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Abstract The need to construct multivariate probability distributions is important in modeling dependent variables.
Developing flexible multivariate distribution that can model skewness and complex dependence is a challenging task. There
are different forms to the same distribution are available. For this reason, the research is ongoing into ways to construct
multivariate families from univariate margins. In this paper, we introduce a multivariate cubic transmuted (MCT ) family.The
marginal cumulative distribution function of each variable belongs to a univariate cubic transmuted family. This new family
applied to (p) baseline Weibull variables named a multivariate cubic transmuted Weibull distribution (CTPW ). Statistical
properties of (CTPW ) have been studied, and the parameters have been estimated by maximum likelihood (ML) method. A
real data set for bone density test by photon absorption in the peripheral bones of olderly women fitted by (CTPW ), trivariate
transmuted Weibull (T3W ) and FGMW distributions. The important theoretical conclusions are: the marginal distributions
belong to multivariate cubic family with dimension less than p, joint moments of any order depend on raw moments of each
baseline variable and moments of the largest order statistics of random samples of sizes two and three drawn from each
baseline distribution. In real application, the (CT3W ) is a better fit to bone density data.

Keywords Bone density test, Multivariate Cubic transmuted family, New class multivariate family, Univariate Cubic
transmuted family.
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1. Introduction

Univariate distributions are not adequate to explain many ties in real data sets. For instance, variables of
some phenomena must be studied together for example: in economics, financial, environmental pollutions,
engineering fields, the climatic variables such as drought, wind speed and rainfalls, tests to measure calcium and
minerals in different places of bone segment of spine, hyper forearm of osteoporosis patients must be measured
together.Another example is risk factors of serious diseases such as cancers, kidney failure, heart attacks and
others. All these cases above must be analyzed by multivariate modeling.

With the development technology, the construction of continuous multivariate distributions depending on
baseline variables whose density functions are the same univariate distribution with different values of their
parameters become an important. The easier procedure is a bivariate Gumbel family introduced by [6] this family
used to generate many continuous bivariate distributions. A generalization of univariate T −X family to bivariate
T −X family proposed by [5] which is used for developing different forms of bivariate generaters and G-class.
The joint cumulative distribution function (c.d.f.) of this family is:
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F (x, y) =

∫ W2

(
G2(y)

)
a2

∫ W1

(
G1(x)

)
a1

r(u1, u2) du1 du2 (1)

Whereas ai < ui < bi for i = 1, 2,
r(u1, u2) is any joint density function and W1[·],W2[·] are absolutely continuous functions of G1(·) and G2(·)
respectively. The simpler form of r(u1, u2) in (1) was given by [2] defining the support of r(u1, u2) on [0, 1]× [0, 1]
and W1[·] = G1(·) and W2[·] = G2(·). in this case, the joint c.d.f. defined as:

F (x, y) =

∫ G2(y)

0

∫ G1(x)

0

(
1 + λ1(1− 2u1) + λ2(1− 2u2) + 2λ3(1− u1 − u2)

)
du1 du2 (2)

The family given in (2) named as a bivariate transmuted family (T2) family.
It is a generalization of univariate quadratic transmuted family [11]. A new bivariate family of distribution based
on bivariate density in T −X family has been proposed by [3] they defined r(-,-) as :

r(u1, u2) = 1 + λ1(1− 2u1) + λ2(1− 2u2) + λ3(1− 4u1u2) (3)

Whereas u ∈ [0, 1]2, the transmutation parameters λi for i = 1, 2, 3 satisfy the following conditions:
λi ∈ [−1, 1] (i = 1, 2, 3),

∑3
i=1 λi ≥ −1, λ1 + λ2 + 3λ3 ≤ 1, −1 ≤ λ1 + λ3 ≤ 1, −1 ≤ λ2 + λ3 ≤ 1. Also,

they introduced a multivariate family and applied it on Weibull baseline variables.

A generalization of [2] has been done by [5], which is a p-variate transmuted family of distributions where the
joint c.d.f. of a random vector X = (X1, X2, . . . , Xp)

′ be:

F (X) =

p∏
i=1

Gi(Xi)

(
1 +

p∑
i=1

(λi + λp+1)(1−Gi(Xi))

)
, X ∈ Rp (4)

whereas Gi(Xi) is a c.d.f. of the i-th baseline distribution. The transmutation parameters λ1, λ2, . . . , λp, λp+1

satisfying following inequalities:
−1 ≤ λi, λp+1 ≤ 1, −1 ≤ λi + λp+1 ≤ 1 for i = 1, 2, . . . , p, and −1 ≤

∑p
i=1 λi + pλp+1 ≤ 1.

The marginal c.d.f. of a single variable of X in (4) belongs to the k-transmuted family [10, 11] at k = 1, which is
called a univariate quadratic transmuted family. Reference [4] introduced a new class of bivariate and multivariate
(NCM) families based on the multivariate T −X family where the form of r(u1, u2) is defined as

r(u) = 1 + ξ
(
1−

∏p
i=1 δi u

ξi−1

i

)
where −1 ≤ ξ ≤ 2m ln(δ−1

i ), δi ≥ 1, and ξi ≥ 1 for i = 1, 2, . . . , p. Reference [14] proposed a bivariate family
of distributions whose conditional distribution is a transmuted distribution; their family depends on three baseline
independent continuous distributions and three dependence parameters, and they studied specific bivariate models.
Reference [1] introduced a bivariate cubic transmuted family, which is an extension of a univariate cubic
transmuted family. Their family is characterized by providing flexible dependence between variables, and non-
linear relationships are integrated through complex relations.

