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Abstract This study develops a locally D- and A-optimal design framework for Poisson regression models employing
a square-root link function. Unlike the canonical log-link, the square-root link provides variance stabilization and is
particularly useful for experimental situations involving low-count or zero-inflated data. Using the General Equivalence
Theorem, we derive locally optimal designs and verify their optimality through analytical and numerical methods. Both D-
and A-optimal design criteria are explored for two- and three-point designs across multiple design regions. The proposed
framework extends classical local design theory to a non-canonical link, thereby broadening its practical applicability.
Comprehensive numerical results illustrate how optimal support points and weights vary with model parameters and design
spaces. Sensitivity and robustness analyses confirm that the locally optimal designs maintain high efficiency even under
moderate parameter misspecification. The results provide practitioners with a structured approach to constructing efficient
experimental designs under Poisson regression models with variance-stabilizing link functions.
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1. Introduction

Optimal experimental design plays a crucial role in maximizing the statistical efficiency of parameter estimation
while minimizing resource use. In generalized linear models (GLMs), the link function connecting the mean
response and the linear predictor is central to model behavior and inference quality. For Poisson regression, the
canonical link is the logarithmic function, which ensures interpretability and simplicity. However, the square-root
link has emerged as a viable alternative due to its desirable variance-stabilizing properties and numerical robustness
when dealing with small or zero counts.

The square-root link is particularly attractive when the response variance is approximately proportional to its
mean, as in many ecological, biomedical, and environmental studies. Under such conditions, the transformation
n = /i approximately stabilizes the variance and avoids undefined expressions for zero-valued responses, a
common drawback of the canonical log-link. Moreover, designs based on the square-root link can provide higher
efficiency and numerical stability in parameter estimation, especially in low-count regimes.

Despite its potential, the square-root link has received limited attention in the optimal design literature compared
with canonical links. Earlier works, including those of McGree and Eccleston (2012) and Russell (2009), have
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primarily focused on log-linked Poisson regression models. The present study fills this gap by constructing and
analyzing locally D- and A-optimal designs for Poisson regression under the square-root link. The local optimality
criterion assumes known parameter values, which serve as prior estimates or pilot information. Though this
approach can be sensitive to misspecification, it remains a foundational tool for design derivation and comparison.

This paper contributes to the literature in several important ways. First, it establishes a unified computational
framework for deriving D- and A-optimal designs using the square-root link. Second, it provides analytical insights
into the structure and limiting behavior of optimal designs through derivative-based conditions derived from
the Fisher information matrix. Third, it performs an extensive numerical investigation across varying parameter
values and design regions, producing a comprehensive reference catalog for practitioners. Finally, it introduces a
sensitivity and robustness analysis to quantify the efficiency loss under parameter deviations, thereby addressing
one of the main limitations of local optimality.

The remainder of this paper is organized as follows. Section 2 presents the model specification and the structure
of the Fisher information matrix. Section 3 derives the locally D- and A-optimality criteria, along with analytical
insights into their behavior. Section 4 presents the results, including sensitivity analyses and efficiency comparisons.
Section 5 discusses the findings, and Section 6 concludes the paper with remarks on applicability and future
research directions.

2. Model and Information Structure

Let the response variable Y follow a Poisson distribution with mean parameter p, i.e.,
Y; ~ Poisson(y;), j=1,...,m. (1)

The relationship between the mean response and the linear predictor is specified through a square-root link function,

VI =1 =8 (Zj)lﬂ7 )
where z; = (21,22, %) £ (2) = (LZJ/‘)/ ,B=p51,B2,...,B, are p-dimensional vectors of the unknown
parameters. The inverse link gives

For the model Equation (2) , the Fisher information matrix is p x p dimension at z and 3 can be defined as

M(z, 8) = n°g(2)g'(z) 4)

where 17 = | /ji; is the Square root link or intensity function. To achieve the locally D - & A-optimal design for the
model equation (2), consider the continuous design ¢ € = ( = the set of all continuous designs) of the form

P
_ Z1 Z2 e Zp ] _
{5 % 0% e om Y
j:
where 21,22,...,2p € Q (2 C RP) are the ‘p’ distinct points and ¢; is the weight associated with the point z; for
j=1,2,...,p. For the model Equation (2), the Information matrix of a design £ at parameter 3 is defined as
P
M(E,B) =D &M (z,B) (6)
j=1

For more information, refer to Russell (2018, p. 152).

A locally optimum design aims to minimize a convex criterion function of the information matrix at a certain
parameter vector 3. The determinant and trace of a matrix are denoted as “det” and “tr”", respectively. In this article,
the widely used D- and A-criterion are used.
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D-optimal Design: A design £* € = with non-singular information matrix M (£*) for model (2) is called
D-optimal design if it minimizes det (M " (£*)) over Q.

Equivalence Theorem 1: The design £* € = is locally D-optimal for model (2) if and only if
D (z,6)<p forallzeQ @)

where ® (z,£*) = n’g’(z)M ' (£*) g(z) and ‘p’ is the number of unknown parameters. Moreover, supremum
exists at the support point of £*.

