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Abstract This study investigates the efficacy of Geographically Weighted Random Forest (GWRF) compared to Negative
Binomial Regression (NBR) and Geographically Weighted Negative Binomial Regression (GWNBR) in modeling spatially
varying, overdispersed count data using HIV cases from East Java Province, Indonesia. The dataset covers 38 regencies/cities
and examines the relationship between HIV cases and five independent variables. GWNBR incorporates spatial weighting
based on adaptive bisquare kernel function and Euclidean distance, while GWRF combines random forests with geographical
weighting. GWRF emerges as the superior model based on RMSE, MAPE, and R? values, outperforming NBR and GWNBR.
GWREF identifies five groups based on the three most important predictor variables. In approximately 60% of the region, the
percentage of drug users (X2), the percentage of individuals living in poverty (X4), and the open unemployment rate (Xs)
are identified as important variables. Notably, the percentage of drug users and the open unemployment rate are consistently
associated with HIV cases across nearly all regions. This study offers valuable insights into HIV transmission patterns and
associated risk factors across the province, contributing to a better understanding of the spatial distribution of HIV cases and
informing targeted interventions and resource allocations.
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1. Introduction

Studies on overdispersed count data have gained significant attention due to their prevalence in various fields,
such as epidemiology [1, 2], ecology [3, 4, 5] and social sciences [6, 7]. Understanding and accurately modeling
overdispersed count data is crucial for making informed decisions and predictions in life science research.
Researchers have noted that ignoring overdispersion can lead to biased parameter estimates, erroneous conclusions,
and an overestimation of the precision of the model parameters [1, 8, 9, 10].

Previous studies have used various statistical methods to address overdispersion, including negative binomial
[11, 12, 13, 14] and the development of Poisson regression models [15, 16, 17]. Negative binomial modeling
has emerged as a popular tool for analyzing such data, offering advantages over traditional Poisson models in
dealing with overdispersion [4]. Interestingly, while negative binomial models are commonly used, recent studies
have explored alternative approaches for handling overdispersion. For instance, generalized linear mixed models
(GLMMs) have been recognized for their effectiveness in managing overdispersed count data [18], particularly
in single-case experimental designs [19, 20]. The zero-inflated negative binomial (ZINB) model delivers precise
estimates of treatment effects in single-case experimental designs characterized by zero-inflated and overdispersed
data [20], while some researchers have discovered that both negative binomial models and negative binomial
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generalized linear mixed models (NB-GLMM) are effective in managing overdispersion from different sources
[4,8,21].

Despite advancements in statistical modeling, there remains a lack of effective methods for spatially varying
relationships in overdispersed count data. To address this gap, our study focuses on the efficacy of GWRF against
other methods, such as NBR and GWNBR, specifically in the context of spatially varying relationships observed
in HIV case data in East Java. Geographically Weighted Negative Binomial Regression has been introduced to
address the challenges of modeling count data that are overdispersed and non-stationary [22]. This method permits
model parameters to change according to spatial variations, proving more effective than global regressions and
Geographically Weighted Poisson Regression when dealing with non-stationary overdispersed count data [14].The
Geographically Weighted Random Forest method offers a promising approach to capture spatial heterogeneity
and improve the accuracy of predictions in overdispersed count data. GWRF combines the strengths of random
forests with the ability to account for spatial non-stationarity, making it particularly suitable for modeling spatially
varying relationships [23, 24]. This strategy enables the model to adjust to local data variations, which is essential
when handling overdispersed count data frequently exhibiting spatial heterogeneity. This technique can capture
non-linear relationships and spatial heterogeneity [25, 26]. This research evaluates how well the Geographically
Weighted Random Forest technique performs compared to other approaches for modeling count data that exhibit
overdispersion and spatial variability using the number of HIV cases in the East Java Province, Indonesia.
This research examines various modeling strategies, such as Geographically Weighted Random Forest, Negative
Binomial Regression, and Geographically Weighted Negative Binomial Regression, employing R and GeoDa
software. Additionally, this study provides a comprehensive framework for diagnostic checking, model estimation,
prediction, finding the optimum bandwidth and weight on spatial models, finding important variables, mapping
location groups, and comparing methods.