The aim of this paper is to introduce new multivariate family which is a generalization of [4]. This family, named
a multivariate cubic transmuted (MCT ). It can be used for any baseline continuous distribution that has a closed-
form differentiable c.d.f. The family is a novel extension of a univariate cubic transmuted family or an extension of
a bivariate quadratic transmuted family; the MCTp can represent wider shapes of margins including asymmetric,
heavy, and light tails. In this family, two transmutation parameters are added to each baseline distribution. These
parameters allow for modeling dependence, skewness, and tail behavior.
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2 MULTIVARIATE CUBIC TRANSMUTED FAMILY OF DISTRIBUTION WITH APPLICATIONS

2. Multivariate Cubic Transmuted Family of Distributions.

It is known that the multivariate T −X family be

F (X) =

∫ Gp(xp)

0

∫ Gp−1(xp−1)

0

· · ·
∫ G2(x2)

0

∫ G1(x1)

0

r(u) du (5)

where u = (u1, u2, . . . , up)
′ is defined on support [0, 1]p, and Gi(Xi) is the c.d.f. of Xi of the i-th baseline

population for i = 1, 2, . . . , p. There are many kinds of multivariate distributions depending on the mathematical
form of r(u). We introduce a new form of this function:

r(u) = 1 +

p∑
i=1

λi1(1− 2ui) + λp+1

(
p− 2

p∑
i=1

ui

)
+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

uj

)
(2− 3ui) (6)

whereas

−1 ≤ λij , λp+1 ≤ 1,−1 ≤ λi1 + λp+1 ≤ 1,−1 ≤
p∑
i=1

λi1 + pλp+1 ≤ 1,−2 ≤ λi2 ≤ 1, for i = 1, 2, . . . , p, j = 1, 2.

The above constraints are placed because the marginal pdf for each variable ui belongs to a univariate cubic
transmuted family, so that these constraints must be the same as the constraints of the univariate cubic family of
distributions [11, 13]. The marginal joint pdf of ui, uj can be found from (6) as:

r(ui, uj) =

∫
u1

· · ·
∫
ui−1

∫
ui+1

· · ·
∫
uj−1

∫
uj+1

· · ·
∫
up

r(u) dup · · · duj+1 duj−1 · · · dui+1 dui−1 · · · du1

After mathematical simplification of the above integral, r(ui, uj) becomes:

r(ui, uj) = 1 + δ1(1− 2ui) + δ2(1− 2uj) + 2λi2uiuj(2− 3ui) + 2λj2uiuj(2− 3uj)

whereas

δ1 = λi1 + λp+1, δ2 = λj1 + λp+1, −1 ≤ δ1, δ2 ≤ 1, −1 ≤ δ1 + δ2 ≤ 1, −2 ≤ λi2, λj2 ≤ 1.

The graph of r(ui, uj) has been done at different values of transmutation parameters which are represented in
Figure(1). We note from Figure(1) below the sensitivity of r(u1, u2) to the values of the transmutation parameters.
Parameters δ1 and δ2 determine the slope of the surface, λ12 shows the strength of the positive relationship between
u1 and u2, while λ22 shows the strength of the negative relationship between u1 and u2. The negative value of λ22
makes the surface more downwardly curved at high values of u2, so the surface appears clearly concave. If δ1 is
negative, the surface is steeper and the difference between the maximum and minimum values becomes wider.
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Figure 1. r(ui, uj) curves at different values of transmutation parameters.

Substituting (6) into (5), the joint c.d.f. of X is

F (X) =

p∏
j=1

Gj(Xj)

[(
1 +

p∑
i=1

(λi1 + λp+1)(1−Gi(Xi))

)
+

p∑
i=1

λi2

(
p∏
j=1

Gj(Xj)

)
(1−Gi(Xi))

]
(7)

Taking the p-th partial derivatives of F (X) with respect to X1, X2, . . . , Xp, the joint probability density function
(p.d.f.) of X is:

f(X) =
∂pF (X)

∂X1∂X2 . . . ∂Xp
=

p∏
j=1

gj(Xj)

[(
1 +

p∑
i=1

(λi1 + λp+1)(1− 2Gi(Xi))

)

+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

Gj(Xj)

)
(2− 3Gi(Xi))

]
(8)

whereas X ∈ Rp and Gi(Xi), gj(Xj) are the c.d.f. and p.d.f. of the j-th baseline distribution. The random vector
X whose joint p.d.f. , c.d.f. defined in (7) and (8) is a (CTp) family denoted by X ∼ CTp(λ, θ), where θ contains
the parameters of all baseline distributions also

λ = (λ11, λ21, . . . , λp1, λp+1, λ12, λ22, . . . , λp2)
′.

The CTp(λ, θ) family reduces to a bivariate transmuted family by [2], if p = 2 and λi2 = 0 for all i = 1, 2, . . . , p.
It reduces to the multivariate transmuted family introduced by [5] when λi2 = 0 for all i = 1, 2, . . . , p. The
CTp(λ, θ) family reduces to a univariate cubic transmuted family introduced by [11] if p = 1, it reduces to the
univariate quadratic transmuted family if λi2 = 0 for all i = 1, 2, . . . , p and p = 1.

