vertices is obtained by selecting alternating vertices on the cycle, for example B = {u1, u3}.

• q ≥ 5. For larger cycles, alternating vertices along the cycle ensure that all vertices have distinct distance

representations with respect to B. Hence, the general construction of B is:

B =

{

{u1, u3, . . . , uq−4, uq−2}, q odd,

{u1, u3, . . . , uq−3, uq−1}, q even.

These examples illustrate that the form and size of the metric basis B for K1 + Cq depend on the parity of q. Thus,

the basis B is chosen as follows:

B =

{

{u1, u3, . . . , uq−4, uq−2}, q odd,

{u1, u3, . . . , uq−3, uq−1}, q even.

Define Br
i = {uir

j | uj ∈ B}. Define the set

W = {s0i ∈ V (Pn ⊙k Cq) | si ∈ S(Pn)} ∪

(

n
⋃

i=1

k
⋃

r=1

Br
i

)

.

Based on Lemma 2.1, S(Pn ⊙k Cq) ⊆ W , and hence

|W | = |S(Pn)|+ kn (dim(K1 + Cq)) .

To show that W is a central resolving set, note that each vertex uir
j in a copy of Cq is adjacent only to its

attachment vertex v0i in Pn. Hence, any shortest path between vertices from different copies must pass through

their respective attachment vertices, yielding distinct distance representations relative to W . Within each copy of

Cq, the alternating vertices in the chosen basis B break the cycle’s symmetry, ensuring that every vertex uir
j has

a unique distance vector to Br
i . Therefore, all vertices in Pn ⊙k Cq are distinguishable with respect to W . For

any distinct vertices u, v ∈ V (Pn ⊙k Cq) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W
and v ∈ V (Pn ⊙k Cq) \W ; (3) u, v ∈ V (Pn ⊙k Cq) \W . For cases (1) and (2), by Lemma 2.2, it is proven that

r(u | W ) 6= r(v | W ). For case (3), there are three subcases:
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1. v0i ∈ V (P 0
n) and uyr

j ∈ V ((Cq)
r
y)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ n− 1, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (P 0

n). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (Pn ⊙k Cq) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (Pn ⊙k Cq) \W , it holds that r(v0i | W ) 6= r(uyr

j |
W ).

2. uxr
j ∈ V ((Cq)

r
x) and uyr

j ∈ V ((Cq)
r
y) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (P 0

n), where 0 ≤ s ≤ n− 1. d(v0y, u
yr
j ) = 1,

we know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (Pn ⊙k Cq) \W , it follows that r(uxr

j | W ) 6= r(uyr
j | W ).

3. uir
j ∈ V ((Cq)

r
i ), u

is
j ∈ V ((Cq)

s
i ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Cq)
r
i ) and uis

j ∈ V ((Cq)
s
i ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (Pn ⊙k Cq) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Cq)
r
i ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(Pn ⊙k Cq) = |S(Pn)|+ kn(dim(K1 + Cq))

The following is an example of case that satisfies Theorem 2.6. Let P3 be a path graph of order 3 as in Figure 1.

Let C4 be cycle graph of order 4. In Figure 2, there are two copies of the graph C4. The k-corona graph P3 ⊙k C4

presented in Figure 3 is obtained from P3 and C4 with k=2. Let B be a basis of the graph C4, B = {u1, u2, u3}.

Define Br
i = {uir

j | uj ∈ B} for r = 1, 2; i = 1, 2, 3}.

Figure 1. One copy of the graph P3

Figure 2. Two copies of the graph C4
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Figure 3. Structure of corona graph P3 ⊙k C4

Figure 3 shows that the central set of P3 ⊙k C4 is S(P3 ⊙2 C4) = {v02}. We choose W = S(P3 ⊙2 C4) ∪Br
x or

W = {v02} ∪ {uir
j | uj ∈ B; r = 1, 2; i = 1, 2, 3}. It follows that S(P3 ⊙2 C4) ⊆ W . Therefore, it can be shown

that W is a basis containing the central set of P3 ⊙2 C4, so that |W | = |S(P3)|+ 2 · 3 · |B| = 19.

