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Abstract The need to construct multivariate probability distributions is important in modeling dependent variables.
Developing flexible multivariate distribution that can model skewness and complex dependence is a challenging task. There
are different forms to the same distribution are available. For this reason, the research is ongoing into ways to construct
multivariate families from univariate margins. In this paper, we introduce a multivariate cubic transmuted (M CT') family.The
marginal cumulative distribution function of each variable belongs to a univariate cubic transmuted family. This new family
applied to (p) baseline Weibull variables named a multivariate cubic transmuted Weibull distribution (CTpW). Statistical
properties of (C'TpW) have been studied, and the parameters have been estimated by maximum likelihood (M L) method. A
real data set for bone density test by photon absorption in the peripheral bones of olderly women fitted by (CTpW ), trivariate
transmuted Weibull (73W) and FGMW distributions. The important theoretical conclusions are: the marginal distributions
belong to multivariate cubic family with dimension less than p, joint moments of any order depend on raw moments of each
baseline variable and moments of the largest order statistics of random samples of sizes two and three drawn from each
baseline distribution. In real application, the (CT3W) is a better fit to bone density data.

Keywords Bone density test, Multivariate Cubic transmuted family, New class multivariate family, Univariate Cubic
transmuted family.

DOI: 10.19139/s0ic-2310-5070-2853

1. Introduction

Univariate distributions are not adequate to explain many ties in real data sets. For instance, variables of
some phenomena must be studied together for example: in economics, financial, environmental pollutions,
engineering fields, the climatic variables such as drought, wind speed and rainfalls, tests to measure calcium and
minerals in different places of bone segment of spine, hyper forearm of osteoporosis patients must be measured
together.Another example is risk factors of serious diseases such as cancers, kidney failure, heart attacks and
others. All these cases above must be analyzed by multivariate modeling.

With the development technology, the construction of continuous multivariate distributions depending on
baseline variables whose density functions are the same univariate distribution with different values of their
parameters become an important. The easier procedure is a bivariate Gumbel family introduced by [6] this family
used to generate many continuous bivariate distributions. A generalization of univariate 7' — X family to bivariate
T — X family proposed by [5] which is used for developing different forms of bivariate generaters and G-class.
The joint cumulative distribution function (c.d. f.) of this family is:

Wa (Ga(w)) (i)
F(z,y) = / / r(u1,u2) duy dug @)

az ai
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Whereas a; < u; < b; fori=1,2,

r(uy,us) is any joint density function and Wi [-], Wa[-] are absolutely continuous functions of G1(-) and Ga(-)
respectively. The simpler form of r(uy, u2) in (1) was given by [2] defining the support of r(uy, u2) on [0, 1] x [0, 1]
and W1 [-] = G1(+) and W5][-] = G2(+). in this case, the joint c.d. f. defined as:

Ga2(y) ,Gi(z)
F(z,y) = / / (1 + A1(1 —2u1) + Ao(1 — 2ug) + 2A3(1 — uq — UQ)) duq duo 2)
0 0

The family given in (2) named as a bivariate transmuted family (7%) family.
It is a generalization of univariate quadratic transmuted family [11]. A new bivariate family of distribution based
on bivariate density in 7" — X family has been proposed by [3] they defined r(-,-) as :

7’(1L1,U2) =1+ )\1(1 - 2u1) + /\2(1 — 2LL2) + )\3(1 - 4U1UQ) 3)

Whereas u € [0,1]?, the transmutation parameters ); for i=1,2,3 satisfy the following conditions:
A €[-1,1] (i=1,2,3), 2?21 A2 =1L M +A+3 <1 —1< XA +A3<1, —1< A+ 23<1. Also,
they introduced a multivariate family and applied it on Weibull baseline variables.

A generalization of [2] has been done by [5], which is a p-variate transmuted family of distributions where the
joint c.d. f. of a random vector X = (X7, X»,..., X,,)’ be:

P P
P(X) =[] G:x) (1 +) it )1 - Gi(Xm) , XeRP 4)
i=1 i=1
whereas G;(X;) is a c.d.f. of the i-th baseline distribution. The transmutation parameters Ai, Aa, ..., Ay, Apt1

satisfying following inequalities:
—-1< )‘iv/\p-‘rl <1,-1< )\7;+)\p+1 <lfori=1,2,...,p,and —1 < Zf:l)\i—Fp)\p_H <1.

The marginal c.d.f. of a single variable of X in (4) belongs to the k-transmuted family [10, 11] at £ = 1, which is
called a univariate quadratic transmuted family. Reference [4] introduced a new class of bivariate and multivariate
(NCM) families based on the multivariate 7' — X family where the form of r(u1, u2) is defined as

r(u) =1+ §<1 =TI, 6 ufi“)

where —1 < ¢ < 2m ln((Si_l), 0; > 1,and & > 1fori=1,2,...,p. Reference [14] proposed a bivariate family
of distributions whose conditional distribution is a transmuted distribution; their family depends on three baseline
independent continuous distributions and three dependence parameters, and they studied specific bivariate models.
Reference [1] introduced a bivariate cubic transmuted family, which is an extension of a univariate cubic
transmuted family. Their family is characterized by providing flexible dependence between variables, and non-
linear relationships are integrated through complex relations.