2.1. Marginal and conditional distributions:

Consider a random vector X partitioned into two vectors:

X =

(
X(1)

X(2)

)
, where X(1) is a (q × 1) vector of any q variables belonging to X , and X(2) is a

((p− q)× 1) vector containing the remaining variables of X . Consider that X(1) = (X1, X2, . . . , Xq)
′ and
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4 MULTIVARIATE CUBIC TRANSMUTED FAMILY OF DISTRIBUTION WITH APPLICATIONS

X(2) = (Xq+1, Xq+2, . . . , Xp)
′. The marginal c.d.f. for each group of variables X(1) , X(2) are:

F (X(1)) = lim
X(2)→∞

F (X)

=

q∏
j=1

Gj(Xj)

[(
1 +

q∑
i=1

(λi1 + λp+1)(1−Gi(Xi))
)
+

q∑
i=1

λi2

( q∏
j=1

Gj(Xj)
)
(1−Gi(Xi))

]
(9)

F (X(2)) = lim
X(1)→∞

F (X) =

p∏
j=q+1

Gj(Xj)

[(
1 +

p∑
i=q+1

(λi1 + λp+1)(1−Gi(Xi))
)

+

p∑
i=q+1

λi2

( p∏
j=q+1

Gj(Xj)
)
(1−Gi(Xi))

]
(10)

joint marginal p.d.f. of X(1) is partial derivative of F (X(1)) q times relative to all variables of X(1) be:

f(X(1)) =
∂qF (X(1))

∂X1∂X2 . . . ∂Xq
=

q∏
j=1

gj(Xj)

[(
1 +

q∑
i=1

(λi1 + λp+1)(1− 2Gi(Xi))

)

+

q∑
i=1

λi2

(
q∏
j=1

Gj(Xj)

)
(2− 3Gi(Xi))

]
(11)

In the same way the joint marginal (p.d.f.) of X(2) be.

f(X(2)) =
∂(p−q)F (X(2))

∂Xq+1∂Xq+2 . . . ∂Xp
=

p∏
j=q+1

gj(Xj)

[(
1 +

p∑
i=q+1

(λi1 + λp+1)(1− 2Gi(Xi))

)

+ 2p−1

p∑
i=q+1

λi2

(
p∏

j=q+1

Gj(Xj)

)
(2− 3Gi(Xi))

]
(12)

The joint conditional p.d.f. of X(1) | X(2) is:

f(X(1) | X(2)) =
f(X)

f(X(2))
=

q∏
j=1

gj(Xj) ∆2(X) C2(X
(2)) (13)

where

∆2(X) = 1 +

p∑
i=1

(λi1 + λp+1)(1− 2Gi(Xi)) + 2p−1

p∑
i=1

λi2

(
p∏
j=1

Gj(Xj)

)
(2− 3Gi(Xi)),

and

C2(X
(2)) =

[
1 +

p∑
i=q+1

(λi1 + λp+1)(1− 2Gi(Xi)) + 2p−q−1

p∑
i=q+1

λi2

(
p∏

j=q+1

Gj(Xj)

)
(2− 3Gi(Xi))

]−1

In the Same way, the joint conditional p.d.f. of X(2) | X(1) is:

f(X(2) | X(1)) =
f(X)

f(X(1))
=

p∏
j=q+1

gj(Xj) ∆2(X) C1(X
(1)) (14)
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where

C1(X
(1)) =

[
1 +

q∑
i=1

(λi1 + λp+1)(1− 2Gi(Xi)) + 2q−1

q∑
i=1

λi2

(
q∏
j=1

Gj(Xj)

)
(2− 3Gi(Xi))

]−1

joint conditional c.d.f. of X(1) | X(2) is:

F (X(1) | X(2)) =

∫
X(1)

f(X(1) | X(2)) dX(1) (15)

Put (13) into (15), then:

F (X(1) | X(2)) =

[(
q∏
j=1

Gj(Xj)

)(
1 +

q∑
i=1

(λi1 + λp+1)(1−Gi(Xi))

)

+

q∑
i=1

λi2

(
q∏
j=1

Gj(Xj)

)
(1−Gi(Xi))

]
C2(X

(2)). (16)

The joint conditional c.d.f. of X(2) | X(1) is:

F (X(2) | X(1)) =

[(
p∏

j=q+1

Gj(Xj)

)(
1 +

p∑
i=q+1

(λi1 + λp+1)(1−Gi(Xi))

)

+

p∑
i=q+1

λi2

(
p∏

j=q+1

Gj(Xj)

)
(1−Gi(Xi))

]
C1(X

(1)). (17)

2.2. Joint moments:

1. The joint moments between all variables of (X) of order (r1, r2, . . . , rp) is:

E

(
p∏
j=1

X
rj
j

)
=

∫
X

(
p∏
j=1

X
rj
j

)
f(X) dX (18)

Put (8) into (18), the joint moment of (X) of order (r1, r2, . . . , rp) is:

E

(
p∏
j=1

X
rj
j

)
=

p∏
j=1

ẼX
rj
j

[
1 +

p∑
i=1

(λi1 + λp+1)

]
−

p∑
i=1

(λi1 + λp+1)ẼX
ri
i(2,2)

 p∏
j=1
j ̸=i

ẼX
rj
j



−
p∑
i=1

λi2ẼX
ri
i(3,3)

 p∏
j=1
j ̸=i

ẼX
rj
j(2,2)