Theorem 2.7. Let Km be a complete graph and Pn be a path graph. Then

dimcen(Km ⊙k Pn) = |S(Km)|+ km(dim(K1 + Pn)).

Proof. Let V (Km) = {vi | i = 1, 2, . . . ,m} and V (Pn) = {uj | j = 1, 2, . . . , n}. The vertex set of Km ⊙k Pn is

given by

V (Km ⊙k Pn) = V (K0
m) ∪

m
⋃

i=1

(

k
⋃

r=1

V ((Pn)
r
i )

)

,

where V (K0
m) = {v0i | vi ∈ V (Km)} and V ((Pn)

r
i ) = {uir

j | uj ∈ V (Pn); r = 1, . . . , k; i = 1, . . . ,m}, for (Pn)
r
i

is the r-th copy of the path graph Pn at the i-th vertex of Km. Let B be a basis of the graph K1 + Pn. The structure

of the central set and the metric basis of K1 + Pn depends on the parity of n. As an illustration, consider:

• n = 3. For P3 with vertices u1, u2, u3, a minimal metric basis for K1 + P3 is B = {u1, u3}: distances to u1

and u3 separate every pair of vertices in the join.

• n = 4. For P4 with vertices u1, u2, u3, u4, a minimal metric basis for K1 + P4 is B = {u1, u3}. Distances to

u1 and u3 distinguish all vertices of the joined graph.

In general one may choose

B =

{

{u1, u3, . . . , un−2, un}, n odd,

{u1, u3, . . . , un−3, un−1}, n even.

Define Br
i = {uir

j | uj ∈ B}. Define the set

W = {s0i ∈ V (Km ⊙k Pn) | si ∈ S(Km)} ∪

(

m
⋃

i=1

k
⋃

r=1

Br
i

)

.
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Based on Lemma 2.1, S(Km ⊙k Pn) ⊆ W , and hence

|W | = |S(Km)|+ km (dim(K1 + Pn)) .

To show that W is a central resolving set, observe that each vertex uir
j in a copy of Pn is adjacent only to its

attachment vertex v0i in Km. Since Km is complete, all attachment vertices are mutually adjacent, so any path

between vertices from different copies passes through their respective attachments. This guarantees that all vertices

of Km ⊙k Pn have distinct distance representations with respect to W .

For any distinct vertices u, v ∈ V (Km ⊙k Pn) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W
and v ∈ V (Km ⊙k Pn) \W ; (3) u, v ∈ V (Km ⊙k Pn) \W . For cases (1) and (2), by Lemma 2.2, it is proven that

r(u | W ) 6= r(v | W ). For case (3), there are three subcases:

1. v0i ∈ V (K0
m) and uyr

j ∈ V ((Pn)
r
y)

Since d(v0i , v
0
x) = 1, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (K0

m). Since every vertex uyr
j is only adjacent to

its attachment vertex v0y , any shortest path from v0i to uyr
j must pass through v0y , it follows that d(v0i , u

yr
j ) =

d(v0i , v
0
x) + d(uyr

j , v0y) = 1 + 1 = 2, thus d(v0i , v
0
y) = d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus, there exists at least one

vertex v0y ∈ V (Km ⊙k Pn) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their representation to W is

distinct. Hence, for v0i , u
yr
j ∈ V (Km ⊙k Pn) \W , it holds that r(v0i | W ) 6= r(uyr

j | W ).
2. uxr

j ∈ V ((Pn)
r
x) and uyr

j ∈ V ((Pn)
r
y) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = 1, for every v0x, v

0
y ∈ V (K0

m). d(v0y, u
yr
j ) = 1, we know that

d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j passes through

v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤ d(uxr
j , v0y) ≤

d(uxr
j , uyr

j ). Hence, for uxr
j , uyr

j ∈ V (Km ⊙k Pn) \W , it follows that r(uxr
j | W ) 6= r(uyr

j | W ).