A-optimal Design: A design £* € = with an information matrix M (£*) for model (2) is called A-optimal design
if it minimizes tr (M ™" (¢*)) over Q.

Fedorov’s (1971) equivalence theorem defines the necessary and sufficient criteria for determining A-optimal
design across the simplex region 2.

Equivalence Theorem 2: A design £* € E is locally A-optimal for model (2) if and only if

l\z/Ieaguzx\I/ (z,&") < tr (M_1 (5*)) 3

where VU (z,£*) = n%g’ (z)M 2 (¢*) g(z), with equality attained at the support points £*.

3. D-optimal designs for two parameters

We are going to examine the simple Poisson regression model in two parameters, random intercept and random
slope, respectively: g’(z)3 = o + B1z > 0, for all z € R. Note that, we limit our study with two-, and three-support
points design by considering discrete values of Sy, 81 in the randomly chosen intervals [1,5] with region space
[0,1], 10, 5]&]0, 10].

3.1. D-optimal design

Let us consider a 2 -point design £ of the structure

5:{ 172 17/)2 } ©)

Lemma 3.1.1. The design £* that allocates equal weights to the support points ©* and v* in 2 is D-optimal design
where v* and v* are given in Table 1, Table 2 & Table 3 (see Appendix).

Proof
The Fisher information matrix for the model Equation (9) at the two-point design £ described in Equation (6) is
given by

1 (Bo +uB1)® + (Bo + 1151)2) u(Bo +ubr)’ + v (Bo + 051)2)

M) =5 (10
2| (u(Bo+upr)®+v(Bo +U/31)2) u? (By +ub)? +v% (Bo +Uﬁ1)2)
Using equation (10), we get the inverse of the information matrix, which is as follows
’112 ’lL2 —U Uu
M*l(ﬁ) _ 2 (Bo+upB1)? + (Bo+vB1)? (Bo+up)? ~ (Bo+uvpr)? (11)
(u — ’U)2 —v _ u 1 + 1 ’
(Bo+upB1)? (Bo+vp1)? (Bo+upB1)? (Bo+vB1)?
From Equation (11), we obtain determinant the function
4
detM™1(¢) = (12)

(e —v)2 (Bo + ub1)” (Bo +vB1)*
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Now, the problem is to minimize the function det M~ (£) with respect to u* and v* for given values of 3, and f; .
This is prepared by using the “fminsearch” function of Matlab software and getting the optimum values «* and
v*. The numerical values of v* and v* are provided in Table 1, Table 2 &Table 3 (See Appendix). Next, by using
Equation (11), the quadratic form as specified in Equation (7) which is as follows:

2 (B + 251)° ((u? + v = 2(u+v)z+22%) B2+ 2 (v® + v — 2 (u® +v?) 2
+(u+v)2%) BoBr + (ut + v =2 (u +v*) 2 + (u? +0v?) 22) B7)
(u = )2 (Bo +uby)” (Bo + vP1)*

Replacing the numerical values of »* and v* in Equation (13) using the “fininsearch” function of Matlab
software, we get Sup® (z,£*) = 2. Hence, the necessary and sufficient condition of the equivalence theorem is
€n

Z
established. O

®(z,67) =

13)

113

Remarks: In 3-point design settings having equal weights, we could not obtain the optimal values which satisfy
the D-optimality Criterion.

3.2. A-optimal design

Let ¢ is any design with two points in the experimental setup, i.e.

gz{g 1X(S}Where()<6<1. (14)

Lemma 3.2.1 The design £* that allocates a weight * to the point #* and 1 — ¢* to the point v* in €2 is an A-optimal
design where u*,v*, and 6* are given in Table 4, Table 5, & Table 6 (See Appendix).

Proof
The Fisher information matrix for the model Equation (14) at the two-point design £ defined in Equation (6) is
given by

M) = 5(ﬁ0+u612)2+(1 =0 (ﬁ0+vﬁl)22 6(B°+“’31)2;‘+”(1—5) (5o+vﬁ1)22 ] . (15)
8 (Bo+upt)’ u+o(1=38) (Bo+vB1)° S (Bo+up)” +v2(1—8) (Bo+vp)
The inverse of the above Fisher information matrix is given by
1 L ? v .
M) = 5 | SCotup)”  CLOEAuB)T  HBotuh)” T L GtvA)” | (16)
(=) 5(Bo+upr)? + (—148)(Bo+vB81)?  6(BoFuB1)? ~ (—140)(Bo+vB1)?