+

p∑
i=1

λi2

(
p∏
j=1

ẼX
rj
j(2,2)

)
(19)

Where ẼX
rj
j is the rj-th moment around zero of Xj on the baseline density gj(Xj) for j = 1, 2, . . . , p, and(

ẼX
rj
j(2,2), ẼX

rj
j(3,3)

)
be the rth

j moments around zero of Xj based on greatest order statistic of random samples
of size 2 and 3 taken from the baseline density gj(Xj) for j = 1, 2, . . . , p, respectively.
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2-The marginal joint moments of X(1) be:

E

(
q∏
i=1

Xri
i

)
=

q∏
j=1

ẼX
rj
j

[
1 +

q∑
i=1

(λi1 + λp+1)

]
−

q∑
i=1

(λi1 + λp+1)ẼX
ri
i(2,2)

 q∏
j=1
j ̸=i

ẼX
rj
j



−
q∑
i=1

λi2ẼX
ri
i(3,3)

 q∏
j=1
j ̸=i

ẼX
rj
j(2,2)

+

q∑
i=1

λi2

(
q∏
j=1

ẼX
rj
j(2,2)

)
. (20)

and marginal joint raw moments of X(2) be:

E

(
p∏

j=q+1

X
rj
j

)
=

p∏
j=q+1

ẼX
rj
j

[
1 +

p∑
i=q+1

(λi1 + λp+1)

]
−

p∑
i=q+1

(λi1 + λp+1)ẼX
ri
i(2,2)

 p∏
j=q+1
j ̸=i

ẼX
rj
j



−
p∑

i=q+1

λi2ẼX
ri
i(3,3)

 p∏
j=q+1
j ̸=i

ẼX
rj
j(2,2)

+

p∑
i=q+1

λi2

(
p∏

j=q+1

ẼX
rj
j(2,2)

)
. (21)

2.3. Conditional moments.

The conditional moments of
(∏q

i=1X
ri
i

∣∣∣∣X(2)

)
be:

E

(
q∏
i=1

Xri
i

∣∣∣∣X(2)

)
=

∫
X(1)

(
q∏
i=1

Xri
i

)
f
(
X(1) | X(2)

)
dX(1) (22)

Put (13) into (22), then

E

(
q∏
i=1

Xri
i

∣∣∣∣∣ X̄(2)

)
= ∆2(X̄) + C2

(
X̄(2)

)[( q∏
j=1

ẼX
rj
j

)(
1 +

q∑
i=1

(λi1 + λp+1)

)

−
q∑
i=1

(λi1 + λp+1) ẼX
ri
i(2,2)

 q∏
j=1
j ̸=i

ẼX
rj
j

−
q∑
i=1

λi2 ẼX
ri
i(3,3)

 q∏
j=1
j ̸=i

ẼX
rj
j(2,2)


+

q∑
i=1

λi2

(
q∏
j=1

ẼX
rj
j

)]
(23)
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and E
(∏p

i=q+1X
ri
i

∣∣∣∣X(1)

)
is:

E

(
p∏

i=q+1

Xri
i

∣∣∣X(1)

)
= ∆2(X) + C1(X

(1))

[
p∏

j=q+1

ẼX
rj
j

(
1 +

p∑
i=q+1

(λi1 + λp+1)
)
−

p∑
i=q+1

(λi1 + λp+1)ẼX
ri
i(2,2)

p∏
j=q+1
j ̸=i

ẼX
rj
j

−
p∑

i=q+1

λi2ẼX
ri
i(3,3)

 p∏
j=q+1
j ̸=i

ẼX
rj
j(2,2)

+

p∑
i=q+1

λi2

(
p∏

j=q+1

ẼX
rj
j

)]
(24)

The benefit of using joint, marginal and conditional moments of CTp family lies in the ability to provide a deeper
understanding, a more flexible and comprehensive distributional view of the structure of the data distribution
especially for extreme values, the shape and behavior of the tail and outliers. The modeling is more robust in
non-normal and heavy-tailed cases, for example: in the field of finance, engineering and insurance. The extreme
values are important in modeling rainfall, maximum losses, . . . .etc.

2.4. Dependence measures.

Measure of dependence are important for the association among variables. Some of these popular measures are
obtained for proposed CTP family:

1- Kendall’s Tau coefficient The τ coefficient measures the dependence between two random variables Xj , Xj′

where j ̸= j′ and j = 1, 2, . . . , p defined as [4]:

τ = 4

∫
X(1)

F (X(1)) f(X(1)) ∂X(1) − 1

Where X(1) = (Xj Xj′)
′ and F (X(1)), f(X(1)) defined in (10), (11) respectively. Putting (10), (11) in the formula

of τ above and defining one to one transformations:

uj = Gj(Xj), uj′ = Gj′(Xj′) so that ∂uj = gj(Xj) ∂Xj , ∂uj′ = gj′(Xj′) ∂Xj′ where 0 < uj , uj′ < 1

And making mathematical simplifications τ as:

τ =
1

45
[λj2 δj1 + λj′2 δj′1]−

1

9
[λj2 + λj′2 + 2 δj1 δj′1 + λj′2 δj1 + λj2 δj′1] +

λ2j2
3

− 2λj2 λj′2
25

Where

δj1 = λj2 + λp+1, δj′1 = λj′2 + λp+1, −1 ≤ δj1, δj′1 ≤ 1, −1 ≤ δj1 + δj′1 ≤ 1, −2 ≤ λj2, λj′2 ≤ 1.

