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Abstract Sensors in Wireless Sensor Networks (WSNs) are prone to faults. Since sensor nodes often share parts of their
information, it becomes possible to detect inconsistencies between a neighbour’s report and what is expected. In this work,
such inconsistencies are analysed using the Paraconsistent Annotated Logic with Two Values (PAL2V) to compare the
actual decisions of neighbouring nodes with the expected decisions reconstructed from the local, partial information each
node possesses. An algorithm is proposed based on majority voting (MV-PAL2V), concluding a set of states describing
the contradiction and guiding a specific corrective response to reduce the associated errors. Simulation results demonstrate
that using PAL2V enhances the accuracy of majority voting, particularly by reducing false alarm rates and improving the
detection of actual events. Moreover, the statistical and interaction analysis of the simulation results emphasised that the
number of nodes plays a crucial role in the reliability of the WSNs’ data.
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1. Introduction

To meet the diverse needs of wireless sensor networks (WSNs) for various application fields, sensors are designed
to be small, affordable, and energy-efficient. While these features make them suitable for a wide range of
environments, a set of trade-offs has been faced, primarily limited communication range, reduced processing
capabilities, and reduced sensor quality [1], [2], [3], [4]. Sensors can be randomly deployed in a special space for
simplicity or deterministically to ensure coverage and connectivity [5]. The common activity patterns for sensors
could be classified as: 1) Time-Driven, 2) Event-Driven, 3) Query-Driven, and 4) Hybrid-Driven; each of them
might be more suitable for a specific situation and suffers a shortcoming for another. In the time-driven pattern, the
sensor is asked to report the monitored property of interest according to an a priori defined schedule (i.e., property
sensing time). However, it might face the challenge of high energy consumption and the discrete reporting of the
measured property (i.e., it is not a continuous real-time reporting). The event-driven sensor reports only when a
particular event has been triggered (i.e., a state-based or event-based sensor), so it might face the data redundancy
challenge.

The event-driven pattern enables detection and reporting of events at the moment of occurrence, which can
improve responsiveness in time-sensitive applications, as it can detect and report events when they happen [6], [7],
[8]. The query-driven sensor is activated and transmits data only upon request or a specific query from the main
controller or the central node. As such, it is beneficial for applications that require specific information to perform
a task-oriented, sophisticated analysis, like patient monitoring. Moreover, query-driven is not based on predefined
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states, events, or time intervals, as the event-driven or time-driven sensors make it ideal in critical energy-saving
situations. The hybrid-driven sensors can be a mix of any of the aforementioned patterns, especially where a switch
from time-driven to event-driven, or vice versa, has to occur when a particular event is triggered [9]. In WSNs, a
node, typically a small, self-contained electronic device, is a crucial component equipped with sensors, a processor,
a transceiver, and a power source. Nodes are engineered to be distributed throughout the physical environment of
interest to sense, process, and wirelessly communicate data. Unfortunately, Node failure is common in WSNs,
due to hardware failure, including the hardware components for both sensing, processing, and power source, or
a software-related failure [10], [11]. Node failures caused by the sensor unit generate erroneous data, potentially
leading to incorrect judgments by the network [12], [13]. These faulty sensor nodes can affect the service quality
of WSNs, leading to false alarms (false positives) and missed detections (false negatives) [14]. Therefore, WSNs’
reliability necessitates supplementation with algorithms to distinguish fault-affected events from the true ones [7],
[15].

The fault-tolerance problem can be addressed through centralised, decentralised, or hybrid approaches. In the
centralised approach, sensors report to the base station (BS) to identify faulty sensor nodes, which is considered the
most straightforward approach but is limited in scalability. While, inthe decentralised approach, which requires less
computation due to sensor resource constraints [16], [17], each sensor node should have an algorithm to identify the
faulty nodes, and decision-making logics based on the neighbouring collaboration to determine whether to report to
the BS or not and decide which sensor node to forward the report [18]. Non-classical logics, including fuzzy logics,
Bayesian reasoning, probabilistic reasoning, paraconsistent logic, and machine learning, are particularly effective,
as the presence of faulty sensors with the randomness introduced during deployment makes the traditional logics
less suitable for handling uncertainties and inconsistencies. Fuzzy logic is used to select the next hub for packet
routing decision by applying a series of fuzzy rules based on multiple criteria, such as energy, process capability,
and distance, to assess whether a sensor node is not a faulty one and is suitable for sharing within the routing path
[19], [20]. The Bayesian reasoning framework is applied to analyse the correlation between spatial and temporal
data, identifying faulty sensor nodes that fail to trigger events within the specified time-based analysis range [21],
[22]. The majority of voting algorithms utilise probabilistic reasoning and Monte Carlo simulations to minimise the
impact of faulty sensor reports by fusing data from neighbouring sensor nodes [7], [8]. Paraconsistent logic permits
inference from inconsistent information by handling the contradictions without leading to triviality (detailed in the
next section). Machine learning makes approximate reasoning for fault node detection in WSNs through training
models on sensor characteristics and reports to identify the patterns of actual events and detect the faulty node
events [23], [24].

2. Fault-Tolerance and fault-detection approaches

Fault-tolerance in WSNs has been addressed through diverse approaches, including fuzzy logic, probabilistic
reasoning, Bayesian inference, paraconsistent logic, and machine learning. While their implementation details
vary, these methods share common principles such as evaluating node trustworthiness, aggregating neighbor data,
and filtering faulty readings before event reports reach the base station. Table 1 summarises the main techniques,
their operating principles, advantages, and implementation strategies.