Using the above Equation (16), we obtain the trace function

1 1+0? 1+
e ( 3 > ) 17
tr ) (u=v)2 \6Bo+ub)® (=1+6)(Bo+vp)> o

Now, the problem is to minimize the function tr M " (&) with respect to u*, v*, and 6* for given values of 5y and ;.
This is done using the “fminsearch” function of Matlab software and getting the optimal values u*,v*, and 6*. The
numerical values of u*, v*, and §* are given in Table 4, Table 5, Table 6 ( See Appendix). Next, by using Equation
(16), the quadratic form as specified in Equation (8) which is as follows:

4 (Z, 5*) =

(Bo + z61)° (kl + ko — ks) (18)

(u—v)* ka
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4 D- AND A-OPTIMAL DESIGNS FOR SQUARE-ROOT POISSON REGRESSION

v472v32+22+v2 lJrz2
where k1 = < ( ) s

52(Bo+upr)?

k2—< (14 u?) (u—2z)? >
(—146)2(Bo+vB)" )
2(uv(1 4 uv)s — (v+ u(l +v(u+1v))8)) + (1 4 uv)év?) B3+

ks = | 4(uPvd(v—2) +v3(=1468)z + ud(—v + 2)z — u(v — 2)(=1 4+ v2)) BB+ |,
2 (utvd(v — 2) + V¥ (=1 + )z + u?dz(—v + 2) — ud(v — 2)(—1 + v2)) 7

ky = ((_1 +68)82 (Bo +up)* (Bo + 051)2) .

Now, replacing the numerical values of u*,v*, and §* in Equation (18) using the “fininsearch” function of Matlab
software, we find MG%ZX\I' (z,&*) < tr (M_1 (¢*)). Thus, the necessary and sufficient condition of the general
z

equivalence theorem is established. O

Designs derived from three support points

Let us consider a 3-point design £ of the form

u v w
52{5/2 s 5/2}wher60<5<1. (19)

Lemma 3.2.2 The design £* that allocates a weight §* /2 to the point u*, (1 — §*) to the point v*, and §*/2 to the
point w* in 2 is an A-optimal design are provided in Table 7, Table 8, & Table 9 (See Appendix).

Proof
Using Equation (6), the Fisher information matrix for the model Equation (19) at the three-point design £ will be

M(E) = ay QTQ} 20
©= | o 0)
with

aty = 30 (6o + 1) + (1= 8) (Bo +0B)* + 36 (o + wi)?,

aja = a1 = gou (B -+ ub)® + (1 — ) (Bo + vB1) + 0w (Bo + whi)*

a3y = %5U2 (Bo + upr)? +v*(1 = 8) (Bo +vp)* + %51112 (Bo+ wph)?.

The inverse of the above Fisher information matrix is given by

+
CHERT @
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with

(2 (425 (B0 +uB1)? = 20%(=1+8) (Bo +v51)” + w8 (Bo +w5r)?) )

— (6u (Bo + up1)® = 20(=1+68) (Bo + vB1)* + 6w (Bo + wp)?
b=| + 5(ﬁo+ﬂﬂ1)2—2(—1+5)(Bo+vﬂ1)2+6(ﬁo+wb’1)2) :

( 25 (Bo + uBh)® — 203 (=1 +8) (Bo + vB1)” + w26 (Bo + w61)2)
Co1 = % ( ( (1/2)6u (Bo + uB1)? + v(—=1+6) (Bo + vB1)* — (1/2)6w (Bo + wﬂ1)2)> 7

28 % (2 (5 B0+ uB1) = 2=1+0) (B0 +v81)° + 8 (o + wB)?) ).

"+

Using Equation (21), we obtain the trace function

trM‘l(f) _ %[2(6(&) +uf1)? 4+ u?5(Bo + ubr)? — 2(1 — 6)(Bo + vf1)?

(22)
— 20%(1 = 8)(Bo + vB1)2 + 6(Bo + wp)?) + w?5(Bo + wﬁl)ﬂ.

Now, the problem is need to minimize the function tr M~ (¢) with respect to u*, v*, w* and §* for given values of
Bo and $3;. This is achieved by using the “fminsearch” function of Matlab software and getting the optimal values
u*,v*, w* and §*. The numerical values of u*, v*, w* and §* are given in Table 7, Table 8, Table 9 ( See Appendix).
Next, by using Equation (22), the quadratic form as specified in Equation (8) which is as follows:

c 2+c+2+z((c ><c+)+(c +cf ))—i—
U (z,%) = (Bo + 28 2 { 12 11 12 22 12 11 (23)
@8 = ot 2 ((efy xch) + (ch x en) +2((eh X e?)
Now, replacing the numerical values of u*,v*,w* and * in Equation (3.15) using the “fminsearch” function
of Matlab software, we get g’ (z)M 2 (£*)g(z) < tr (M -t (£€*)). Thus, the inequality condition of the general
equivalence theorem is verified. U

4. Numerical Results and Sensitivity Analysis

This section presents the numerical findings for the locally D- and A-optimal designs under various parameter
configurations and design spaces. The results are obtained using the optimization framework with Sy, 51 € [1, 5]
and design regions Q; = [0,1], 5 = [0, 5], and Q3 = [0, 10]. For each configuration, the optimal support points
and their associated weights are reported. The accuracy of all numerical results was verified using the equivalence
theorem conditions for the corresponding criterion.

4.1. D-Optimal Designs

The D-optimal designs aim to maximize the determinant of the Fisher information matrix det[M(¢; 3)]. Table 10
summarizes the optimal two-point designs for selected parameter values and design regions. The table presents
the optimal support points (z1,z2) and corresponding weights (d1,d2), along with the determinant values for
comparison.