3. uir
j ∈ V ((Pn)

r
i ), u

is
j ∈ V ((Pn)

s
i ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Pn)
r
i ) and uis

j ∈ V ((Pn)
s
i ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (Km ⊙k Pn) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Pn)
r
i ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(Km ⊙k Pn) = |S(Km)|+ km(dim(K1 + Pn))

Theorem 2.8. Let Sn be a star graph and Cq be a cycle graph. Then

dimcen(Sn ⊙k Cq) = |S(Sn)|+ kn(dim(K1 + Cq))

Proof. Let V (Sn) = {vi | i = 1, 2, . . . , n} and V (Cq) = {uj | j = 1, 2, . . . , q}. The vertex set of Sn ⊙k Cq is given

by

V (Sn ⊙k Cq) = V (S0
n) ∪

n
⋃

i=1

(

k
⋃

r=1

V ((Cq)
r
i )

)

,

where V (S0
n) = {v0i | vi ∈ V (Sn)} and V ((Cq)

r
i ) = {uir

j | uj ∈ V (Cq); r = 1, . . . , k; i = 1, . . . , n}, for (Cq)
r
i is

the r-th copy of the cycle graph Cq at the i-th vertex of Sn. Let B be a basis of the graph K1 + Cq. We choose

B =

{

{u1, u3, . . . , uq−4, uq−2}, q odd,

{u1, u3, . . . , uq−3, uq−1}, q even.
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Define Br
i = {uir

j | uj ∈ B}. Define the set

W = {s0i ∈ V (Sn ⊙k Cq) | si ∈ S(Sn)} ∪

(

n
⋃

i=1

k
⋃

r=1

Br
i

)

.

Based on Lemma 2.1, S(Sn ⊙k Cq) ⊆ W , and hence

|W | = |S(Sn)|+ kn (dim(K1 + Cq)) .

To show that W is indeed a central resolving set, we verify that any two distinct vertices in Sn ⊙k Cq have different

distance representations with respect to W . Each vertex uir
j in a copy of Cq is connected only to the central

vertex v0i of Sn. Therefore, any shortest path between two vertices belonging to different copies of Cq must pass

through their respective attachment vertices v0i and v0y . This property guarantees that vertices from different copies

have distinct representations to the elements of W , because the distances to central vertices v0i ∈ S(Sn) differ

depending on their positions along the path Sn. Within each copy of Cq, the cycle structure introduces symmetry,

but the chosen basis B—comprising alternating vertices along the cycle—breaks this symmetry by ensuring that

the distance from any vertex uir
j to Br

i is unique. In particular, adjacent vertices on the cycle have distance 1, their

second neighbors have distance 2, and so on, wrapping around the cycle modulo q. Since each uir
j has a distinct

pattern of distances to Br
i , it follows that all vertices in the same copy of Cq are distinguishable with respect to W .

For any distinct vertices u, v ∈ V (Sn ⊙k Cq) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W
and v ∈ V (Sn ⊙k Cq) \W ; (3) u, v ∈ V (Sn ⊙k Cq) \W . For cases (1) and (2), by Lemma 2.2, it is proven that

r(u | W ) 6= r(v | W ). For case (3), there are three subcases:

1. v0i ∈ V (S0
n) and uyr

j ∈ V ((Cq)
r
y)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ 2, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (S0

n). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (Sn ⊙k Cq) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (Sn ⊙k Cq) \W , it holds that r(v0i | W ) 6= r(uyr

j |
W ).

2. uxr
j ∈ V ((Cq)

r
x) and uyr

j ∈ V ((Cq)
r
y) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (S0

n), where 0 ≤ s ≤ 2. d(v0y, u
yr
j ) = 1, we

know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (Sn ⊙k Cq) \W , it follows that r(uxr

j | W ) 6= r(uyr
j | W ).