2. Basic algorithm and extensions

The distribution characteristics of the data guide the choice of the analytical method for count data. The analysis
is straightforward when dealing with Poisson count data, which assumes equal mean and variance. However, a
transition to a negative binomial distribution is necessary when the data exhibits overdispersion (variance exceeding
the mean). This shift allows for greater variability in count data [27].

Negative Binomial Regression is commonly employed to model negative binomial data, incorporating a
dispersion parameter for extra variability [3, 4]. The algorithm estimates parameters using maximum likelihood
estimation [13]. The model establishes a relationship between the logarithm of the expected count and a linear
combination of predictor variables. The parameters are iteratively refined during the estimation process to
maximize the likelihood function, typically using numerical optimization methods. The algorithm accounts for
overdispersion by including an additional parameter that allows the variance to exceed the mean, making it more
flexible than the Poisson regression for datasets with extra variability.

In cases where spatial heterogeneity is present [28], more advanced techniques are required. Geographically
Weighted Negative Binomial Regression extends NBR to account for spatial non-stationarity, allowing model
parameters to vary across geographical spaces. Unlike simplistic models, GWNBR allows for spatially varying
parameters by employing kernel functions, enabling superior modeling of non-stationary spatial data [14, 22].
GWNBR involves an iterative process to estimate local parameters at each location.The regression coefficients and
dispersion parameters are initially set to their initial values. Subsequently, a spatial weighting method is employed
to assign greater importance to observations that are in close proximity. The log-likelihood is computed using these
weights, and the parameter estimates are adjusted to optimize the local log-likelihood. This procedure is iteratively
applied to each location within the study area to derive coefficient estimates that are specific to each location and
iterates until convergence, typically using numerical optimization techniques.

Alternatively, Geographically Weighted Random Forests offer a machine learning approach, combining Random
Forests with geographical weighting to capture complex, nonlinear relationships in spatial data [29, 30, 31].
Initially, a spatial weighting method is established to provide greater significance to closer observations. A local
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Random Forest model is developed using the weighted observations for each distinct location. This technique
involves randomly selecting subsets of features and observations, constructing decision trees, and combining their
predictions.This procedure is carried out for every location in the study area, leading to customized Random
Forest models for each location. The importance of variables can be calculated locally, allowing the analysis of
spatial non-stationarity in feature importance. The final output provides spatially varying predictions and variable
importance measures, enabling the exploration of local relationships between predictors and response variables
across geographical space.

3. Materials and methods

3.1. Negative Binomial Regression

Different statistical approaches have been employed to handle overdispersion. One method involves adjusting
Poisson models using techniques such as negative binomial regression, which adds a random effect typically
modeled with a gamma distribution. This approach is beneficial because it accommodates extra variability beyond
that explained by the standard Poisson model [4, 32, 33]. The negative binomial regression model for a response
variable Y, characterized by a mean p and a dispersion parameter 6, can be represented as Y ~ (u,6). The
probability mass function is

P =9)= <<r<£(i 51@9))) <<1 —afeu))y ((1 . em)w M

The expected value and variance are given by E(Y) = p and Var(Y) = p + 0u2, respectively. For parameter
estimation, the log-likelihood function (Equation 2 is maximized:

L(8,6) = > [log (T (vi + 1/6)) — log (T (vs + 1)) — log(T'(1/6)) + yi log (6s) — (ys + 1/6) log (1 + 6)] (2)

Where § denotes the vector of regression coefficients, u; = exp(X/3) signifies the predicted mean for
observation i, X; represents the vector of predictor variables for observation i, and y; denotes the observed
count for observation i. The maximum likelihood estimates for 8 and 6 are obtained by solving 9L/93 = 0 and
OL/06 = 0.These equations are typically solved using numerical optimization methods due to their complexity.
These methods iteratively update parameter estimates until convergence, which is usually defined by a slight change
in the log-likelihood or parameter values between iterations. Following the discussion on NBR, we now explore
the GWNBR and GWRF methods, which introduce spatial heterogeneity into the modeling process.