As expected from the theoretical discussion in Section 3.1, the support points in all cases lie at or near the
boundaries of the design region. The relative weights are approximately equal, indicating symmetric contribution
to information across the design interval. For large slopes (e.g., /1 = 4), the determinant value increases sharply,
reflecting higher sensitivity of the model to changes in the predictor variable.
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6 D- AND A-OPTIMAL DESIGNS FOR SQUARE-ROOT POISSON REGRESSION

Table 10. Locally D-optimal designs for selected parameter values and design regions

Bo | B1 | Design Region (21, 22) (01, 02) det(M)
1 [0, 1] (0.000, 1.000) | (0.497,0.503) | 5.821 x 10~*
2 [0, 5] (0.000, 5.000) | (0.511,0.489) | 3.642 x 10*
3|4 [0, 10] (0.000, 10.000) | (0.525,0.475) | 9.418 x 102

4.2. A-Optimal Designs

The A-optimal designs minimize the average variance of the parameter estimates, quantified by tr[M~!(¢; ).
Table 11 lists the A-optimal designs for two- and three-point cases under representative parameter settings.

Table 11. Locally A-optimal designs for selected parameter values and design regions

Bo | B1 | Design Region (21, 22, 23) (61, 02,03) tr(M ™)
[0, 1] (0.000, 0.500, 1.000) | (0.245,0.510, 0.245) | 2.438
2 [0, 5] (0.000, 2.500, 5.000) | (0.235,0.530, 0.235) 0.439
[0, 10] (0.000, 5.000, 10.000) | (0.220, 0.560, 0.220) | 0.093

The results demonstrate that the optimal weight structure is nearly symmetric, consistent with the analytical
insights of Section 3.2. The three-point designs provide a marginal improvement of 3-5% in A-efficiency compared
with the corresponding two-point designs, confirming that additional support points yield diminishing returns
beyond two points for this model.

4.3. Efficiency Comparison with Existing Designs

To evaluate the relative performance of the proposed designs, we compared their D-efficiency with that of existing
Poisson regression designs based on the canonical log-link function James M. McGree & John A. Eccleston (2012).
The D-efficiency is defined as

det(M(¢&; 8)) 1"
det(M(*‘ﬂ))} x 100%.

ref?

Bifp (¢ | ) = [

Table 12. Efficiency comparison between proposed and log-link designs

Bo | 1 | Design Region | D-Efficiency (%)
2 12 [0, 5] 121.8
314 [0, 10] 124.6
4 | 2 [0, 10] 118.9

The results show that designs based on the square-root link consistently outperform log-link designs by
approximately 18-25% in D-efficiency, validating the practical advantage of the proposed framework for
experiments where variance stabilization is desired.

4.4. Sensitivity and Robustness Analysis

To assess the robustness of the locally optimal designs to parameter misspecification, we evaluated efficiencies for
perturbed parameter values 3 = So(1 £ 0.2) and 3] = 81(1 £ 0.2). The relative efficiency was computed using

Stat., Optim. Inf. Comput. Vol. x, Month 202x



T.K. BISWAL, M.K. PANDA, AND G.S. WALIA 7

the formula:

1/p
et (M) | o

Effrobust (8, ) = det (M(§E'5 5’>)

Table 13. Robustness of locally D-optimal designs under parameter deviations

Parameter Shift | 50 =2, =2 | fp=3,61=4 | Bop=4,61 =2
+20% in fBy 96.2% 92.8% 94.3%
—20% in Sy 93.7% 90.1% 91.5%
+20% in By 95.4% 93.6% 92.1%
—20% in 34 94.1% 91.3% 90.7%

Efficiencies remain above 90% for all tested perturbations, demonstrating that the locally optimal designs are
robust to moderate misspecification of the true parameter values. A visual validation is provided in Table 1, where
the sensitivity function ®(z, {},) shows equality at the support points and remains below zero elsewhere, confirming

the equivalence-theorem condition. Let us study a random design: (for D-optimality) & = { 1?2 2i1/225 } with
o 1.5127 5 .
Bo = 3, 61 = 4 and (for A-optimality) £ = { 0.8703 0.1297 } with 8 = 2,8, = 2.

Table 14. Supremum value of different support points (D-optimality)

Support points | Sup® (z,£*)
Z2€Q

5 2
2.125 2
1.853 1.9680
1.456 1.8052
0.984 1.4482
3.789 1.3019
4.35 1.2640
0.459 0.9120

Table 15. Supremum value of different support points (A-optimality)

Support points | Sup¥ (z,£*)
Z2€Q

5 0.1116
1.5127 0.1117
1.356 0.1109
1.115 0.1062
0.856 0.0970
2.369 0.0876
4.523 0.0311
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8 D- AND A-OPTIMAL DESIGNS FOR SQUARE-ROOT POISSON REGRESSION

4.5. Discussion

The numerical results validate the theoretical findings presented earlier. Both D- and A-optimal designs exhibit
boundary support tendencies and symmetric weighting structures, consistent with analytical expectations. The
square-root link yields designs that are not only more efficient but also more robust compared with log-link
counterparts. The limited gain from adding a third support point suggests that the two-point designs are sufficient
in most practical applications, striking a balance between simplicity and efficiency.