3. uir
j ∈ V ((Cq)

r
i ), u

is
j ∈ V ((Cq)

s
i ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Cq)
r
i ) and uis

j ∈ V ((Cq)
s
i ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (Sn ⊙k Cq) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Cq)
r
i ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(Sn ⊙k Cq) = |S(Sn)|+ kn(dim(K1 + Cq))

Theorem 2.9. Let Sn be a star graph and Km be a complete graph. Then

dimcen(Sn ⊙k Km) = |S(Sn)|+ kn (dim(Km))
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Proof. Let V (Sn) = {vi | i = 1, 2, . . . , n} and V (Km) = {uj | j = 1, 2, . . . ,m}. The vertex set of Sn ⊙k Km is

given by

V (Sn ⊙k Km) = V (S0
n) ∪

n
⋃

i=1

(

k
⋃

r=1

V ((Km)ri )

)

,

where V (S0
n) = {v0i | vi ∈ V (Sn)} and V ((Km)ri ) = {uir

j | uj ∈ V (Km); r = 1, . . . , k; i = 1, . . . , n}, for (Km)ri
is the r-th copy of the complete graph Km at the i-th vertex of Sn. Let B = {u1, u2, . . . , um−2, um−1} be a basis

of Km, and define Br
i = {uir

j | uj ∈ B}. Define the set

W = {s0i ∈ V (Sn ⊙k Km) | si ∈ S(Sn)} ∪

(

n
⋃

i=1

k
⋃

r=1

Br
i

)

.

Based on Lemma 2.1, S(Sn ⊙k Km) ⊆ W , and hence

|W | = |S(Sn)|+ kn (dim(Km)) .

To show that W is a central resolving set, note that each vertex in a copy of Km is adjacent only to the central vertex

of its corresponding Sn. Consequently, any shortest path between vertices in different copies of Km must pass

through their respective central vertices in Sn, which guarantees distinct distance representations across copies.

Within each copy of Km, the inclusion of the local basis Br
i ensures that all v For any distinct vertices u, v ∈

V (Sn ⊙k Km) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W and v ∈ V (Sn ⊙k Km) \W ;

(3) u, v ∈ V (Sn ⊙k Km) \W . For cases (1) and (2), by Lemma 2.2, it is proven that r(u | W ) 6= r(v | W ). For

case (3), there are three subcases:

1. v0i ∈ V (S0
n) and uyr

j ∈ V ((Km)ry)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ 2, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (S0

n). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (Sn ⊙k Km) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (Sn ⊙k Km) \W , it holds that r(v0i | W ) 6= r(uyr

j |
W ).

2. uxr
j ∈ V ((Km)rx) and uyr

j ∈ V ((Km)ry) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (S0

n), where 0 ≤ s ≤ 2. d(v0y, u
yr
j ) = 1, we

know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (Sn ⊙k Km) \W , it follows that r(uxr

j | W ) 6= r(uyr
j |

W ).
3. uir

j ∈ V ((Km)ri ), u
is
j ∈ V ((Km)si ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((Km)ri ) and uis
j ∈ V ((Km)si ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (Sn ⊙k Km) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((Km)ri ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(Sn ⊙k Km) = |S(Sn)|+ kn (dim(Km)) .
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Theorem 2.10. Let G be a connected graph and H be a graph of order at least two. If H has a basis B such that

there is no vertex v ∈ V (G⊙k H) with r(v|B) = (2, 2, 2, . . . , 2), then

dimcen(G⊙k H) =

{

|S(G)|+ k|V (G)|(dim(H)), if H is a complete graph

|S(G)|+ k|V (G)|(dim(K1 +H)), otherwise

Proof. Let G be a connected graph with V (G) = {vi | i = 1, 2, 3, . . . , n}. Let H be a graph of order at least two

with V (H) = {uj | j = 1, 2, 3, . . . ,m}. The vertex set of G⊙k H is given by

V (G⊙k H) = V (G0
n) ∪

n
⋃

i=1

(

k
⋃

r=1

V (Hr
i )

)

,

where V (G0
n) = {v0i | vi ∈ V (G)} and V (Hr

i ) = {uir
j | uj ∈ V (H); r = 1, . . . , k; i = 1, . . . , n}, for Hr

i represents

the r-th copy of the graph H attached to the i-th vertex of graph G. There are two possible cases in determining

the central metric dimension of the graph, when H is a complete graph and otherwise.