The τ coefficient was determined at different values of parameters, these values shown in Table(1).

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Table 1. Kendall’s Tau coefficient of CT2 family at different values of transmutation parameters

δj = 0.5, δj′ = 0.5, λj′2 = −1.9 . δj = 1, δj′ = −1, λj′2 = −1.9 .
τ λj2 τ λj2

0.807 -1.3 0.958 -1.2
0.577 -1 0.898 -1.1
0.406 -0.7 0.846 -1
0.269 0.3 0.800 -0.9
0.322 0.5 0.728 -0.7
0.401 0.7 0.683 -0.5
0.507 0.9 0.673 -0.1

0.687 0
0.707 0.1
0.857 0.5
0.872 0.7

From Table(1) above, we observe that there is a positive strong hierarchical association between Xj , Xj′ when
δj = 1, δj′ = −1, λj′2 = −1.9. While the association is between weak and strong positive when δj = δj′ = 0.5
and λj′2 = −1.9 with different values of λj2. It is seen that the increasing values of λj2 from −1.2 up to −0.9
increases the strength of the positive relationship between two variables, and if the values of λj2 > −1.2 the
strength of association decreases. On the other hand, the increasing values of δj and decreasing values of δj′ and
another parameters are constant make the association stronger.

2- Spearman’s ρ coefficient

The Spearman’s rho (ρ) coefficient is another popular measure for dependence among variables. This coefficient
is defined as [14]:

ρ = 12

∫ 1

0

∫ 1

0

R(uj , uj′) duj duj′ − 3

where R(uj , uj′) is a bivariate cubic transmuted cdf obtained from (6). After some mathematical simplifications
the ρ coefficient becomes as:

ρ = δj + δj′ +
1
3 (λj2 + λj′2)

−1 ≤ δj + δj′ ≤ 1.

For the value of ρ to fall within the interval [0, 1], with condition

−3(1 + δj + δj′) ≤ λj2 + λj′2 ≤ 3(1− δj − δj′)

must be met. The ρ coefficient was determined at different values of CT2 transmutation parameters, the results are
presented in Table(2).
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Table 2. Spearman’s rho coefficient at different values of CT2 transmutation parameters

δ′j = 0.08, δj = 0.2, δ′j = δj = 0.2 δ′j = 0.5, δj = −0.9 δ′j = 0.5, δj = −0.9

λ′j2 = −2 λ′j2 = 1 λ′j2 = −2 λ′j2 = −1.8

λj2 ρ λj2 ρ λj2 ρ λj2 ρ

-1.3 -0.94 -1 0.4 0.2 -1 0 -1
-1.1 -0.84 -0.8 0.4666 0.4 -1 0.2 -0.9333
-0.9 -0.806 -0.6 0.5333 0.6 -0.93333 0.4 -0.866
-0.6 -0.706 -0.4 0.6 0.7 -0.86667 0.6 -0.8
-0.3 -0.60667 -0.2 0.6666 0.8 -0.8 0.8 -0.733
-0.1 -0.54 0.2 0.8 1 -0.73333 1 -0.666
0.4 -0.373 0.4 0.8666
0.6 -0.306 0.6 0.9333
0.8 -0.24 0.8 1
1 -0.253 1 1

It is noted from Table(2) above that the values of the transmutation parameters have an effect on the Spearman
correlation values. It is noted that all values of Spearman correlations are negative and lies between very strong
and medium strength when λj′2 = −2, while the correlation is positive, it lies between moderate and highly
relationship. This result indicates that MCTp can be used for modeling variables with positive and negative
correlations [12, 15].

2.5. Multivariate Cubic Transmuted Weibull Distribution.

In this section, we use the CTp family on Weibull baseline distributions to construct a new multivariate cubic
transmuted Weibull distribution (CTpW ). The baseline distributions for each X1, X2, . . . , Xp are .
Xj ∼W (αj , βj) for j = 1, 2, . . . , p, where (p.d.f.′s) , (c.d.f.′s) are:

gj(Xj) =
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

, Gj(Xj) = 1− e
−
(

Xj
βj

)αj

, for j = 1, 2, . . . , p. (25)

where Xj > 0; αj , βj > 0, for j = 1, 2, . . . , p.
Putting (25) into (7) and (8), the (c.d.f.) , (p.d.f.) of CTpW are:

F (X) =

p∏
j=1

(
1− e

−
(

Xj
βj

)αj
)
×

[(
1 +

p∑
i=1

(λi1 + λp+1)e
−
(

Xi
βi

)αi)
+

p∑
i=1

λi2

(
p∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

e
−
(

Xi
βi

)αi

]
(26)

f(X) =

p∏
j=1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

]
×

[(
1 +

p∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)
)

+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]
(27)
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where the transmutation parameters λi1, λi2 for i = 1, 2, . . . , p and λ(p+1) satisfy all conditions mentioned in
section (2). The marginal (c.d.f.) for each group X(1) and X(2) are:

F (X(1)) =

q∏
j=1

(
1− e

−
(

Xj
βj

)αj
)

×

[(
1 +

q∑
i=1

(λi1 + λp+1)e
−
(

Xi
βi

)αi)
+

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

e
−
(

Xi
βi

)αi

]
(28)