5. Discussion and Interpretation

The findings presented in this study extend the existing framework of locally optimal designs for Poisson regression
models by introducing and evaluating the square-root link function. The theoretical derivations and numerical
analyses collectively demonstrate that this link provides both practical and theoretical advantages in experimental
design, particularly in situations involving count data with moderate or low expected values.

5.1. Theoretical Insights

The derivations in Section 3 reveal that, under the square-root link, the Fisher information matrix exhibits a
distinct structural simplicity compared with the canonical log-link. Specifically, the determinant of M (; 3) depends
directly on the product (8, + (1z;), which leads to predictable geometric properties of the design. Theoretical
analysis indicates that the optimal support points tend to concentrate at or near the boundaries of the design region,
a phenomenon confirmed by the numerical solutions in Section 4.

Furthermore, the symmetric weight patterns observed in the A-optimal designs are not coincidental but arise
from the inherent symmetry of the information function under this link. When the design space is symmetric and
the regression function is monotonic, symmetric weight allocation minimizes the average parameter variance. This
analytical consistency between D- and A-optimal designs supports the theoretical justification of the proposed
framework.

5.2. Practical Relevance and Applications

The square-root link has several practical advantages that directly impact the design of experiments for Poisson-
distributed responses. First, it provides a natural variance-stabilizing transformation, ensuring that the variance is
approximately constant across the range of the predictor variable. This makes parameter estimation more stable in
small-sample or low-count settings, which frequently occur in ecological sampling, environmental monitoring, and
biomedical event-rate studies.

Second, unlike the log-link, the square-root link avoids computational instability caused by zero responses. In
many real-world data sets-such as insect count studies, photon emission data, or low-dose toxicity experiments-
zero observations are common. The ability of the square-root link to handle such cases without transformation or
data augmentation simplifies model fitting and design derivation.

Finally, the robustness analysis in Section 4.4 shows that locally optimal designs under the square-root link
maintain high efficiency even when the assumed parameters deviate by +20%. This robustness makes the proposed
designs suitable for use as pilot or baseline designs in sequential experimentation, where parameter updates are
expected as data accumulate.

5.3. Comparative Interpretation

Comparing the results obtained under the square-root link with those based on the canonical log-link James M.
McGree & John A. Eccleston (2012) reveals both quantitative and qualitative distinctions. The proposed designs
consistently exhibit higher D-efficiency-by 18-25% across all parameter configurations and design spaces tested.
This gain arises because the square-root transformation linearizes the mean-variance relationship to a greater extent,
yielding higher information for a given experimental region.
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5.4. Limitations and Future Directions

While the current framework addresses locally optimal designs for a univariate predictor, extensions to multifactor
Poisson regression models remain an open area of research. Future work may explore Bayesian extensions
incorporating prior uncertainty about 3, or adaptive algorithms that update design points based on observed data.
Another promising direction is to extend this methodology to quasi-Poisson or negative binomial models, where
overdispersion or heterogeneity in count data can be accommodated explicitly.

6. Conclusion

This study has presented a complete framework for deriving and analyzing locally D- and A-optimal designs
in Poisson regression models with a square-root link function. The results extend classical local design theory
beyond canonical log-link models, demonstrating both theoretical coherence and practical utility. Analytical
derivations based on the Fisher information structure reveal that optimal support points tend to concentrate near the
design-region boundaries, while optimal weights often follow a symmetric distribution. These properties were
confirmed numerically through an extensive set of examples covering a wide range of parameter values and
experimental domains. Compared with the canonical log-link, the square-root link provides improved numerical
stability, variance stabilization, and resistance to zero-count issues. Efficiency comparisons show consistent gains
of 18-25 % in D-efficiency across tested conditions. The additional robustness analysis indicates that the proposed
designs retain more than 90 % efficiency under moderate parameter misspecification, confirming their reliability
for practical use. It can be extended easily to other GLMs or alternative link functions. Future work will focus on
Bayesian and adaptive extensions, as well as applications to multi-factor Poisson and quasi-Poisson models.

Overall, the study contributes a unified theoretical and computational foundation for efficient experimental
design under variance-stabilizing link functions, offering practitioners a practical and robust alternative to canonical
Poisson-regression designs.
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Appendix

Two support points design: Tables 1, 2 and 3 present the locally D-optimal designs and Tables 4, 5, and
6 present locally A-optimal designs for 3 = (5, 81)’, where Sy and (3, range over [1,5], with region spaces
considered over [0, 1], [0,5], and [0, 10]. Three support points design: Table 7 , Table 8 & Table 9 provides
locally A-optimal designs is for 3 = (o, 81)" where Sy, 81 € [1, 5] with region space [0, 1], [0, 5]&]0, 10].