Fuzzy-based methods [19], [20] adapt decision-making rules using parameters like residual energy, historical
error rates, and processing time. For example, Nasurulla and R. Kaniezhil [19] proposed a Fuzzy-based Subordinate
Support (FSS) system, where leader nodes (LNs) manage data aggregation and are periodically assessed for
fitness; unfit LNs are replaced via subordinate nodes. Similarly, Talmale and Bhat [20] applied fuzzy rules to
historical sensor metrics such as latency, packet loss, and error rates to identify and isolate defective nodes,
enabling timely maintenance and improved reliability. Bayesian reasoning approaches [21], [22] leverage spatial-
temporal correlations to dynamically assess trustworthiness. Wang and Liu [21] used a Bayesian Trust Model
(BTM) with particle filtering to update trust indices and classify nodes as trusted/untrusted and event/non-event.
Zhu and Sangaiah [22] extended this with weighted observations from “neighbourhood’s neighbourhood” nodes,
prioritising event nodes to improve boundary detection accuracy and mitigate the impact of errors.
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2 MAJORITY VOTING PARACONSISTENT ANNOTATED LOGIC ALGORITHM

Majority voting and neighbor cooperation schemes [8], [5], [7] address faults through consensus among
neighboring nodes. Samanta et al. [8] introduced the True Event-Driven and Fault-Tolerant Routing (TED-FTR)
algorithm, which confirms events through neighbor agreement and updates neighbor tables to exclude faulty nodes,
achieving gains in latency, network lifetime, and packet error rate. Bhat and Santhosh [5] developed the Friendship
Degree and Tenth Man Strategy (FD-TMS), which uses Monte Carlo simulations to validate event locations and
refine fault identification, thereby enhancing detection reliability.

Machine learning methods [23], [24] classify node states from labeled datasets, offering adaptability to complex
fault patterns. Prasad et al. [23] applied the XGBoost algorithm with regularisation and decision tree optimization
to detect multiple fault types (spike, fixed bias, gain, out-of-bounds) using real-world sensor datasets. This approach
achieved scalability, robustness, and high classification accuracy in energy-constrained networks.

By grouping related techniques, this review avoids redundancy and highlights how various strategies—whether
rule-based, probabilistic, consensus-driven, or data-driven—share a common goal: improving fault tolerance and
event detection reliability in WSNs.

Table 1. Summary listing of the developed Fault-Tolerance and fault-Detection Approaches

Reference Algorithm Work Ground Pros Implementation
[19] Fuzzy-based

Subordinate Support
(FSS) system

Operates in
chain-based and

cluster-based WSNs
structures with
leader nodes

managing data
aggregation.

Ensures
fault-tolerance,

energy efficiency,
and reliable data
transmission in

dynamic network
environments.

It employs fuzzy
logic processes
(fuzzification,

inference,
defuzzification) and

simulates them
using the Mannasim

framework.

[20] Pre-fault detection
mechanism based

on a fuzzy
rule-based method

Operates on
collected metrics
like temperature,
error rates, and

latency to evaluate
node conditions.

Combining machine
learning and fuzzy

logic ensures
efficient, accurate,
and adaptable fault

detection in
dynamic

environments.

The system
integrates fuzzy

rules for reasoning
and machine
learning for
prediction to

enhance
decision-making.

[21] Bayesian trust
model (BTM)

Operates by
assigning a trust

index to each sensor
node, evaluating its
reliability based on

spatiotemporal
correlations within

its community.

The algorithm
efficiently updates
trust values online

using particle
filtering, ensuring
scalability and low

computational
overhead for large

networks.

It integrates
trust-based

decision-making
with distributed

computation across
nodes to detect

events, even under
sensor failures, and
transmits results to

sink nodes for
region

reconstruction.

Continued on next page
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Table 1 – continued from previous page
Reference Algorithm Work Ground Pros Implementation

[22] Distributed
weighting

fault-tolerance
(DWFT)

The algorithm
operates on the

principle of spatial
correlation among

sensor nodes,
emphasizing data
exchange within a
node’s immediate

and extended
neighbourhood.

It improves fault
detection accuracy
and boundary node

correction while
reducing the
likelihood of

misclassification
and enhancing

overall event region
detection.

The algorithm
prioritises event
nodes and uses

weighting
mechanisms and

Bayesian
estimation, ensuring

efficient fault
correction and

robust detection
performance.

[7] True event-driven
and fault-tolerant

routing (TED-FTR)

The algorithm
operates in

event-driven WSNs,
where nodes detect

environmental
events like wildfires
or earthquakes while
distinguishing true
events from sensor

faults through
majority voting.

It ensures efficient
energy usage,

bypasses void areas,
minimizes latency,

and improves
network lifetime by
prioritising reliable
data transmission

paths.

The method
integrates routing

and event detection
phases, leveraging

neighbour state
information,

periodic beaconing,
and distributed

decision-making to
achieve

fault-tolerance and
accurate event

reporting.

[5] Friendship degree
and tenti mean

strategy (FD-TMS)

Differentiates
between true events
and faulty readings

in WSNs using
distributed voting

and topology
validation.

Improves detection
accuracy, minimizes

false alarms, and
reduces energy
consumption.

Excludes faulty
nodes based on

trustworthiness and
validates event

location using the
Monte Carlo

Method.

[23] XGBoost XGBoost operates
on gradient boosting

principles,
optimizing the loss
function through

second-order Taylor
expansion and

regularisation to
avoid overfitting.

The algorithm is
computationally

efficient, achieving
faster convergence,
reduced iteration

counts, and
scalability for

large-scale WSNs.

Train and test the
XGBoost model,

leveraging real-time
datasets for fault

detection and
classification in

WSN sensor nodes.

Continued on next page
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Table 1 – continued from previous page
Reference Algorithm Work Ground Pros Implementation

[24] Support Vector
Machine, Artificial

Neural Network
(SVM-ANN)

The algorithms
classify sensor data

as faulty or
fault-free based on
labelled datasets
collected from

indoor, outdoor,
single-hop, and

multi-hop sensor
scenarios.

Both machine
learning methods

achieve high
classification

accuracy (above
99%), with SVM

slightly
outperforming ANN
in most scenarios.

The study compares
the performance of
the two algorithms
to determine their

suitability for
enhancing sensor

fault detection
mechanisms in

WSNs.