Case 1: For H is a complete graph, let B be a basis of the graph H that there is no vertex v ∈ V (G⊙k H) with

r(v|B) = (2, 2, 2, . . . , 2) and Br
i = {uir

j | uj ∈ B}. for r = 1, 2, 3, . . . , k; i = 1, 2, 3, . . . , n. Define the set

W = {s0i ∈ V (G⊙k H) | si ∈ S(G)} ∪Br
i ,

Based on Lemma 2.1, S(G⊙k H) ⊆ W , and hence

|W | = |S(G)|+ kn (dim(H)) .

To confirm that W is a central resolving set, observe that each vertex in a copy of H is adjacent only to its

attachment vertex v0i in G. Therefore, any shortest path between vertices belonging to different copies of H must

pass through their respective attachment vertices. Since the vertices of G themselves have distinct distance patterns

relative to S(G), and every copy of H contributes its local basis Br
i , it follows that all vertices of G⊙k H are

uniquely represented with respect to W . For any distinct vertices u, v ∈ V (G⊙k H) where u 6= v, there are three

possible cases: (1) u, v ∈ W ; (2) u ∈ W and v ∈ V (G⊙k H) \W ; (3) u, v ∈ V (G⊙k H) \W . For cases (1) and

(2), by Lemma 2.2, it is proven that r(u | W ) 6= r(v | W ). For case (3), there are three subcases:

1. v0i ∈ V (G0
n) and uyr

j ∈ V ((H)ry)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ n− 1, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (G0

n). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (G⊙k H) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (G⊙k H) \W , it holds that r(v0i | W ) 6= r(uyr

j | W ).
2. uxr

j ∈ V ((H)rx) and uyr
j ∈ V ((H)ry) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (G0

n), where 0 ≤ s ≤ n− 1. d(v0y, u
yr
j ) = 1,

we know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (G⊙k H) \W , it follows that r(uxr

j | W ) 6= r(uyr
j | W ).

3. uir
j ∈ V ((H)ri ), u

is
j ∈ V ((H)si ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i , B

s
i ⊆ W , for uir

j ∈ V ((H)ri ) and uis
j ∈ V ((H)si ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (G⊙k H) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((H)ri ) such that
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uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(G⊙k H) = |S(G)|+ k|V (G)| (dim(H)) .

Case 2: For H is not a complete graph, let B be a basis of the graph H . Let B be the basis of the graph K1 +H
and Br

i = {uir
j | uj ∈ B}. for r = 1, 2, 3, . . . , k; i = 1, 2, 3, . . . , n. Define the set

W = {s0i ∈ V (G⊙k H) | si ∈ S(G)} ∪ Br
i ,

Based on Lemma 2.1, S(G⊙k H) ⊆ W , such that there is no vertex v ∈ V (G⊙k H) with r(v | B) =
(2, 2, 2, . . . , 2). Hence

|W | = |S(G)|+ kn (dim(K1 +H)) .

To verify that W is a central resolving set, note that for each copy of H , all vertices are connected only through their

corresponding attachment vertex v0i . Thus, vertices from different copies have distinct distance patterns with respect

to S(G), while within the same copy, the inclusion of the local basis Br
i —derived from K1 +H—ensures that every

vertex in Hr
i is uniquely identified. Consequently, W distinguishes all vertices of G⊙k H . For any distinct vertices

u, v ∈ V (G⊙k H) where u 6= v, there are three possible cases: (1) u, v ∈ W ; (2) u ∈ W and v ∈ V (G⊙k H) \W ;

(3) u, v ∈ V (G⊙k H) \W . For cases (1) and (2), by Lemma 2.2, it is proven that r(u | W ) 6= r(v | W ). For case

(3), there are three subcases:

1. v0i ∈ V (G0
n) and uyr

j ∈ V ((H)ry)