3.2. Geographically Weighted Negative Binomial

The Geographically Weighted Negative Binomial model broadens the application of spatial heterogeneity to
the analysis of count data. It incorporates local parameter estimates for each location, allowing for varying
relationships between the predictors and response variable across space. This approach is beneficial when dealing
with overdispersed count data that exhibit spatial non-stationarity, providing more accurate and locally tailored
predictions than global models.

GWNBR weighting in this research is obtained from the adaptive bisquare kernel function. Euclidean distance
and bandwidth are required to compute the weights w (u;, v;), as shown in Equation 3.

dii )2 z
w (uia'Ui) = (1 o ( hj) ) lfdij < h; &

Euclidean d;; represents the distance between location i and location j, where u denotes the latitude and v
signifies the longitude. The Euclidean distance can be determined using Equation 4.
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dij = /(i — u;)? + (v; — v;)? )

The bandwidth (h;) determines the range around each point where observations are considered for the local
regression process. Optimal bandwidth is determined by cross-validation (CV) [14] according to Equation 5.

n

CV (hi) = i — G (ha))? )
i=1
where n represents the number of observation sites, y; signifies the ith observation, i = 1,2,...,n, and 9=, (h;)

denotes the estimated value of the ith observation, excluding the ith observation.

Hypothesis testing in Geographically Weighted Negative Binomial Regression encompasses two main
approaches, simultaneous and partial testing. Simultaneous testing evaluates the overall model significance by
examining whether any predictor variables influence the response variable. The null hypothesis is rejected when
the p-value falls below the predetermined significance level (o). Conversely, partial testing evaluates the importance
of the individual predictors at each specific location. The null hypothesis for each predictor 3 suggests that there
is no effect at a particular area, and it is rejected if the absolute 7-value surpasses the critical value (. /2 4y OF
if the p-value is below «. It enables researchers to assess both the overall model significance and the spatial
variability of relationships, facilitating the detection of local patterns and heterogeneity in the data. Simultaneous
and partial testing approaches complement each other, comprehensively assessing the geographically weighted
regression model. By combining these methods, researchers can identify globally significant predictors and locally
influential variables across spatial regions. This multifaceted analysis allows for a nuanced understanding of spatial
relationships, helping to uncover complex patterns that may not be apparent through traditional global regression
techniques.

3.3. Geographically Weighted Random Forest

Geographically Weighted Random Forest is an advanced machine-learning method that integrates the concepts of
Random Forest with geographical weighting. This method is designed to capture spatial heterogeneity and improve
the prediction accuracy in spatially varying data, such as overdispersed count data. The GWRF uses a spatial
weighting function to assign importance to observations based on their proximity to the location of interest [31, 34].
This research uses the adaptive kernel for the process. The process evaluate candidate K € {K;, Ks,...} by
training and picking the K nearest neighbor that maximizes OOB R?2. A local Random Forest model is constructed
using the weighted observations for each location. Predictions for new locations are made by aggregating the results
from the nearby local models. The steps of GWRF at Figure lare given as follows:

1. For each location s; = (u;, v;) :

a. The spatial weights for all observations are calculated based on their distance to location s;. Starting
from location s;, the process involves analyzing all other points in the dataset. Distances are calculated
from location s; to each point, and weights are assigned based on proximity. Points closer to location
s; receive higher weights, whereas more distant points are assigned lower weights. This method reveals
the spatial relationships and patterns within the data, allowing for the identification of local trends and
influences. Considering the weighted contributions of nearby points provides a nuanced understanding
of how geographical features or phenomena vary across the study area. This step is crucial for modeling
spatial relationships accurately [35]. The process identifies the K nearest observations, and letting h; be
the distance to the K-th nearest one, it computes bi-square weights w;; for all j using the formula 3.

b. Training a local random forest model using weighted observations: The local random forest model
is trained using the weighted observations derived from the spatial weighting process. Observations
with higher case weights are more likely to be included in each bootstrap sample. The integration
of bootstrap selection probability with spatial sampling in the GWRF process allows it to manage
spatial heterogeneity effectively, improving the model’s ability to predict and capture patterns in
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geographically diverse datasets [25, 26, 31]. The resulting model can adapt to varying spatial
dependencies and provide more accurate predictions for different regions within the study area.