F (X(2)) =

p∏
j=q+1

(
1− e

−
(

Xj
βj

)αj
)

×

[(
1 +

p∑
i=q+1

(λi1 + λp+1)e
−
(

Xi
βi

)αi)
+

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))

e
−
(

Xi
βi

)αi

]
(29)

After putting (25) into (11) and (12), the marginal probability density functions (p.d.f.) for each X(1) and X(2)

are:

f(X(1)) =

q∏
j=1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

]
×

[(
1 +

q∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)
)

+ 2q−1

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]
(30)

f(X(2)) =

p∏
j=q+1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

]
×

[(
1 +

p∑
i=q+1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)
)

+ 2p−q−1

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]
(31)

Putting (25) into (13) and (14), the conditional probability density functions (p.d.f.) of X(1) | X(2) , X(2) | X(1)

respectively are:

f(X(1) | X(2)) =

q∏
j=1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

][
1 +

p∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]

×

[(
1 +

p∑
i=q+1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

)

+ 2p−q−1

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]−1

(32)
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f(X(2) | X(1)) =

p∏
j=q+1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

][
1 +

p∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]

×

[(
1 +

q∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

)

+ 2q−1

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]−1

(33)

Putting (25) into (16) and (17), the conditional cumulative distribution functions (c.d.f.) of X(1) | X(2) and
X(2) | X(1) are, respectively:

F (X(1) | X(2)) =

q∏
j=1

(
1− e

−
(

Xj
βj

)αj
)[

1 +

q∑
i=1

(λi1 + λp+1)e
−
(

Xi
βi

)αi

+

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

e
−
(

Xi
βi

)αi

]

×

[(
1 +

p∑
i=q+1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

)

+ 2p−q−1

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]−1

(34)

F (X(2) | X(1)) =

p∏
j=q+1

(
1− e

−
(

Xj
βj

)αj
)[

1 +

p∑
i=q+1

(λi1 + λp+1)e
−
(

Xi
βi

)αi

+

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))

e
−
(

Xi
βi

)αi

]

×

[(
1 +

q∑
i=1

(λi1 + λp+1)(2e
−
(

Xi
βi

)αi

− 1)

)

+ 2q−1

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))

(3e
−
(

Xi
βi

)αi

− 1)

]−1

(35)

2.6. Moments of CTpW distribution

The rthj moment about zero of the baseline Weibull distribution is:

E∗X
rj
j = β

rj
j Γ

(
1 +

rj
αj

)
, for j = 1, 2, . . . , p (36)

The rthj moment around zero of largest order statistic of random samples of sizes (2) and (3) taken from baseline
Weibull distribution are:

E∗X
rj
j(2,2) = β

rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
(37)
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E∗X
rj
j(3,3) = 3β

rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj + 3

−
(

rj
αj

+1
))

(38)

Substituting (36), (37), (38), into (19), (20), (21), (23) and (24), the joint moments between variables of X ,
X(1),X(2) of some orders are:

E

(
p∏
j=1

X
rj
j

)
=

(
p∏
j=1

β
rj
j Γ

(
1 +

rj
αj

))[
1 +

p∑
i=1

(λi1 + λp+1)

]

−
p∑
i=1

(λi1 + λp+1)

(
βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi

)) p∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)

−
p∑
i=1

λi2

(
3βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi + 3

−
(

ri
αi

+1
)))

×
p∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
+

p∑
i=1

λi2

p∏
j=1

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
(39)

E

(
q∏
j=1

X
rj
j

)
=

(
q∏
j=1

β
rj
j Γ

(
1 +

rj
αj

))[
1 +

q∑
i=1

(λi1 + λp+1)

]

−
q∑
i=1

(λi1 + λp+1)

(
βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi

)) q∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)

−
q∑
i=1

λi2

(
3βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi + 3

−
(

ri
αi

+1
)))

×
q∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
+

q∑
i=1

λi2

q∏
j=1

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
(40)

E

(
p∏

j=q+1

X
rj
j

)
=

(
p∏

j=q+1

β
rj
j Γ

(
1 +

rj
αj

))[
1 +

p∑
i=q+1

(λi1 + λp+1)

]

−
p∑

i=q+1

(λi1 + λp+1)

(
βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi

)) p∏
j=q+1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)

−
p∑

i=q+1

λi2

(
3βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi + 3

−
(

ri
αi

+1
)))

×
p∏

j=q+1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
+

p∑
i=q+1

λi2

p∏
j=q+1

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
(41)
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E

(
q∏
j=1

X
rj
j | X(2)

)
= ∆2(X) + C2

(
X(2)

)( q∏
j=1

β
rj
j Γ

(
1 +

rj
αj

))[
1 +

q∑
i=1

(λi1 + λp+1)

]

−
q∑
i=1

(λi1 + λp+1)

(
βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi

)) q∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)

−
q∑
i=1

λi2

(
3βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi + 3

−
(

ri
αi

+1
)))

×
q∏
j=1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
+

q∑
i=1

λi2

q∏
j=1

β
rj
j Γ

(
1 +

rj
αj

)
(42)

where

∆2(X) = 1 +

p∑
i=1

(λi1 + λp+1)

(
2e

−
(

Xi
βi

)αi

− 1

)
+ 2p−1

p∑
i=1

λi2

(
p∏
j=1

(
1− e

−
(

Xj
βj

)αj
))(

3e
−
(

Xi
βi

)αi

− 1

)