Continued on next page

This work proposes using paraconsistent logic (PL) in detecting the event decision-making process in the
neighbours’ cooperation method to prune the node from reporting that local shared neighbours between the decider
and voter nodes do not support it. Application of machine learning to detect sensor faults in WSNs is examined on
resource-constrained devices deployed in a region to collect environmental information, since inaccurate sensors
may cause energy waste and loss of network bandwidth or power, thus requiring efficient fault-detection schemes.
The approach regards fault detection as a binary classification, and through Kernel Support Vector Machine
(KSVM) and Artificial Neural Network (ANN), it compares the classification performances of sensors as either
faulty or okay. The proposed methods are investigated utilising annotated datasets containing indoor and outdoor
environments with single-hop and multi-hop characteristics.

3. Method Development

3.1. Problem Definition

The network consists of N sensor nodes randomly deployed in a specific area, as shown in Figure 1. These sensors
sense environmental data (e.g., temperature) and report to the BS when the sensor value exceeds a predetermined
threshold (θ). When faulty nodes exist in a WSN, it can result in incorrect reports that reach the BS, negatively
impacting the reliability and efficiency of the WSN. This problem is known as fault-tolerance in WSN, which
requires different strategies to handle sending false reports to the BS and send only the true events that match real-
world environment occurrences [7], [8]. The work of [7], [8] only considered the existence of a percentage of false
positive sensor nodes in WSN without considering nodes generating false negative readings, which may impact the
proposed algorithm for detecting true event strategy. This work considers false positive and false negative sensor
nodes in the WSNs equally to avoid bias toward false positive sensors.

3.2. Proposed Method

3.2.1. Paraconsistent Logic (PL) A Main principle in Aristotelian logic is that two statements cannot be derived
to be true or false [25], [26]. This assumption is known as the principle of contradiction. PL works when a sentence
can be derived from the same premises to be true and false using different derivations [27], [28]. In PL, beyond
the Boolean logic, other states are possible, such as inconsistent (⊤) and incomplete (⊥) [29]. Paraconsistent
Annotated Logic (PAL) is considered a practical variation of PL, which is based on a Hasse lattice to represent
pieces of evidence of a statement P.

In this study, the term faulty nodes refers to any nodes that produce incorrect readings due to hardware, software,
or communication failures. Faulty nodes are classified into two categories: (i) nodes generating false positive
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Figure 1. Wireless Sensor Network (WSN) model used in
the study, showing node deployment, event detection zones,
and communication ranges relevant to the proposed MV-
PAL2V algorithm.

Figure 2. Four-vertex lattice representation of the Para-
consistent Annotated Logic with Two Values (PAL2V),
mapping favorable (µ) and unfavorable (λ) evidence to the
four extreme logical states [27].

readings, which incorrectly indicate the presence of an event, and (ii) nodes generating false negative readings,
which fail to report an actual event. This terminology is used consistently throughout the manuscript to maintain
clarity.

Paraconsistent Annotated Logic with Annotation of Two Values (PAL2V) uses two symbolic values µ and λ
to express the degree of support for any statement P . PAL2V can be represented as an evidential atomic formula
P (µ, λ), which makes up the annotation using a Hasse diagram (τ ), consisting of a four-vertex lattice, as shown
in the lattice diagram for PAL Eτ , Figure 2. The parameter (µ) that supports P is the favourable evidence degree,
while (λ) that contradicts P is called the unfavourable evidence degree. Both µ and λ values are independent. For
any P (µ, λ), the following intuitive cases may be concluded [29]:

• PT = (1, 0): indicates full support for evidence with no support for contradictory, i.e., truth of P ;
• PF = (0, 1): indicates no support for evidence with full support for contradictory, i.e., falsehood of P ;
• P⊤ = (1, 1): indicates full support for evidence with full support for contradictory, i.e., inconsistency of P ;
• P⊥ = (0, 0): indicates no support for evidence with no support for contradictory, i.e., incompleteness of P .

The direct application of the PAL2V gives what is called the Para-analyser or 12-state lattice concept, see Figure
3. Silva et al., 2011 [30] proposed dividing the PAL2V lattice into 12 states or regions, which results from splitting
the four-vertex lattice into regions or logical states to support an expert system that can make decisions with a list
of states and rules. These twelve states comprise the four main regions called extreme logical states symbolised as
True (t), False (F), Inconsistent (⊤), Paracomplete (⊥), and Q denotes the quasi state, and an additional eight states
that may be summarised as follows [30, 31] and shown in Figure 3:

1. The Near True tending to Inconsistent (Qt-⊤);
2. The Near True tending to Paracomplete (Qt-⊥);
3. The Near False tending to Inconsistent (QF-⊤);
4. The Near False tending to Paracomplete (QF-⊥);
5. The Near Inconsistent tending to True (QT-t);
6. The Near Inconsistent tending to False (QT-F);
7. The Nearly Null Tending to True (Q⊥-t); and
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6 MAJORITY VOTING PARACONSISTENT ANNOTATED LOGIC ALGORITHM

8. The Nearly Null Tending to False (Q⊥-F).

Figure 3. Para-Analyser 12-state lattice subdivision, illus-
trating how the basic PAL2V lattice is expanded into twelve
logical states for finer decision-making in event detection
[31].

Figure 4. State lattice showing how supporting and
contradicting evidence ratios are translated into PAL2V
logical states, which guide the MV-PAL2V decision
process.

To enhance the clarity of the 12-state lattice derived from PAL2V, we provide a simplified summary of
each logical state along with the corresponding evidence conditions and their interpretations. This 12-state
model extends the basic four logical states—True, False, Inconsistent, and Incomplete—into a finer granularity
by incorporating quasi (Q) regions, which offer nuanced insights into borderline or transitional cases. The
classification relies on two primary parameters: the degree of certainty (µ - λ) and the degree of contradiction (µ + λ
- 1), both evaluated by the Para-Analyser. Table 2 presents a concise overview of these 12 logical states, specifying
their symbolic representation, evidence conditions, and semantic meaning in the context of sensor decision-making.
This clearer presentation facilitates understanding of how variations in supporting and contradicting evidence affect
the classification and final actions taken in the MV-PAL2V algorithm.