c. The F; = {trees at s;} or local model parameters and variable importance measures are stored.
Local model parameters and variable importance measures offer granular insights into the behavior
of machine-learning models. Storing this information allows researchers to understand the feature
contributions for specific instances or data subsets, aiding in model interpretation and bias detection.
It enables the examination of model behavior across different feature space regions, revealing non-
linear relationships and potential unreliability. Preserving local variable importance measures enhances
the understanding of feature relevance and guides feature selection. The Increase in Mean Squared
Error (%IncMSE) is a feature selection technique in random forest models to assess the importance
of individual variables. This method examines how each predictor influences the model’s accuracy by
observing the increase in the mean squared error when the predictor values are shuffled randomly.
The %IncMSE is computed for each tree within the forest and then averaged across all trees. A
higher %IncMSE value signifies greater importance of the variable, as it indicates that randomizing the
predictor’s values leads to a notable rise in prediction error.The formula for %IncMSE can be expressed
as

MSE permuted — MSE

MSE

MSE permutea refers to the mean squared error calculated after the values of a particular predictor are
randomly shuffled, and MSE represents the mean squared error of the model in its original form [36].

% incMSE =

x 100% (6)

2. For prediction at a new location s*:
Once the GWRF model has been fitted, it can be applied to predict the response variable at new, unseen
locations. The prediction process at a new site s* = (u*,v*) involves several steps: identifying its spatial
neighbors, computing spatial weights, selecting or interpolating between local random forest models, and
combining predictions from trees and forests according to the weights. Unlike a standard Random Forest,
where prediction depends only on feature values X*, GWRF predictions additionally depend on the spatial
position of the new site, as written in the Equation below:

Y ien(er) Ws™y ) fi( X)

7
Dien (s Ws*, si) ™

9(s%) =

where N(s*) is set of nearest neighbors of s* from the training data, w(s*,s;) is spatial kernel weight
between the new site and training location s;, and f;(X*) is prediction from the local random forest model
fitted at location s;. This ensures that predictions at s* are spatially adaptive, nearby training sites exert more
decisive influence than distant ones. The global prediction can also be blended with the local one [31].

3.4. Best Model Selection

This research uses three model evaluations: RMSE, MAPE, and R? [37]. The root mean square error is derived
from the square root of the Mean Squared Error. It indicates how much the prediction error deviates from observed
outcomes [38]. The RMSE calculation formula is given by Equation 8.

®)

where y; and §J; represent observation and estimated value respectively, and n denotes the number of data points.
MAPE refers to the mean percentage discrepancy between predicted and actual values [38]. It expresses the average
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Figure 1. GWRF process with adaptive bandwidth.

absolute percentage difference between predicted and actual values.

1 n
MAPE = ~ ;

Yi — Ui

Yi

x 100% )

The coefficient of determination (R?) is regarded as a valuable metric in comparison to other regression analysis
measures, such as the Mean Squared Error (MSE) or Root Mean Squared Error (RMSE), as it offers a clear
depiction of the proportion of variance explained by the model. It indicates the model’s effectiveness, with values
ranging from zero to one. If the value is close to 1, the model will be stronger and deliver better results [39].

Z:‘L:1 (yi — 371)2
21;1 (yi — ?7)2

where 7 represents the average value. A specific categorization of the R? values is provided as follows:

*R?% > (.75 often considered a strong indicator of model fit [38].

*0.5 < R? < 0.75 indicates a moderate fit, suggesting that, while there is substantial explanatory power, the model
still has significant variance unexplained.