Since d(v0i , v
0
x) = s, where 0 ≤ s ≤ n− 1, and d(uyr

j , v0y) = 1, for every v0x, v
0
y ∈ V (G0

n). Since every vertex

uyr
j is only adjacent to its attachment vertex v0y , any shortest path from v0i to uyr

j must pass through v0y ,

it follows that d(v0i , u
yr
j ) = d(v0i , v

0
x) + d(uyr

j , v0y) = s+ 1, thus d(v0i , v
0
y) ≤ d(v0i , v

0
x) ≤ d(v0i , u

yr
j ). Thus,

there exists at least one vertex v0y ∈ V (G⊙k H) \W for which d(v0i , v
0
y) 6= d(uyr

j , v0y), ensuring that their

representation to W is distinct. Hence, for v0i , u
yr
j ∈ V (G⊙k H) \W , it holds that r(v0i | W ) 6= r(uyr

j | W ).
2. uxr

j ∈ V ((H)rx) and uyr
j ∈ V ((H)ry) with x 6= y

Since d(uxr
j , v0x) = 1 and d(v0x, v

0
y) = s, for every v0x, v

0
y ∈ V (G0

n), where 0 ≤ s ≤ n− 1. d(v0y, u
yr
j ) = 1,

we know that d(uxr
j , v0y) = d(uxr

j , v0x) + d(v0x, v
0
y) = 1 + s. Since any shortest path between uxr

j and uyr
j

passes through v0y , we have d(uxr
j , uyr

j ) = d(uxr
j , vy)

0 + d(v0y, u
yr
j ) = (1 + s) + 1 = 2 + s, thus d(uxr

j , v0x) ≤

d(uxr
j , v0y) ≤ d(uxr

j , uyr
j ). Hence, for uxr

j , uyr
j ∈ V (G⊙k H) \W , it follows that r(uxr

j | W ) 6= r(uyr
j | W ).

3. uir
j ∈ V ((H)ri ), u

is
j ∈ V ((H)si ), r 6= s

For every uir
k ∈ Br

i , d(uir
j , uir

k ) = 1 whereas d(uis
j , u

ir
k ) = 2. Similarly, for every uis

k ∈ Bs
i , d(uis

j , u
is
k ) = 1

whereas d(uir
j , uis

k ) = 2. Since Br
i ,B

s
i ⊆ W , for uir

j ∈ V ((H)ri ) and uis
j ∈ V ((H)si ) with r 6= s, it follows

that r(uir
j | W ) 6= r(uis

j | W ).

Next, to prove that W is a central resolving set with minimal cardinality, suppose T ⊆ V (G⊙k H) contains

the central set and |T | < |W |. Let |T | = |W | − 1, then there exist two vertices uir
j , uir

k ∈ V ((H)ri ) such that

uir
j , uir

k /∈ T . Thus, d(uir
j | v) = d(uir

k | v) for all v ∈ Br
i , meaning the distances from uir

j and uir
k to all other

vertices in Br
i are identical. This contradicts the definition of a resolving set, so T is not a central resolving set. By

Lemma 2.3, W is the central resolving set with minimal cardinality. Hence,

dimcen(G⊙k H) = |S(G)|+ k|V (G)| (dim(K1 +H)) .

Remark. The condition r(v | B) 6= (2, 2, . . . , 2) in Theorem 2.10 is essential to ensure that the resolving set W
distinguishes all vertices in G⊙k H . If a vertex v ∈ V (H) satisfies r(v | B) = (2, 2, . . . , 2), then v is located at

distance 2 from every vertex of the basis B. Consequently, in the corona operation, every copy of such a vertex v
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will have the same distance pattern to all vertices of W . As a result, two distinct copies attached to the same central

vertex will share identical distances with respect to W , and hence W fails to resolve the graph.

As an example, let Sn be a star graph of order n with one central vertex u1 and n− 1 leaf vertices u2, u3, . . . , un.