Worked Example of µ and λ Mapping
Consider a deciding node Ki with four neighbors K1,K2,K3,K4, and K5. Suppose K2 and K3 agree with Ki’s
reading (support), while K4 and K5 disagree (non-support). The favorable evidence is calculated as: µ = 2

4/2 = 1.0

and the unfavorable evidence is: λ = 2
4/2 = 1.0 The degree of certainty is: The degree of certainty is µ− λ = 0.0

and the degree of contradiction is µ+ λ− 1 = 1.0. This corresponds to the Inconsistent state in the 12-state lattice.
This mapping allows each neighborhood voting outcome to be expressed as a logical state, guiding the MV-
PAL2V decision process. The thresholds c1 = 0.5 and c2 = −0.5 were selected based on prior PAL2V literature and
extensive pilot simulations, which demonstrated consistent separation of strong support, strong contradiction, and
uncertain states across various network sizes and sensing modalities. While generally applicable, these thresholds
can be tuned to fit application-specific data distributions.

The decision process of the Para-Analyser maps the calculated favorable (µ) and unfavorable (λ) evidence values
to one of the twelve PAL2V logical states. This step ensures that each neighborhood voting outcome is expressed
as a logical state, directly guiding the MV-PAL2V event decision process.

Algorithm 5 presents the Para-Analyser logical state evaluation. The algorithm takes µ and λ as inputs, computes
the degrees of certainty and contradiction, and then assigns one of the twelve PAL2V logical states to guide MV-
PAL2V decision-making.
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Table 2. A concise overview of the 12 logical states.

State Description Symbol Evidence Condition Interpretation
Completely True t µ = 1, λ = 0 or (µ− λ) ≥

0.5
Full support with no contra-
diction

Completely False F µ = 0, λ = 1 or (µ− λ) ≤
−0.5

Full contradiction, no sup-
port

Inconsistent ⊤ (µ+ λ− 1) ≥ 0.5 and
−0.5 < (µ− λ) < 0.5

High conflict between sup-
porting and contradicting
evidence

Paracomplete (Incomplete) ⊥ (µ+ λ− 1) ≤ −0.5 and
−0.5 < (µ− λ) < 0.5

Lack of sufficient informa-
tion to draw a conclusion

Quasi-True tending to Inconsistent Qt-⊤ (µ− λ) slightly > 0, (µ+
λ− 1) ≈ 0.5

Mostly true, but some strong
contradictory evidence
exists

Quasi-True tending to Paracomplete Qt-⊥ (µ− λ) slightly > 0, (µ+
λ− 1) ≈ −0.5

Mostly true, but not enough
total evidence

Quasi-False tending to Inconsistent QF-⊤ (µ− λ) slightly < 0, (µ+
λ− 1) ≈ 0.5

Mostly false, but contradic-
tory evidence exists

Quasi-False tending to Paracomplete QF-⊥ (µ− λ) slightly < 0, (µ+
λ− 1) ≈ −0.5

Mostly false, but not enough
total evidence

Quasi-Inconsistent tending to True QT-t µ > λ, but (µ+ λ− 1) ≈
0.5

Evidence is closer to incon-
sistency but leans toward
truth

Quasi-Inconsistent tending to False QT-F µ < λ, but (µ+ λ− 1) ≈
0.5

Evidence is closer to incon-
sistency but leans toward
falsehood

Quasi-Paracomplete tending to True Q⊥-t µ > λ, but (µ+ λ− 1) ≈
−0.5

Incomplete information, but
evidence favors truth

Quasi-Paracomplete tending to False Q⊥-F µ < λ, but (µ+ λ− 1) ≈
−0.5

Incomplete information, but
evidence favors falsehood

Although the integration of PAL2V into the majority voting process significantly enhances robustness against
inconsistent or incomplete evidence, it introduces additional computational steps compared to traditional majority
voting. These include calculating favorable (µ) and unfavorable (λ) evidence for each neighbor pair, evaluating
degrees of certainty and contradiction, and mapping results to the 12-state lattice via the Para-Analyser. In dense
network deployments, the per-node processing cost may increase proportionally with the number of neighbors,
which could affect scalability in large-scale WSNs. However, the computational requirements remain lightweight
relative to more complex machine learning approaches and are feasible for typical sensor node capabilities. For
highly dense or resource-constrained networks, optimization strategies—such as precomputed lookup tables for
PL state mapping, caching of frequently observed neighbor patterns, or limiting evaluation to a subset of high-trust
neighbors—could further reduce processing overhead while maintaining decision quality.

3.2.2. Processing and Proposed Algorithms In this section, all algorithms used for initialising the WSN to send
reports to the BS are listed with the proper explanations, and more attention is given to the majority voting –
PAL2V (MV-PAL2V) algorithm, which is considered the work’s main contribution. The system begins by sending
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a Hello message from the BS. This message contains all the necessary information required for the various
algorithms running on the sensor nodes. Since this work focuses on event detection, only the relevant event
detection parameters are included in the Hello message. When a sensor node receives a Hello message, it sends its
message to all its neighbours. This message contains the node’s ID and the current number of known neighbours.
Each time a sensor node receives a Hello message from another node, it increases its count of listed neighbours by
one. The initialisation process is summarised in Algorithm 1. When a sensor node senses an event-related activity,
it first clears the Reply column in the NB-Info table and checks whether the detected value exceeds the threshold
θ. If the value is greater than θ, it sets the event detection flag to 1; otherwise, it sets it to 0. Then, it sends a
Request message to all nodes listed in the NB-Info table. This event detection process is summarised in Algorithm
2. When a sensor receives a Request message after sensing the event, it creates a Reply message containing the
sensor’s ED flag, as illustrated in Algorithm 3. When a sensor receives a reply message from any neighbour sensor,
it updates the corresponding sensor Reply flag in the NB-Info Table, Algorithm 4. The Para-Analyser (Algorithm
5) is considered the core algorithm in this work. It measures the degree of consistency between supporting and
non-supporting evidence based on each sensor’s Reply message. The algorithm returns the corresponding PL state
using the supporting evidence µ and the non-supporting evidence λ. The possible PL logical states that can be
reported are the extreme logical states: True (t), False (F), Inconsistent (⊤ ), and Paracomplete (⊥), in addition to
any Quasi state (Q). The MV-PAL2V algorithm, Algorithm 6, is the final step in the event detection process. After
each node collects all Reply reports from its neighbours, it evaluates the degree of consistency between its own
decision and the decisions shared by neighbouring nodes. Based on the Para-Analyser algorithm, the final decision
is made as follows:

• State T (True): Accept the Reply report when the percentage of supporting nodes is high (e.g., 5 out of 6
neighbouring nodes support the sensor’s decision).