C2

(
X(2)

)
=

[
1 +

p∑
i=q+1

(λi1 + λp+1)

(
2e

−
(

Xi
βi

)αi

− 1

)

+ 2p−q−1

p∑
i=q+1

λi2

(
p∏

j=q+1

(
1− e

−
(

Xj
βj

)αj
))(

3e
−
(

Xi
βi

)αi

− 1

)]−1

E

(
p∏

j=q+1

X
rj
j | X(1)

)
= ∆2(X) + C1

(
X(1)

)( p∏
j=q+1

β
rj
j Γ

(
1 +

rj
αj

))[
1 +

p∑
i=q+1

(λi1 + λp+1)

]

−
p∑

i=q+1

(λi1 + λp+1)

(
βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi

)) p∏
j=q+1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)

−
p∑

i=q+1

λi2

(
3βrii Γ

(
1 +

ri
αi

)(
1− 2

− ri
αi + 3

−
(

ri
αi

+1
)))

×
p∏

j=q+1
j ̸=i

β
rj
j Γ

(
1 +

rj
αj

)(
1− 2

−
rj
αj

)
+

p∑
i=q+1

λi2

p∏
j=q+1

β
rj
j Γ

(
1 +

rj
αj

)
(43)

where

C1(X
(1)) =

[(
1 +

q∑
i=1

(λi1 + λp+1)

(
2e

−
(

Xi
βi

)αi

− 1

))

+ 2(p− q − 1)

q∑
i=1

λi2

(
q∏
j=1

(
1− e

−
(

Xj
βj

)αj
))(

3e
−
(

Xi
βi

)αi

− 1

)]−1

(44)
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3. Parameters Estimation

Assuming parameters of the CTpW distribution are unknown. By providing a complete sample of size n, the
(ML) estimators for all parameters of CTpW under two-sided inequality constraints on the vector of transmutation
parameters. λ = (λi1, λi2, for i = 1, 2, . . . , p, λp+1)

′. The likelihood function is:

L(θ) =

n∏
k=1

{
p∏
j=1

αj

β
αj

j

X
αj−1
kj exp

(
−
(
Xkj

βj

)αj
)
×

[
1 +

p∑
i=1

(λi1 + λp+1)

(
2e

−
(

Xki
βi

)αi

− 1

)

+ 2p−1

p∑
i=1

λi2

(
3e

−
(

Xki
βi

)αi

− 1

)( p∏
j=1

(
1− e

−
(

Xki
βi

)αi
))]}

(45)

Where

θ = (α β λ1 λ2 λp+1)
′, α = (α1, α2, . . . , αp)

′, β = (β1, β2, . . . , βp)
′,

λ1 = (λ11, λ12, . . . , λ1p)
′, λ2 = (λ21, λ22, . . . , λ2p)

′.

Taking loge to both sides of eq.(45), the vector θ which maximizes L(θ) or loge
(
L(θ)

)
under two-sided linear

inequality constraints on all transmutation parameters is the same as the vector θ which minimizes [−L(θ)] or
[− loge

(
L(θ)

)
].

The optimum solution for θ can be found by using constrained non-linear optimization via fmincon with the
interior-point algorithm [7, 9].
θ̂ is the maximum likelihood (ML) estimator for θ under the condition that the information matrix is negative

definite. For a large sample size, θ̂ is approximately distributed as:

θ̂ ∼ N13

(
θ,−

(
∂2 lnL(θ)

∂θ ∂θ′

∣∣∣∣∣
θ=θ̂

)−1)

Taking loge to both sides of eq.(45), the vector θ which maximizes L(θ) or loge
(
L(θ)

)
under two sided linear

inequality constraints on all transmutation parameters is the same of a vector θ which minimizes [−L(θ)] or
[− loge

(
L(θ)

)
]. The optimum solution for θ can be found by using the constrained non-linear optimization with

using fmincon with the interior-point-algorithm [?].
θ̂ is the ML estimator for θ with condition that the Fisher information matrix is a negative definite matrix. A

sample size is large, θ̂ is approximately distributed as:

θ̂ ∼ N13

(
θ, −

(
∂2 lnL(θ)

∂θ ∂θ′

∣∣∣
θ=θ̂

)−1)

4. Real Application

In this section a real data set for a bone density test is taken from [8]. This test determines whether a person has
osteoporosis. The test usually uses X-rays to measure grams of calcium and other bone minerals in a slice of bone.
It is known that women were more susceptible to osteoporosis than men, so we used the measures of bone density
of older women. This data contains the measures of bone density by photon absorption in the peripheral bones
of (25) older women. The measurements were taken of three dominant bones: forearms (X1), humerus (X2), and
ulna (X3). The bone density for older women dataset were displayed in Table(3).
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Table 3. Bone density measurements for 25 older women (forearms X1, humerus X2, ulna X3).