*R? < 0.5 indicates a poor fit and suggests that the model explains only a small portion of the variability in the
response data [40].
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3.5. Software and Package

In this research, we utilize R software to analyze our data comprehensively. We employ various statistical methods
and packages available in R to manage our dataset effectively. The flexibility and robustness of R enable us to
execute complex tasks such as data visualization, hypothesis testing, and regression modeling. The MASS package
provides the glm.nb() function for negative binomial regression, where the dependent and independent variables
and the dataset are specified. For GWNBR, the Gwmodel package offers the gw.dist() function for calculating
distance matrices that are needed in geographically weighted (GW) models. The spgwr package includes the
gwr.bisquare() function for the bisquare kernel function, necessitating additional parameters such as spatial distance
and bandwidth. We use an adaptive bisquare kernel function in the process. The SpatialML package includes
the grf.bw() and grf() functions for GWRF analysis, which incorporate spatial information and allow for the
specification of the number of trees. The grf.bw() function contributes to determining the optimal bandwidth for the
geographically weighted random forest model. Once the bandwidth is selected, the grf() function fits the GWRF
model with the specified parameters. We use parameters ntree = 500, and five options for mtry 1,2,3,4,5. These
functions facilitate the examination of how relationships between variables vary across different locations. We
employ GeoDa software to visualize spatial data. GeoDa provides robust tools for exploring spatial data, including
interactive mapping. Users can import various data formats and create thematic maps to identify patterns and
clusters within their spatial data.

4. Experimental results

4.1. Descriptive study

The research utilizes secondary data from the East Java Provincial Health Office and Badan Pusat Statistik (BPS)
publications in 2021, covering 38 Regencies/Cities in East Java as observational units. The research explores the
correlation between the number of HIV cases, which serves as the dependent variable (Y), and five independent
variables, including the percentage of family planning program users (X7), percentage of drug users (X3),
percentage of health screening (X3), percentage of poor people (X4), and open unemployment rate (X5).

The connection between independent variables and the risk of HIV transmission can be examined through
various socio-economic and health-related factors that impact HIV epidemiology. Combining family planning
initiatives with sexual and reproductive health services can reduce HIV transmission by promoting safe sexual
practices, improving access to contraceptives, and encouraging regular health check-ups. Drug use, especially
injection drug use, poses a significant risk for HIV transmission, as sharing needles can directly spread the virus
among users. Regular health screenings can aid in the early detection and management of HIV, thereby lowering
transmission risk. These screenings often include education on HIV transmission and prevention, promoting safer
behaviors. Poverty is a crucial social determinant of HIV risk, as economic vulnerability can lead to high-
risk behaviors such as sex work or transactional sex for survival. Additionally, poverty often restricts access
to healthcare services, including HIV prevention and treatment programs, thereby increasing the risk of HIV
transmission. Unemployment is linked to an increased risk of HIV transmission due to the economic stress and
instability it causes. Unemployed individuals may turn to drug use or engage in high-risk sexual behaviors as
coping mechanisms. This dataset enables the analysis of potential correlations between HIV prevalence and various
socio-economic and health-related factors across different regions in East Java, providing insights into the complex
dynamics of HIV transmission and its associated risk factors in the province.

Figure 2 presents the distribution of HIV cases in the 38 regencies/cities of East Java Province. The map
categorizes the distribution of HIV case numbers into three groups according to quartile values. In urban areas, the
number of HIV cases surpasses that in rural areas. The top 25% group, which has the highest number of HIV cases,
includes Malang, Batu, and Surabaya City, along with the regencies of Malang, Lumajang, Jember, Banyuwangi,
Pasuruan, Sidoarjo, and Bojonegoro. Surabaya City records the most HIV cases, totaling 694. The middle 50%
group consists of regions with moderate HIV case numbers, such as the cities of Probolinggo and Mojokerto, and
the regencies of Tulungagung, Blitar, and Lamongan. The bottom 25% group, representing areas with the fewest
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Figure 2. Map of HIV cases in East Java in 2021.

HIV cases, includes smaller regencies and cities throughout East Java. Trenggalek has the lowest number of HIV
cases, with 18. This distribution underscores the concentration of HIV cases in urban centers and more densely
populated regions, indicating a need for focused interventions and resource distribution in these high-prevalence
areas.