• State F (False): Reject the Reply report when the percentage of support is low (e.g., only 1 out of 6 neighbours
supports the sensor’s decision).

• State I (Inconsistent): Apply majority voting among the shared neighbours when their responses conflict
(e.g., 3 neighbours support the decision, and 2 do not).

• State ⊥ or Q (Incomplete/Unknown): Mark the Reply report as incomplete or inconclusive when the number
of shared replies is too low (e.g., only 2 neighbours responded), making it unreliable for a final decision.

Figure 4 shows how the PAL2V is applied to take the corresponding decision for the MV-PAL2V algorithm,
where the supporting evidence is the ratio of shared neighbours between the deciding node and voting node that
match the voting node’s reply. The non-supporting evidence is the ratio of shared neighbours between the deciding
node and voting node that do not match the voting node’s reply. It shows that when the PL logic state is True,
it supports the voting node decision. PyCharm is used to simulate the experiment and compare the results of the
proposed MV-PAL2V with those of the standard majority voting proposed by [7], with the simulation parameters
listed in Table ‘4. To improve clarity and enhance readability, the MV-PAL2V algorithm has been restructured into
logically distinct components that reflect the step-by-step decision-making process. These components include: (1)
event decision initialization, (2) evidence evaluation through support and non-support analysis, (3) para-analyser
processing to determine the logical state, and (4) final event forwarding based on the output state. This structure
provides better modularity and facilitates future extensions or adaptations. Additionally, the pseudocode has been
reformatted with clearer indentation and consistent line structure to improve interpretation and implementation. By
breaking the logic into manageable sections, the underlying decision rules of the proposed method are now easier
to follow and verify.

The Para-Analyser plays a pivotal role in translating the collected neighbour feedback into a logical decision
state using the principles of PAL2V. It evaluates the degree of certainty (µ - λ) and the degree of contradiction (µ +
λ - 1) for each node based on the agreement or disagreement among shared neighbours’ replies. Depending on these
values, the Para-Analyser returns one of the twelve defined PAL2V logical states (e.g., True, False, Inconsistent,
Incomplete, or a Quasi state). These outputs directly inform the final event decision in the MV-PAL2V algorithm:

• If the state is True, the node’s event report is strongly supported and accepted.
• If False, the report is rejected due to lack of support.
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• If Inconsistent, a local majority voting is applied to resolve contradictions.
• If Incomplete or a Quasi state, the decision is deferred or marked uncertain due to insufficient or ambiguous

support.

This mechanism ensures that decisions are made with explicit consideration of both agreement and uncertainty,
rather than relying solely on raw vote counts. This integration of logic reasoning improves robustness in noisy
or partially faulty networks. The influence of each state is also embedded in the final decision scoring (FDi) in
Algorithm 6, allowing nuanced decision routing. In the proposed MV-PAL2V implementation, shared neighbors are
identified based on overlapping communication ranges rather than random selection, ensuring that only physically
reachable nodes participate in evidence aggregation. Incomplete or missing replies are treated as inconclusive
inputs, which reduces the certainty value (µ - λ) but does not introduce false support or contradiction. While
the simulation does not currently benchmark execution time or energy consumption, we note that PAL2V state
mapping introduces minimal overhead relative to the message exchange process. A detailed runtime and energy
consumption comparison with standard majority voting will be provided in future work. To support reproducibility,
the simulation scripts and configuration files can be made available upon request. The main steps of both the
baseline processing algorithms and the proposed MV-PAL2V approach are summarised in Table 3, providing a
side-by-side comparison of their operational flow and key decision-making mechanisms.

4. Results and Discussion

4.1. Simulation Setup

In this work, PyCharm is used to simulate the experiment and compare the results of the proposed MV-PAL2V
with those of the standard majority voting proposed by [7]. From 100 to 1000 nodes, with 100 nodes each step, are
deployed randomly in (500, 500) meters. The transmission range is 60 meters, and the event range is 70 meters.
The fault node percentage ranges from 5% to 20%, distributed equally between false alarms (false positives) and
missed detections (false negatives) [15]. Normal sensor reading is represented by a normal distribution N (µ1, σ1)
, for false positives N (µ2, σ2), and false negatives N (µ3, σ3). The experiment runs for 100 rounds; each round,
the node and event locations are distributed randomly, and the average is reported. The simulation settings and
parameters during the experiment are listed in Table 4.

The current evaluation assumes a uniform random distribution of faulty nodes, which simplifies baseline
comparison but may not capture all real-world deployment conditions. In future experiments, spatially clustered
fault models and dynamic event locations will be simulated to examine MV-PAL2V’s resilience to heterogeneous
conditions. Preliminary observations suggest that in sparse networks, reduced neighbor availability limits PAL2V’s
decision certainty, while in dense networks, abundant shared neighbors stabilize the decision process and improve
FAR. The computational complexity of MV-PAL2V remains close to O(n) per decision, comparable to majority
voting, but includes additional logic state evaluations; optimization strategies can further reduce this overhead.

4.2. Performance Metrics

The following metrics are related to event detection, which is the primary focus of this work:

a. Event node detection accuracy (ENDA): ENDA is the ratio between the number of nodes in the event area
and the number of nodes that confirm the event within the event area [7], with higher ENDA values being
desirable, reaching perfection at a value of 1.0 [32], [33], [34], [35], [36], [37], [38], [39], [40].

ENDA =
No. of event area nodes confirm event

Total no. of nodes in the event area
(1)
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b. False alarm rate (FAR): FAR is the ratio between the number of faulty nodes in the network and
those reported to the BS, with lower FAR values being desirable, reaching perfection at a value of 0.0
[41], [42], [43], [44], [45], [46], [47], [48], [49].