No. X1 X2 X3 No. X1 X2 X3 No. X1 X2 X3

1 1.103 2.139 0.873 10 0.921 1.954 0.823 19 0.856 2.028 0.578
2 0.842 1.873 0.590 11 0.792 1.624 0.686 20 0.890 2.187 0.758
3 0.925 1.887 0.767 12 0.815 2.204 0.678 21 0.688 1.650 0.533
4 0.857 1.739 0.706 13 0.755 1.508 0.662 22 0.940 2.334 0.757
5 0.795 1.734 0.549 14 0.880 1.786 0.810 23 0.493 1.037 0.546
6 0.787 1.509 0.782 15 0.900 1.902 0.723 24 0.835 1.509 0.618
7 0.933 1.695 0.737 16 0.764 1.743 0.586 25 0.915 1.971 0.869
8 0.799 1.740 0.618 17 0.733 1.863 0.672 - - - -
9 0.945 1.811 0.853 18 0.932 2.028 0.836 - - - -

Some descriptive statistics were measured and given in table(4).

Table 4. Summery important measures of bone variables

Measures X1 X2 X3

Minimum 0.493 1.037 0.533
Maximum 1.103 2.334 0.873
Mean 0.8438 1.8102 0.7044
Q1 0.7895 1.6725 0.604
Median 0.856 1.811 0.706
Q3 0.923 1.9995 0.796
Skewness -0.84 -0.61 -0.02
Kurtosis 3.22 1.59 -1.20

The measures in Table (4) indicate that X1, X2, X3 are negatively skewed.This means the values of the variables
accumulate near the maximum values. This is clear because the median is smaller than the mean for each variable.
It is seen that the kurtosis of X1 and X2 is greater than zero, which means the distributions of these variables are
heavy-tailed and more peaked central area, while kurtosis of X3 is negative, which means the distribution of X3

has a lighter tail and a flatter central area. The positive kurtosis indicates that the sample data for X1 and X2 have
outlier observations from the left, while the sample data of X3 do not have outliers.

The estimated Spearman rho correlation coefficients.

ρ(X1, X2) = 0.628, ρ(X1, X3) = 0.766, ρ(X2, X3) = 0.459.

p− value = 0.0009937, 0.00001575, 0.0337

It is seen that all correlations are significant because all p < 0.05.
Fits of data has been done by our proposed CT3W density defined in (24) and the trivariate families:

1-Trivariate transmuted Weibull (T3W ) distribution where the joint p.d.f. of this family is:

f(X) =

3∏
j=1

αj

β
αj

j

X
αj−1
j exp

(
−
(
Xj

βj

)αj
)[

1 +

3∑
i=1

(λi1 + λ4)
(
1− 2

(
1− exp

(
−
(
Xi

βi

)αi
)))]

. (46)

where

−1 ≤ λi1, λ4 ≤ 1, −1 ≤ λi1 + λ4 ≤ 1, −1 ≤
3∑
i=1

(λi1 + 3λ4) ≤ 1, for i = 1, 2, 3.
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2- A new class of multivariate (NC3) family of distributions: The (NC3) family proposed by [4] depending on the
baseline pdf and cdf Weibull distribution defined in (23), the new class trivariate Weibull (NC3W ) pdf defined as:

f(X) =

3∏
j=1

[
αj

β
αj

j

X
αj−1
j e

−
(

Xj
βj

)αj

] [
(1 + ξ)− ξ

3∏
j=1

ψj

(
1− e

−
(

Xj
βj

)αj
)ψj−1

]
(47)

Where
−1 ≤ ξ ≤ 2min

(
ψ−1
j

)
, ψj ≥ 1

The calculations of the constrained nonlinear optimization method using the fmincon algorithm with interior-point
were performed in MATLAB software. The starting points for the CT3W , T3W , and NC3W parameters were
randomly selected, provided that all constraints imposed on them were satisfied in each model. By calling fmincon,
which is to minimize the negative of the likelihood function for each model. The optimum solutions that satisfy
the objective function represent the ML estimators. These estimators, Akaike’s and Bayesian information criterion
(AIC), (BIC) were put in Table(5).

Table 5. Maximum likelihood estimation and goodness of fit measures for three trivariate Weibull distributions

Distribution Parameter Estimator AIC BIC

CT3W

α1 7.9150

-162.0649 -146.2196

α2 8.6351
α3 7.6780
β1 0.8547
β2 0.8902
β3 0.8714
λ11 -0.1270
λ21 -0.9380
λ31 0.9066
λ4 -0.00005
λ12 -1.7354
λ22 -1.9336
λ32 0.9228

T3W

α1 8.6143

-146.159 -133.970

α2 8.6050
α3 9.3385
β1 0.8906
β2 0.8898
β3 0.9051
λ11 -0.8480
λ21 -0.9918
λ31 0.9910
λ4 -0.0037

NC3W

α1 6.859

-151.401 -141.212

α2 8.616
α3 8.588
β1 0.844
β2 0.889
β3 0.890
ψ1 1.608
ψ2 3.000
ψ3 1.000
ξ -1.000

From Table(5), it is show CT3W is the most suitable for a bone density test data, set which has the smaller AIC
and BIC criteria. It is also observed that the estimators of transmutation parameters λi1 for i = 1, 2, 3 and λ4 in
CT3W and T3W have the same signs.
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5. Contributions

In this paper, a new multivariate family of distribution was introduced. This family based on a generalization
of univariate cubic transmuted family to a multivariate family, Different statistical properties of new family have
been studied. It is concluded in theoretical analysis that the marginal distributions belong to transmutation family
of order three, the joint and marginal moments are functions of moments of the largest order statistics of random
samples of sizes two and three taken from baseline densities. In application, the CT3W is the best fit than the T3W
and NC3W distributions, so that CT3W is a good fit for bone density studies.
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