Each leaf ui is adjacent only to the central vertex u1. Consider any connected graph G of order m and form

the corona product G⊙k Sn. Let B = {u2, u3, . . . , un−1} be a basis of Sn. Define Br
i = {uir

j | uj ∈ B } for r =
1, 2, . . . , k and i = 1, 2, . . . ,m. We choose W = S(G⊙k Sn) ∪Br

i as a candidate resolving set. In this structure,

there exist distinct leaf copies uir
j and uis

j (attached to the same central vertex v0i ) such that d(uir
j , v0i ) = d(uis

j , v
0
i )

for every v0i ∈ W . Consequently, the vertices uir
j and uis

j cannot be distinguished by W , since r(uir
j | W ) = r(uis

j |
W ) = (2, 2, . . . , 2), and hence W fails to resolve the graph. Therefore, the restriction r(v | B) 6= (2, 2, . . . , 2) is

crucial to prevent such a situation and to ensure that every vertex in G⊙k H has a unique distance representation

with respect to W .

3. Conclusion and Suggestions

Based on this research, the central metric dimension of k-corona graphs is determined by the central set of G, the

order of G, the value of k, and the metric dimension of H . The findings present a generalized case of the central

metric dimension for k-corona graphs.

Each type of branch graph contributes differently to the structure of the resulting k-corona graph. For H = Sn, the

presence of a universal vertex in each copy adds one additional element to the central resolving set. For H = Pn

and H = Cq, the parity of n or q affects both the formation of the central set and the selection of the metric

basis. When the order is odd, one additional central vertex appears, while for even order, the size of the central

set remains the same. For H = Km, every vertex is adjacent to all others, resulting in equal eccentricities across

vertices. This makes each copy of Km highly symmetric, and the central metric dimension mainly depends on the

metric dimension of Km.

These differences produce variations in the formula of the central metric dimension. The concept of the central set

can further be applied to determine strategic public service locations that are accessible from all regions through

efficient transportation routes. For future research, concepts related to the metric dimension and the diameter of

graphs can be extended and analyzed in other graph operations or in dynamic network models.

4. Acknowledgement

This research is funded by Airlangga Research Fund (ARF) Tahun 2025 dengan Nomor Kontrak Penelitian

1752/UN3.LPPM/PT.01.03/2025.

REFERENCES

1. Chartrand, G. & Lesniak, L., 2016, Graphs and Digraphs (6th ed.), Chapman & Hall/CRC, Florida.
2. Saputro, S. W., Mardiana, N., & Purwasih, I. A., 2017, The metric dimension of comb product graphs, Matematicki Vesnik, 69(4),

248–258.
3. Susilowati, L., Slamin, I., Utoyo, M. I., & Estuningsih, N., 2015, The similarity of metric dimension of rooted product graph, Far

East Journal of Mathematical Sciences, 97(7), 841–856.
4. Susilowati, L., Utoyo, M. I., & Slamin, I., 2016, On commutative characterization of generalized comb and corona products of

graphs with respect to the local metric dimension, Digital Repository Universitas Jember, 647.
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10. Prabhu, S., Manimozhi, V., Arulperumjothi, M., & Klavžar, S., 2022, Twin vertices in fault-tolerant metric sets and fault-tolerant
metric dimension of multistage interconnection networks, Applied Mathematics and Computation, 420, 126897.

11. Sooryanarayana, B., Kunikullaya, S., & Swamy, N. N., 2019, Metric dimension of generalized wheels, Arab Journal of
Mathematical Sciences, 25(2), 131–144.

12. Susilowati, L., Slamin, I., Maulida, U., Estuningsih, N., Zahidah, S., & Prabhu, S., 2024, On the central resolver set of the edge
koronation graphs, Journal of Discrete Mathematical Sciences & Cryptography, (in press).

13. Kuziak, D., Yero, I. G., & Rodrı́guez-Velázquez, J. A., 2011, On the metric dimension of corona product graphs, Computers &
Mathematics with Applications, 61(9), 2793–2798.

14. Hernando, C., Mora, M., Pelayo, I. M., Seara, C., & Wood, D. R., 2010, Extremal graph theory for metric dimension and diameter,
Electronic Journal of Combinatorics, 17(1), R30.

15. Chartrand, G. & Lesniak, L., 2000, Graphs and Digraphs (3rd ed.), Chapman & Hall/CRC, Florida.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Central Metric Dimension of the  k -Corona Graph
	3 Conclusion and Suggestions
	4 Acknowledgement