4.2. Diagnostic Checking

The HIV case count data demonstrates substantial overdispersion, as evidenced by the considerable disparity
between the mean and variance (Table 1). The dispersion value 74.825 further corroborates this observation (Table
2), indicating that the data deviates from a Poisson distribution. This excessive variability may be attributed to the
regional heterogeneity in HIV risk, case clustering, or observational dependence. Consequently, standard Poisson
regression is deemed inappropriate for this dataset, necessitating alternative modeling approaches that adequately
account for the observed overdispersion. Negative binomial regression is an appropriate technique for analyzing
count data that exhibit overdispersion, where the variance surpasses the mean, thus breaching the Poisson regression
assumption of an equal mean and variance. This method includes a dispersion parameter to address additional
variability, resulting in more precise parameter estimates and standard errors. It is often effective in managing
overdispersion.

Table 1. Descriptive statistics of variable Y.

Characteristics Value
Variance 20038.63
Mean 145.70

Table 2. Poisson regression dispersion.

Deviance Value Df Dispersion
2394.4 32 74.825

Table 3 presents the Variance Inflation Factor (VIF) to identify multicollinearity among the predictor variables
in the regression model. VIF measures the extent to which the variance of the estimated regression coefficients is
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inflated because of collinearity among the predictors. A VIF of 1 signifies no correlation, whereas higher values
indicate greater multicollinearity. Typically, VIF values greater than five or ten are deemed problematic. The VIF
values in (Table 3) suggest no multicollinearity issue in the data.

Table 3. The VIF value.

Variable VIF
X1 1.487608
X5 2.499138
X3 1.041342
X4 1.812299
X5 2.078656

The Breusch—Pagan test serves as a tool for detecting data heterogeneity, and the p-value of 0.02172, as shown
in Table 4, highlights significant spatial heterogeneity, thereby rejecting the null hypothesis of homoscedasticity.
These findings have several implications. It confirms heteroscedasticity in the regression model, suggests spatial
variation in the error term variance, and may lead to biased standard errors and unreliable hypothesis tests. We
consider the spatial regression techniques GWNBR and GWREF to address this issue.

Table 4. The Breusch—Pagan test value.

BP Df p-value
13.183 5 0.02172

4.3. Geographically Weighted Negative Binomial Regression

GWNBR is an extension of Negative Binomial regression that incorporates spatial weighting. This research
calculates the weights using an adaptive bisquare kernel function based on the distance between the regencies/cities.
We use Euclidean distance obtained from the latitude and longitude of each location (Table 5). This weighting
matrix is then used to estimate the GWNBR parameters for each regency/city. GWNBR has an optimal proportion
of 0.9 to include in the weighting scheme obtained from the smallest CV value from the cross-validation process,
731968.7.

Table 5. Euclidean distance between regencies/cities in east java province.

1 2 3 4 5 6 7 8 e 38
1 0.000 0419 0480 0.824 1.079 1.092 1578 2.003 .-- 1413
2 0419 0.000 0350 0544 0796 0.722 1301 1.690 --- 1.064
38 1413 1.064 0963 0.606 0400 0348 0402 0646 --- 0.000

The parameters estimated by GWNBR are evaluated individually at each site to identify those significantly
correlated with the number of HIV cases. Partial testing uses test statistics for each parameter in all regencies/cities,
which are compared with the s-table values to determine the significant variables. The level of significance used
is 5%. The locations are grouped based on the same significant variables. The estimated results of the partial
test of the parameters yield significant GWNBR variables in each region. The variables affecting HIV infection
in each location, regency, or city within the same group of significant variables are mapped in Figure 3. The
locations are divided into two groups based on significant predictor variables. The open unemployment rate (X5)
is a significant variable in one group, including fewer locations, whereas it is not significant in the other group.
The spatial heterogeneity observed in the significance of predictor variables across different regions highlights
the complexity of HIV transmission patterns. This variability suggests that targeted intervention strategies should
be tailored to address the specific risk factors prevalent in each location. Further research is needed to explore the
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underlying reasons for the differential impact of the open unemployment rate on HIV cases between the two groups
of locations.
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Figure 3. GWNBR grouping map.