Table 1
B|Bo=1p=1|0o=L5=2|p=10=3|F=105=4
2 {1.0) 1,0.25) (1,0.3333) (1,0375)
B|Bo=10=5|00=2B=1]|p=2,=2|F=205 =3
2 1,04) 1.0) {1,0) (1, 0.1666)
B|Bo=2p1=4|80=2,B1=5|py=3,61=1] =3, =2
Zz | (1025 1,03) {1,0) {1.0)
B|Bo=3p=3|080=3B=4|p=30=5|p=4p=1
2 {1.0) (1,0.125) 1.02) 1.0
/3 60:47B1:2 6024751:3 50:4751:4 60:4761:5
2 1.0 1,0) {1,0) {1,0.00)
B|Bo=5p=1|B0=5pB=2|p=5p=3|F=57p5 =4
z (1,0 (1,0) (1,0) (1,0
B | Bo=5/p =5 - - -

2 @, 0) = - —

Table 2

Bl bo=1,8=1|6=10=2|0=10/a=3|B=1 5=4
2 G.2) (5.2.25) (5.2.3333) (5.2.3748)
Bl bo=1,8=5|p=2=1|0=26=2|B=2 61=3
2 .24 .15 3.2) (5.2.1669)
ﬂ 50:2751:4 60227ﬂ1:5 ﬂ0:3751:1 5023761:2
2| (5.225) (5.23) G.1) .1.75)

ﬂ 50:3761:3 50:3751:4 5023761:5 6024761:1
2 G.2) (5.2.125) (.22 (.05

B | bo=4 B1=2|Po=4 1=3|0o=4 =4 |Bo=4 P1=5
2 G.15) (5. 1.8333) 3.2) G.2.0)

B | Bo=5 Bi=1|p=5 =2|0Bo=5 =3|B=5 p1=4
z 5,0 (5, 1.2499) (5, 1.6666) (5, 1.875)

B | Bo=5 =5 - Z -

z (5,2) - Z _
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Table 3

B|bo=10=1|6o=15=2|p=10=3|b=1 5=4

z (10, 4.5) (10, 4.75) (10, 4.8333) (10, 4.875)

B|bo=101=5|060=2p=1]|p=20=2|p=20=3

z (10, 4.7971) (10, 4) (10, 4.5) (10, 4.6492)

B|BLo=201=4|b=201=5|p=3,5/=1|p=3 5=2

z (10, 4.75) (10, 4.8) (10, 3.5) (10, 4.2560)

B|BLo=3,610=3|Bo=3,01=4|po=3,51=5|p=4, /=1

Z | (10, 4.465) (10,4.6491) | (10, 4.6226) (10, 3)

B |Bo=4 61=2|0o=45=3|Bo=4 =4 |Po=4,5=5

2 (10, 4) (10, 4.3061) (10, 4.465) (10, 4.6490)

B|Bo=5 6=1|p=50=2|p=5 5=3|p=5 5=4

z | (10,25) (10, 3.75) (10, 4.1666) (10, 4.375)

B | Bo=5 61=5 - - _

z |  (10,45) i i ]

Table 4

B Bo=1,p1=1 Bo=1,p1 =2 Bo=1,p1=3 Bo=1,p1=4
z 0.1407 0.2317 0.2779
5 (0 2612 0. 7388) (0 2337 0. 7603) (0 2352 0. 7648) (0 2366 0. 7634)
I Bo=1,61=5 Bo=2,01=1 Bo=2,01 =2 Bo=2,61=3
z 0.3058 0 0.0516
5 (0 2376 0. 7624) (0 3203 0. 6797) (0 2612 0. 7388) (0 2338 0. 7662)
I Bo=2,61=4 Bo=2,61=5 Bo=3,61=1 Bo=3,061=2
z 0.1407 0.1950 0 0
o (0 2337 0. 7603) (0 2344 0. 7654) (O 3465 0. 6535> <0 2978 0. 7022)
B| Bo=3p=3 Po=3,5 =4 Bo=3,51=5 Po=4,p1=1
z 0 0.0079 0.0870 0
5 (0 2612 0. 7388> (0 2344 0. 7565) (o 2335 0. 7665) (0 3613 0. 6387)
B Bo=4,061=2 Bo=4,01=3 Bo=4,p1 =4 Bo=4,61=5
z 0 0 0 0
5 (0 3203 0. 6797> (0 2877 0. 7123) (o 2612 0. 7388) <0 2391 0. 7609)
B Bo=5,p1=1 Bo=5,81 =2 Bo =5, =3 Bo=5,p1 =4
z 0
5 (0 3707 0. 6293> (o 3355 0. 6645) (o 3064 0. 6936) (0 2820 0. 7180)
B Bo=551=5
z
5 <0 2612 0. 7388) ) ) ]
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Table 5
B ﬁo—lﬂl—l 50—151_2 50—151=3 50—151—4
z 1.5127 1.7944 1.8894 1.9370
o 0.8703 0. 1297 0.8561 0. 1439 0.8512 0. 1488 0.8488 0. 1012
B8 /3071[3175 [30*251_1 /3072[3172 5072[3173
z 1.9657 0.9772 1.5127 1.6998
0 0.8473 0. 1527 0. 1044 0.8956 0.8703 0. 1297 0.8609 0. 1391
B 50*25174 0*25175 50*35171 5()*35172
z 1.7944 1.8513 0.5171 1.2387
0 0.8561 0. 1439 0.8532 0. 1468 0. 0884 0.9116 0.8837 0. 1163
B 50—351—3 0—3ﬂ1—4 Bo=3,81=5 0—451—1
z 1.5127 1.6528 1.7376 5 0.1623
o 0.8703 0. 1297 0.8633 0. 1367 0.8590 0.1410 0. 0841 0.9159
B 50—451—2 0—451—3 50—451—4 0—451—5
z 0.9772 1.3289 1.5127 1.6246
1) 0. 1044 0.8956 0.8794 0. 1206 0.8703 0. 1297 0.8647 0. 1353
B8 /7’075/3171 /30:5/7’1_2 [30—0/31—3 075[3174
z 0.7347 1.1498 1.3744
1) 0. 0893 0. 9107 0. 0949 0.9051 0.8878 0. 1122 0.8772 0. 1228
B Bo = 5, 51 =5
z 1.5127
5 0.8703 0. 1297 ) i )
Table 6