FAR =
No. of faulty node reports to BS

Total no. of positive faulty nodes in the network
(2)

Table 3. Processing and Proposed Algorithms

Algorithm 1 Node Initialisation Procedure for Node Ki Algorithm 2 Event Detection Process for Node Ki

1: function INIT()
2: if Ki is a Base Station (BS) then
3: Transmit(”HELLO” message)
4: end if
5: end function
6: function ONHELLORECEIVED()
7: if Ki detects a HELLO message from neighbour

node Kj then
8: Record Node ID in neighbour list
9: Save the number of neighbours for Node ID

in NB-Info Table
10: BROADCASTHELLO
11: end if
12: end function
13: function BROADCASTHELLO()
14: for each Kj in NB-Info do
15: Transmit(”HELLO” message)
16: end for
17: end function

1: function PERFORMSENSING()
2: Clear Node Ki NB-Info Table Reply Column
3: if DetectedValue ≥ Threshold θ then
4: Set EDi ← 1 ▷ //Event detected
5: for all Ki in NB-Info Table do
6: Send ”Request” message to Ki

7: end for
8: else
9: Set EDi ← −1 ▷ //No event

10: end if
11: end function

Algorithm 3 Process Request Message for Node Kj Algorithm 4 Process Reply Message for Node Kj

1: function HANDLEREQUEST(INPUTMESSAGE)
2: Prepare replyMessage:
3: replyMessage.eventFlag← EDi

4: replyMessage.senderId← Ki

5: replyMessage.recipientId ←
inputMessage.senderId

6: replyMessage.type← ”REPLY”
7: Send replyMessage to the requesting node
8: end function

1: function HANDLEREPLY(inputMessage)
2: Find inputMessage.senderId record in NB-Info

Table
3: NB-Info.Reply← inputMessage.eventFlag
4: end function

Algorithm 5 Para-Analyser Logical State Evaluation . Algorithm 6 Modular Event Evaluation and Forwarding
using MV-PAL2V

Input: µ (favorable evidence), λ (unfavorable evidence)

Continued on next page
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Table 3 – continued from previous page
Output: PL State (logical state from 12-state lattice)

1: // Calculate core PAL2V parameters
2: Certainty← µ− λ
3: Contradiction← µ+ λ− 1
4: // Assign PL State based on thresholds
5: if Certainty ≥ 0.5 then
6: if Contradiction ≥ 0.5 then
7: PL State← ”Qt-⊤” ▷ Quasi-True tending to

Inconsistent
8: else if Contradiction ≤ −0.5 then
9: PL State← ”Qt-⊥” ▷ Quasi-True tending to

Paracomplete
10: else
11: PL State← ”t” ▷ Completely True
12: end if
13: else if Certainty ≤ −0.5 then
14: if Contradiction ≥ 0.5 then
15: PL State← ”QF-⊤” ▷ Quasi-False tending to

Inconsistent
16: else if Contradiction ≤ −0.5 then
17: PL State← ”QF-⊥” ▷ Quasi-False tending to

Paracomplete
18: else
19: PL State← ”F” ▷ Completely False
20: end if
21: else if −0.5 < Certainty < 0.5 then
22: if Contradiction ≥ 0.5 then
23: if µ > λ then
24: PL State← ”QT-t” ▷ Quasi-Inconsistent

tending to True
25: else if µ < λ then
26: PL State← ”QT-F” ▷ Quasi-Inconsistent

tending to False
27: else
28: PL State← ”⊤” ▷ Inconsistent
29: end if
30: else if Contradiction ≤ −0.5 then
31: if µ > λ then
32: PL State← ”QL-t” ▷ Quasi-Paracomplete

tending to True
33: else if µ < λ then
34: PL State← ”QL-F” ▷ Quasi-Paracomplete

tending to False
35: else
36: PL State← ”⊥” ▷ Paracomplete
37: end if
38: else
39: PL State← ”Q” ▷ General Quasi state

(uncertain)
40: end if
41: end if
42: return PL State

1: function EVALUATEEVENTDECISION()
2: for each Kj in NB-Info Table do
3: FDi ← 0 ▷ Final Decision Score for Node Ki
4: Supportj , Non Supportj ← 0, 0
5: for each Kl in NB-Info Table do
6: if Kl is a shared neighbour of Ki and Kj then
7: if NB-Info.Replyl = NB-Info.Replyj then
8: Supportj ← Supportj + 1 ▷

Agreement with Kj’s report
9: else

10: Non Supportj ← Non Supportj +
1 ▷ Disagreement

11: end if
12: end if
13: end for
14: µj ← Supportj/(NumberOfNeighbours/2) ▷

Favorable evidence

15: λj ←
Non Supportj

(NumberOfNeighbours/2)
▷ Unfavorable

evidence
16: PL LS ← Para-Analyser(µj , λj) ▷ Get logical

state
▷ Update the decision score based on logical state

17: if PL LS = F then
18: FDi −= EDi ▷ Reject event decision due to

contradiction
19: else if PL LS = t then
20: FDi += EDi ▷ Accept event decision with

strong support
21: else if PL LS = T then
22: if µj > λj then
23: FDi += EDi ▷ Inconsistent but leans

toward support
24: else
25: FDi −= EDi ▷ Inconsistent but leans

toward contradiction
26: end if
27: else if PL LS =⊥ or PL LS = Q then
28: FDi += EDi ▷ Incomplete/uncertain but

tentatively support
29: end if
30: end for

▷ Final forwarding decision based on net score
31: if FDi > 0 then
32: Forward event report to BS through routing path
33: end if
34: end function
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Table 4. Simulation Parameters

Simulation Parameters Value
Simulation area 500 m × 500 m

Total deployed nodes 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Event detection radius 70 m

Node communication range 60 m

Events generated per round cycle 10 events

Standard sensor output (normal) Gaussian (10,1)

Sensor output for true event Gaussian (30,1)

False positive, faulty node sensor output Gaussian (30,1)

False negative, faulty node sensor output Gaussian (10,1)

Event detection threshold 25

Faulty node percentage 5%, 10%

4.3. Results Analysis

The following figures represent the analysis reports that use PL to enhance the majority voting algorithm by
implementing PAL2V in the standard majority voting algorithm. Figure 5 represents the number of shared nodes
between the deciding voting nodes. It shows that the number of shared nodes increases with a mild parabolic
trend, demonstrating more opportunities for successfully applying the PAL2V approach to enhance majority voting.
However, the figure explores that the relationship between the shared neighbours count and the number of nodes
could be represented by a linear relationship (Shared Neighbours Count = 0.0512 x Number of nodes + 10.26, R2

of 0.93). Moreover, two distinct plateaued regions could be observed with a steep transition at a number of nodes
larger than five hundred.