4.4. Geographically Weighted Random Forest

Geographically weighted random forest (GWRF) incorporates spatial heterogeneity by assigning weights to
observations based on geographical proximity. We determine the weight using the adaptive bisquare kernel, and
determine the optimum bandwidth value by looking at the largest R? OOB value obtained from the local RF model
for each regency/city. In the adaptive Kernel of GWREF, determining the weight of neighboring data is based on
the number of nearest neighbors (K), not a fixed physical distance. Figure 4 graphically depicts the R? values for
each bandwidth. The optimal bandwidth (highest R? value) is 24. Building a random forest in the regency or city
involves 24 regions.

R Square OOB
0.1

-0.1

10 15 20 25 30 35
Bandwidth

Figure 4. R? of OOB value.

Percent Increase in Mean Squared Error (%IncMSE) is a crucial metric used to assess variable importance in
Geographically Weighted Random Forests. It measures the reduction in the model accuracy when a particular
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Table 6. %IncMSE value of explanatory variable.

Regency/City X X X3 X4 X5
Probolinggo Regency 43788.86 134889.80 35882.18 85854.64  76287.57
Situbondo Regency 47803.70 202892.95 41044.43 114207.44 76624.54

Blitar Regency 35513.81 76809.50 41060.92 31418.98  72885.65

Variable importance
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Figure 5. GWRF Grouping Map.

predictor is randomly shuffled, with larger values signifying greater significance. We observe that %IncMSE
differs across various geographical areas, offering insights into the spatial variability of variable importance (Tabel
6). This research categorizes the locations based on the three most important variables locally. As illustrations,
in Probolinggo and Situbondo Regencies, the three key variables are the percentage of drug users (X5), the
percentage of poor people (X4), and the open unemployment rate (X5). Conversely, in Blitar Regency, the three
most important variables include the percentage of drug users (X5), the percentage of health screening (X3), and the
open unemployment rate (X5). Figure 5 illustrates the locations grouped according to the same top three important
variables. These locations are divided into five categories based on the similarity of the three most important
predictor variables of GWRFE. As illustrated in Figure 5, these locations tend to cluster with their proximate
neighbors. The majority of locations are characterized by the important variables X5, X4, and X5. Variables X,
and X35 are notably important in nearly every location.

In the central and eastern regions of East Java, variables X2, X4, and X5 are the three most important, except in
Jember Regency, X5 ( open unemployment rate) is not inclued. The open unemployment rate in Jember Regency
decreased by 1.38% from 2018 to 2022. Jember has effective local policies or community initiatives that support
employment and economic participation. Local government efforts in vocational training or job placement help
bridge the gap between job seekers and employment opportunities, reducing unemployment [41]. Sociocultural
factors and community cohesion can contribute to employment levels [42]. Additionally, regional economic and
labor market structure mobility can also influence the open unemployment in the area.

The variation in key variables across different regencies highlights the complex and region-specific nature
of socio-economic factors influencing each area. It underscores the need for tailored interventions and policies
that address the unique challenges faced by each location. By identifying and focusing on these critical factors,
local governments and organizations can more effectively allocate resources and implement targeted strategies to
improve overall community well-being.
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4.5. Comparison of the methods

The goodness of fit of the model is evaluated by analyzing RMSE, MAPE and other metrics derived, with the
outcomes presented in Table 7.

Table 7. Goodness of fit of the methods.
Criteria Negative Binomial GWNBR GWRF

RMSE 110.554 102.814 254114
MAPE 105.296 94.827  16.9077
R? 0.374 0.458 0.9669

Table 7 shows that the RMSE values of the Negative Binomial regression and GWNBR are larger than those of
the GWREF. The larger the RMSE value, the higher the prediction error, indicating that the GWRF model performs
better than the other two. The RMSE value of GWREF is the smallest among the models, indicating that the predicted
values are closer to the observed results. The MAPE values of the Negative Binomial regression and GWNBR,
each with MAPE percentages exceeding 50%, are higher than those of the GWRF. Based on the MAPE criteria,
the GWREF delivers the best performance. The R? value of the GWRF model is close to 1, indicating that the
predictor variables collectively have a strong ability to explain the response variable. This value is higher than that
of the Negative Binomial regression and GWNBR. Therefore, based on all the criteria, RMSE, MAPE, and R? for
each model, it can be concluded that the GWRF method is the best model for analyzing HIV cases in East Java
Province in 2021, where the data exhibit overdispersion and spatial heterogeneity.