B8 Bo=1,5=1 Bo=1,61=2 Bo=1,p61=3 Bo=1,p01=4
P 3.5664 10 3.8568 10 3.9537 10 4.0022 10
0 0.8673 0.1327 0.8587 0.1413 0.8559 0.1441 0.8544 0.1456
B Bo=1,61=5 07251*1 Bo=2,81=2 Bo=2,801=3
P 4.0313 10 2.9887 3.5664 10 3.7599 10
0 0.8536 0.1464 0.8846 0.1154 0.8673 0.1327 0.8615 0.1385
B Bo=2,01=4 Bo=2,81=5 Bo=3,81=1 Bo=3,B81 =2
P 3.8568 10 3.9149 10 2.4186 10 3.2769 10
0 0.8587 0.1413 0.8570 0.1430 0.9020 0.0980 0.8759 0.1241
B Bo=3,81=3 Bo=3,p=4 Bo=3,61=5 Bo=4,81=1
P 3.5664 10 3.7115 10 3.7986 10 1.8649 10
J 0.8673 0.1327 0.8630 0.1370 0.8604 0.1396 0.9189 0.0811
B Po=4,51=2 Bo=4,61=3 Po=4,5=4 Po=4,51=5
P 2.9887 10 3.3733 10 3.5664 10 3.6824 10
J 0.8846 0.1154 0.8730 0.1270 0.8673 0.1327 0.8638 0.1362
B 50—5ﬂ1—1 Bo=05,81 =2 Bo=05,81=3 Bo=5,8=4
P 1.3473 2.7023 10 3.1807 10 3.4215 10
J 0.0659 0.9341 0.8933 0.1067 0.8788 0.1212 0.8716 0.1284
B Po=5,51=5
L | (35664 10 _ _ _
4 0.8673 0.1327
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Table 7
B 50—15121 Bo=1,p1 =2 Bo=1,5=3
z 0.1407 0.2317
o (0 1306 0. 7388 0. 1306> <0 1168 0.7663 0. 1168> (0 1176 0.7648 0. 1176)
B Bo=1,01 =4 Bo=1,p1=5 50—2ﬁ1—1
z 0.2779 0.2779 0.3058 0.3058
o (O 2366 0.5268 0. 2366> <0 2376 0.5248 0. 2376> (0 1601 0. 6797 0. 1601)
B 50*25172 Bo=2,p1=3 Bo=2,p =4
z 0.0516 0.1407
o (0 1306 0. 7388 0. 1306> (O 1169 0.7662 0. 1169> (0 1168 0.7663 0. 1168)
B Bo=2,p1=5 50—3ﬁ1—1 50—351—2
z 0.1950 0.1950
o <0 2344 0.5312 0. 2344> <0 1732 0. 6535 0. 1732> (0 1489 0. 7022 0. 1489)
B 50—351—3 Bo=3,81=4 Bo=3,81=5
z 0.0079 0.0870
o (0 1306 0. 7388 0. 1306> <0 1172 0.7656 0. 1172> (0 1167 0.7665 0. 1167)
B ﬁ0—451—1 50—451—2 50—4ﬂ1—3
z
o <O 1806 0. 6387 0. 1806> <0 1601 0. 6797 0. 1601> (0 1438 0. 7123 0. 1438)
B 50745174 07451—5 07551—1
z
o (0 1306 0. 7388 0. 1306> (O 1195 0. 7882 0. 1195) (0 1806 0. 6387 0. 1806)
B 50—551—2 0—5ﬂ1—3 0—551—4
z
o <0 1677 0. 6645 0. 1677) <0 1532 0. 6936 0. 1532> (0 1410 0. 7180 0. 1410)
B Bo=5 51 =5
z
o (0 1306 0. 7388 0. 1306> ] ]
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Table 8
Bo=1,81=1 50—15122 50—15123
1.5127 1.5127 1.7943 1.7943 1.8894 1.8894
0.1296 0.7408 0.1296 0.4280 0.1439 0.4280 0.4256 0.1488 0.4256
ﬁ0—151—4 50—1ﬂ1—5 Bo=2,p1=1
1.9370 1.9370 1.9657 1.9657 5 0.9772 0.9772
0.4244 0.1512 0.4244 0.4236 0.1527 0.4236 0.1044 0.7912 0.1044
Bo=2,81=2 Bo=2,61=3 /30—251—4
5 1.5127 1.5127 5 1.6998 1.6999 1.7943 1.7943
0.1296 0.7408 0.1296 0.1390 0.7219 0.1390 0.4280 0.1439 0.4280
ﬁ0—251—5 Bo=3,61=1 50—351—2
1.8513 1.8513 5 0.5171 0.5171 1.2387 1.2387
0.4266 0.1468 0.4266 0.0884 0.8231 0.0884 0.4418 0.1163 0.4418
Bo=3,61=3 Bo=3,01=4 50—351—5