Figure 6 presents a deeper analysis of PL logical states to determine the percentage of PL logical states used
in voting decisions, revealing that approximately 12% of reports are not supported and are rejected, reducing
ENDA and FAR errors. Figures 7 and 8 compare ENDA for benchmark work (TED-FTR) and the MV-APL2v
algorithm, for different percentages of faulty nodes for false alarms (False positives) and missed detections (False
negatives). The figures explore tiny ENDA values at a low number of nodes (i.e., 100) due to the lower density of
nodes participating in the voting process. This trend points out the importance of the minimum number of nodes
for the algorithm to be efficient, i.e., the performance metrics of the proposed algorithm get improved with the
increase in the number of nodes, which implies reducing the impact of non-supporting voters. Moreover, ENDA
exhibits higher values for MV-PAL2V than that of TED-FTR at 5% and 10% faulty nodes at all numbers of nodes,
confirming the performance enhancement of the proposed algorithm compared to the benchmarked one.

Figures 9 and 10 compare FAR for benchmark work (TED-FTR) and the MV-PAL2V algorithm, for different
percentages of faulty nodes for both false alarms (False positives) and missed detections (False negatives). The
figures explore a somewhat different FAR trend compared to ENDA’s. The FAR values show a flattened bell-
shaped curve with an elongated right tail at a number of nodes larger than five hundred for 5% and 10% faulty
nodes. At a low number of nodes, the low density of nodes participating in the voting process and sending to the
BS is not enough for both algorithms to perform efficiently.

With the increase in the number of nodes, the FAR increases due to activation of the voting process. However,
when the number of nodes continues to increase up to 600 nodes, the FAR decreases again due to the voting process
toward a correct decision. The MV-PAL2V performed similarly to that of TED-FTR in terms of FAR.

The observed peaks and dips in performance metrics such as ENDA and FAR across varying node counts can be
attributed to the changing network density and its effect on neighborhood formation. At lower node densities (e.g.,
100–300 nodes), the number of neighbors per node is relatively limited, which reduces the reliability of majority
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Figure 5. Relationship between the number of nodes in
the network and the count of shared neighbors between
deciding and voting nodes, indicating the potential for
effective PAL2V application.

Figure 6. Distribution of PAL2V logical states observed
during simulations, showing the proportion of reports
accepted, rejected, or marked uncertain, and their effect on
ENDA and FAR.

Figure 7. Comparison of Event Node Detection Accuracy
(ENDA) between TED-FTR and MV-PAL2V algorithms
for 5% faulty nodes, demonstrating the performance
improvement of the proposed method.

Figure 8. Comparison of ENDA between TED-FTR and
MV-PAL2V algorithms for 10% faulty nodes, showing
consistent gains across different network sizes.

Figure 9. Comparison of False Alarm Rate (FAR) between
TED-FTR and MV-PAL2V algorithms for 5% faulty nodes,
highlighting how increased network density reduces FAR.

Figure 10. Comparison of FAR trends for MV-PAL2V and
TED-FTR algorithms across different node densities and
faulty node percentages.

voting and the application of PAL2V due to insufficient shared evidence. As the number of nodes increases (e.g.,
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400–600), the network transitions into a denser configuration, improving neighbor connectivity and enabling more
accurate support and contradiction analysis. However, this transitional range may also introduce variability due
to uneven clustering or localized redundancy, resulting in temporary performance dips. Beyond 600 nodes, the
network becomes sufficiently dense, stabilizing the neighbor relationships and yielding improved and consistent
event detection accuracy and reduced false alarms. These nonlinear behaviors emphasize the sensitivity of logic-
based voting schemes to the underlying network topology and highlight the importance of maintaining adequate
node density in WSN deployments.

While the current evaluation uses multiple simulation rounds and includes correlation-based analysis to validate
the performance of the proposed MV-PAL2V algorithm, formal statistical significance testing—such as t-tests,
confidence intervals, or ANOVA—was not conducted in this version. This omission is primarily due to the
simulation-focused nature of the study and the deterministic control over experimental parameters. However,
we acknowledge the importance of statistically validating the observed improvements in ENDA and FAR.
Incorporating hypothesis-driven statistical methods to compare MV-PAL2V against benchmark algorithms like
TED-FTR will be prioritized in future work, especially in settings involving real-world datasets or hardware
testbeds, where stochastic effects are more pronounced.

4.4. Step-by-Step Example of PAL2V Application

To illustrate how PAL2V enhances decision-making over traditional majority voting, we provide a step-by-step
example using a simplified 5-node scenario. This illustrative case demonstrates how the proposed MV-PAL2V
algorithm interprets the local neighborhood evidence, applies paraconsistent logic, and arrives at a final decision
that is more robust to inconsistencies than a basic voting approach.

Consider a simplified wireless sensor network comprising five sensor nodes: K1 (deciding node), and its
neighbours K2, K3, K4, and K5. Assume K1 detects an event and requests voting feedback from its neighbours.
The neighbor responses used for the simplified 5-node example are summarised in Table 5, showing the voting
replies received by node K1 from its immediate neighbours. Each neighbour responds with either:

• 1 = supports event detection,
• -1 = does not support event detection.

The replies received by K1 are as follows:

Table 5. Replies received by node K1 from neighbouring nodes (K2–K5) indicating support (+1) or rejection (-1) of the
detected event.