The accuracy vs interpretability trade-off for GWRF and GWNBR presents a classic dilemma in spatial
modeling. GWRF (Geographically Weighted Random Forest) demonstrates superior accuracy, outperforming
GWNBR regarding RMSE, MAPE, and R? values. It captures complex non-linear relationships and spatial
heterogeneity, providing spatially varying variable importance measures. It allows for grouping locations based on
the most important predictor variables. However, as a machine learning method, GWREF sacrifices interpretability,
making it challenging to explain its decision-making process. On the other hand, GWNBR offers higher
interpretability, with coefficients that have clear statistical interpretations. It accounts for spatial heterogeneity by
allowing coefficients to vary across locations and enables the identification of significant variables for each location
through partial testing. It facilitates grouping locations based on significant variables. However, based on model fit
metrics, GWNBR’s accuracy is lower than that of GWREF. The choice between these methods ultimately depends
on the specific research goals, with GWRF favoring predictive power and GWNBR prioritizing interpretability and
statistical inference.

5. Conclusions and discussion

This research investigates the effectiveness of Geographically Weighted Random Forest (GWRF) compared to
Negative Binomial Regression (NBR) and Geographically Weighted Negative Binomial Regression (GWNBR) in
modeling overdispersed count data with spatial variations using HIV case data from East Java Province, Indonesia.
HIV case count data demonstrate substantial overdispersion, and the Breusch-Pagan test indicates significant spatial
heterogeneity.

The Negative Binomial Distribution fit the HIV data in East Java better than the Poisson distribution. The
Negative Binomial model accounts for this overdispersion by incorporating an additional parameter to capture
the extra variability in the data. Spatial heterogeneity suggests that HIV cases are not uniformly distributed across
East Java, with some areas experiencing higher concentrations of cases than others. This spatial variation in HIV
incidence highlights the need for targeted intervention strategies that address local risk factors.

There are five groups of locations according to the similarity of the three most important predictor variables of
GWREF. In most areas, the primary variables, the percentage of drug users (X2), the percentage of poor people (X4),
and the open unemployment rate (X5) are prevalent, making them crucial for the local government to prioritize
when developing policies concerning factors that affect HIV cases. Notably, variables X, and X5 are linked to
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HIV cases in nearly every region. Several steps can be taken to validate and implement the findings of the GWRF
model further. Validating the model using data from another year or province would assess its robustness and
generalizability. Public health officials should utilize the GWRF prediction map to identify high-risk areas for
targeted investigations and interventions. Focus should be placed on addressing the primary variables influencing
HIV cases, percentage of drug users (X2), percentage of poor people (X4), and open unemployment rate (X5).
Interventions targeting drug use and unemployment should be prioritized, as variables X and X5 are linked to
HIV cases in nearly every region. Further research is needed to understand the underlying mechanisms connecting
these variables to HIV prevalence in different areas. Regular monitoring and evaluation of interventions should be
implemented to assess their effectiveness in reducing HIV cases across the identified high-risk areas.

The research indicates that GWRF surpasses NBR and GWNBR in terms of RMSE, MAPE, and R? metrics,
establishing it as the most effective model for examining HIV cases in East Java Province in 2021, especially
when the data exhibit overdispersion and spatial heterogeneity. Nonetheless, the study has limitations, such as
the small sample size of 38 regencies/cities, which limits statistical power and generalizability while heightening
the risk of overfitting, particularly with the complex GWRF model. The cross-sectional nature of the 2021 data
hinders causal inference, the evaluation of temporal trends, and the analysis of long-term patterns. Potential
omitted variable bias might have resulted in skewed estimates of predictor effects and overlooked significant
spatial or socioeconomic factors. The computational complexity of the GWRF model restricts extensive sensitivity
analyses and bootstrap resampling, making it less interpretable than parametric alternatives. These limitations
necessitate careful interpretation and generalization of the results. Future studies should address these issues by
using larger sample sizes, longitudinal data, and a more comprehensive set of variables to enhance the robustness
and applicability of the findings.
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