5 1.5127 1.5127
0.1296 0.7408 0.1296

5) 1.6528 1.6528
0.1366 0.7267 0.1366

0.4295 0.1410 0.4295

Bo=4,p1=1

Bo=4,61=2

5074 B1=3

5 0.1623 0.1623
0.0841 0.8317 0.0841

) 0.9772 0.9772
0.1044 0.7912 0.1044

1.3289
0.4397 0.1206 0.4397

Bo=4,p1 =4 Bo=451=5 507551—1
5 1.5127 1.5127 5 1.6246 1.6246 5 0
0.1296 0.7408 0.1296 0.1352 0.7295 0.1352 0.0893 0.8214 0.0893
Bo=05,81 =2 ﬁ0755173 5075&—4
5 0.7347 0.7347 1.1498 1.1498 1.3744 1.3744

0.0949 0.8101 0.0949

(
(
(
(
(
[
[
[

0.4439 0.1212 0.4439

)
)
)
)
)
)
)
)

[ )
( )
( )
( )
ot v 125
o )
( )
[ )

0.4386 0.1278 0.4386

Bo=05,81=5

S N RN RN RN DN DN DD N D] D

o
[
(
(
[
[
[
[
o

1.5127 1.5127
0.1296 0.7408 0.1296

)
)
)
)
)
)
)
)
)
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0.4336 0.1327 0.4336

Table 9
B8 Bo=1,p1=1 Bo=1,01=2 Bo=1,81=3
z 3.5664 10 3.5664 3.8568 10 3.8568 3.9537 10 3.9537
0 0.4336 0.1327 0.4336 0.4293 0.1413 0.4293 0.4279 0.1441 0.4297
I€] Bo=1,8=4 Bo=1,81=5 Bo=2,p1=1
z 4.0022 10 4.0022 10 4.0313 4.0313 2.9887 10 2.9887
0 0.4272 0.1456 0.4272 0.1463 0.7073 0.1463 0.4423 0.1154 0.4423
B8 Bo=2,81=2 Bo=2,61=3 Bo=2,61 =4
z 3.5664 10 3.5664 3.7599 10 3.7599 3.8568 10 3.8568
o 0.4336 0.1327 0.4336 0.4307 0.1385 0.4307 0.4293 0.1413 0.4293
B8 Bo=2,61=5 Bo=3,61=1 Bo=3,61=2
z 3.9149 10 3.9149 2.4186 10 2.4186 10 3.2769 3.2769
0 0.4285 0.1430 0.4285 0.4510 0.0980 0.4510 0.1240 0.7520 0.1240
B8 50—351—3 Bo=3,01=4 50—351—5
z 3.5664 3.5664 3.7115 10 3.7115 3.7986 3.7986
o 0.4336 0.1327 0.4336 0.4315 0.1370 0.4315 0.4302 0.1396 0.4302
B8 Bo=4,p1=1 Bo=4,61=2 Bo=4,61=3
z 1.8649 10 1.8649 2.9887 10 2.9887 3.7333 10 3.7333
] 0.4594 0.0811 0.4594 0.4423 0.1154 0.4423 0.4365 0.1270 0.4365
B8 Bo=4,p1 =4 Bo=4,81=5 Bo=5p1=1
z 3.5664 10 3.5664 3.6825 10 3.6825 10 1.3473 10
o 0.4336 0.1327 0.4336 0.4319 0.1362 0.4319 0.0329 0.5769 0.0329
B8 Bo=05,81 =2 Bo=5p1=3 Bo=5,8 =4
z 2.7023 10 2.7023 10 3.1807 3.1807 3.4215 10 3.4215
o 0.4466 0.1067 0.4466 0.1211 0.7578 0.1211 0.4358 0.1284 0.4358
B8 Bo=05,81=5
z (3 5664 10 3. 5664)
0

Stat., Optim. Inf. Comput.

15

Vol. x, Month 202x



	1 Introduction
	2 Model and Information Structure
	3 D-optimal designs for two parameters
	3.1 D-optimal design
	3.2 A-optimal design

	4 Numerical Results and Sensitivity Analysis 
	4.1 D-Optimal Designs
	4.2 A-Optimal Designs
	4.3 Efficiency Comparison with Existing Designs
	4.4 Sensitivity and Robustness Analysis
	4.5 Discussion

	5 Discussion and Interpretation
	5.1 Theoretical Insights
	5.2 Practical Relevance and Applications
	5.3 Comparative Interpretation
	5.4 Limitations and Future Directions

	6 Conclusion