Neighbour Reply
K2 1

K3 1

K4 -1

K5 -1

This yields:

• Supporting replies (µ) = 2 (K2, K3)
• Non-supporting replies (λ) = 2 (K4, K5)

Assuming K1 has 4 shared neighbours, the evidence degrees are calculated as:

• µ = 2/(4/2) = 1.0
• λ = 2/(4/2) = 1.0

The Para-Analyser computes:
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• Degree of Certainty = µ− λ = 0
• Degree of Contradiction = µ+ λ− 1 = 1

This falls into the Inconsistent (⊤) state according to the 12-state lattice.

Now applying MV-PAL2V logic:

• Since µ = λ, the inconsistency is unresolved.
• The algorithm defers to a local majority voting, which results in a tie (2 vs. 2).
• Depending on implementation policy (e.g., tie-breaking or confidence threshold), the node may choose to

withhold reporting, or mark the event as uncertain.

In contrast, a traditional majority voting algorithm may:

• Simply reject the event (if it requires >50% agreement),
• Or fail to model the uncertainty explicitly, leading to possible misclassification.

This example highlights PAL2V’s ability to:

• Model the conflict explicitly,
• Adapt decisions to the evidence context, and
• Avoid false alarms or missed detections that may arise under simple voting rules.

4.5. Compound Desirability Range

The compound desirability range describes the range that yields the lowest FAR and highest ENDA according
to the number of nodes and the shared neighbours count. Figure 11 is the bubble plot representing these four
variables, which is directly readable and interpretable regarding FAR and ENDA. It demonstrates the crucial role
that the shared neighbours count play. The bubbles with the smaller sizes appear only at the higher values of the
shared neighbours count, except for the lowest number of nodes, i.e., at 100. The matrix plot shown in Figure 12
demonstrates the Spearman correlation at a 95% confidence interval among the interplaying variables. Note that
it shows only the interactions at 5% faulty nodes for clarity, as 5% and 10% faulty nodes behave much the same.
It is emphasised that the effect of the number of nodes and the shared neighbours on the FAR values has a -0.762
negative coefficient, indicating an inverse coherence between both. The Spearman correlation coefficient for ENDA
is 0.562, with the number of nodes and the shared neighbours, indicating a direct but less coherent relationship.
The Spearman coefficient between the number of nodes and shared neighbour count is 1, emphasising direct and
complete coherence. Moreover, Figures 13 and 14 show the counterplot of the FAR and ENDA against the number
of nodes and the shared neighbours count, respectively. Figures 13 and 14 show areas of desirability ranges that
yield the best performance metrics, i.e., lowest FAR and highest ENDA. Finally, Figure 15 shows much the same
behaviour, indicating the area of lowest FAR lies at the top right corner, i.e., at the highest number of nodes and
shared neighbours count. All these themes emphasise that the number of nodes plays a crucial role in the reliability
of the WSNs’ data, and hence, trade-offs and reliable fault tolerance processing algorithms are mandatory for the
WSNs to be well posed.

5. Conclusion and Future Work

This study employs the PL approach to address the fault-tolerance event detection problem in WSNs, where
majority voting, including neighbour cooperation, is adopted. Our proposed approach analyses the inconsistency
between reports from voter nodes, based on their data and the local data shared with the deciding node. This
approach proved particularly beneficial for prune node reports not supported by other local voters’ reports shared
by the deciding node, resulting in enhanced performance in terms of ENDA and FAR. The approach can be applied
to different neighbours’ cooperation methods by first propagating data that can be used in the decision-making
process, allowing other nodes to implement the voter algorithm on the local data shared between the voter and
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Figure 11. Bubble plot of compound desirability range, illustrating optimal regions for low FAR and high ENDA as functions
of node count and shared neighbor count.

Figure 12. Matrix plot showing Spearman correlation coefficients among number of nodes, shared neighbor count, ENDA,
and FAR, revealing the strength and direction of variable relationships.

Figure 13. Contour plot of FAR versus number of nodes
and ENDA, identifying regions where both metrics achieve
desirable values.

Figure 14. Contour plot of FAR versus shared neighbor
count and ENDA, highlighting the influence of neighbor
availability on detection reliability.

the decider, which promotes the voting process by pruning non-supporting reports. The statistical and interaction
analysis emphasised that the number of nodes plays a crucial role in the reliability of the WSNs’ data, and hence,
trade-offs and reliable fault tolerance processing algorithms are mandatory for the WSNs to be well posed. In
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Figure 15. Contour plot of FAR versus number of nodes and shared neighbor count, emphasizing that optimal performance
occurs at high node density and shared neighbor values.

applications involving sensitive data (e.g., healthcare), neighbor data sharing must be managed to prevent leakage
of personal information. Privacy-preserving aggregation techniques, such as secure multiparty computation or
anonymization, could be integrated with MV-PAL2V to ensure compliance with ethical and regulatory standards.
While this study evaluates MV-PAL2V in a temperature sensing context, the approach is agnostic to the sensing
modality and can be extended to vibration, humidity, or multi-modal sensor networks, provided that neighbor
readings can be quantified as favorable or unfavorable evidence. Future extensions will explore robustness against
adversarial conditions, such as Byzantine faults or malicious nodes intentionally skewing evidence to mislead the
decision process.

Future extensions of this research will focus on adapting the MV-PAL2V algorithm to more complex and
dynamic environments such as mobile wireless sensor networks (MWSNs) and edge-assisted IoT systems,
where node mobility and real-time decision-making introduce new challenges. We also intend to implement the
framework in physical testbeds to validate its performance under real-world operating conditions. Additionally,
future efforts will incorporate statistical significance tests (e.g., t-tests, confidence intervals) to strengthen empirical
validation. Given the potential computational burden of evaluating PL states at scale, we aim to explore
optimization techniques, such as precomputed logical state tables or adaptive neighborhood filtering, to enhance the
algorithm’s efficiency and scalability in dense deployments. Hybrid approaches, such as integrating PAL2V with
machine learning classifiers (e.g., XGBoost), may further reduce FAR while retaining interpretability, providing an
avenue for combining symbolic logic and statistical learning.
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