The aim of this paper is to introduce new multivariate family which is a generalization of [4]. This family, named
a multivariate cubic transmuted (M CT). It can be used for any baseline continuous distribution that has a closed-
form differentiable c.d. f. The family is a novel extension of a univariate cubic transmuted family or an extension of
a bivariate quadratic transmuted family; the M CT), can represent wider shapes of margins including asymmetric,
heavy, and light tails. In this family, two transmutation parameters are added to each baseline distribution. These
parameters allow for modeling dependence, skewness, and tail behavior.

2. Multivariate Cubic Transmuted Family of Distributions.

It is known that the multivariate 7" — X family be

Gp(zp) Gp_1(zp—1) Ga(z2) G1(z1)
F(X) = / / = / / r(u) du S))
0 0 0 0
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where u = (uq1,us,...,u,) is defined on support [0,1]?, and G,(X;) is the c.d.f. of X; of the i-th baseline
population for ¢ = 1,2, ..., p. There are many kinds of multivariate distributions depending on the mathematical
form of r(u). We introduce a new form of this function:

p P P P
’/’(@) =1+ Z /\11(1 — QUz) + )\p+1 (p — QZU1> + op—1 Z/\lg (H u]'> (2 - 3’U,z> (6)
i=1 j=1

=1 =1
whereas
p
1< A A1 S LTS A+ A S L1 A +php1 S1L,-2< Ap < Lfori=1,2,...,p,j =1,2.
i=1

The above constraints are placed because the marginal pdf for each variable u; belongs to a univariate cubic
transmuted family, so that these constraints must be the same as the constraints of the univariate cubic family of
distributions [11, 13]. The marginal joint pdf of u;, u; can be found from (6) as:

r(ui7uj):/ / / / / / r(u)dup~-~duj+1duj,1-~-dui+1dui,1-~-du1
uy Uj—1 Y Uit Uj—1 Y Uj41 Up

After mathematical simplification of the above integral, r(u;, u;) becomes:
(i, wi) =14 01(1 — 2u;) + J2(1 — 2u;) + 2X0uu; (2 — 3u;) + 2 jouu; (2 — 3uy)
whereas
0 =Xt +Apr1, Sa=X1+ A1, —1<01,600<1, —1<61+62<1, —2< A, <1

The graph of r(u;,u;) has been done at different values of transmutation parameters which are represented in
Figure(1). We note from Figure(1) below the sensitivity of (u1, us) to the values of the transmutation parameters.
Parameters ¢; and d5 determine the slope of the surface, A2 shows the strength of the positive relationship between
uy and ug, while Aog shows the strength of the negative relationship between u; and wuy. The negative value of Ago
makes the surface more downwardly curved at high values of us, so the surface appears clearly concave. If §; is
negative, the surface is steeper and the difference between the maximum and minimum values becomes wider.
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Figure 1. r(u;, u;) curves at different values of transmutation parameters.
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Substituting (6) into (5), the joint c.d. f. of X is

x) =[]aix; <1 + Z it + Ap+1)(1 = G (Xi))> + Z/\z‘z (H GJ(XJ)> (1- Gi(Xi))] @)

j=1 =1

Taking the p-th partial derivatives of F'(X) with respect to X1, X, ..., X,, the joint probability density function
(p.d.f.) of X is:

OPF(X
f(X) = W ng

(1 + i()\il + Ap+1)(1 — QGi(Xi))>

i=1

4 op—1 Z Ao (H Gj(Xj)) (2 — 3GL(X1))

®)

whereas X € RP and G;(X;), g;(X;) are the c.d.f. and p.d. f. of the j-th baseline distribution. The random vector
X whose joint p.d.f., c.d.f. defined in (7) and (8) is a (CTp) family denoted by X ~ CTp(), €), where 0 contains
the parameters of all baseline distributions also

A = ()\11,)\21, .. '7>\p17)\p+17)\127>\227 PN /\pg)/.

The CT, (), §) family reduces to a bivariate transmuted family by [2],if p =2 and A;o = 0foralli =1,2,....,p

It reduces to the multivariate transmuted family introduced by [5] when A2 =0 for all ¢ =1,2,...,p. The
CTp(), 0) family reduces to a univariate cubic transmuted family introduced by [11] if p = 1, it reduces to the
univariate quadratic transmuted family if \;» = O foralli =1,2,...,pandp = 1.

2.1. Marginal and conditional distributions:
Consider a random vector X partitioned into two vectors:

(1)
X = <§(2)>, where X(l) is a (¢ x1) vector of any ¢ variables belonging to X, and X(Q) is a

((p — q) x 1) vector containing the remaining variables of X. Consider that X" = (X}, X,,..., X,)’ and
xX@ = = (X441, Xg+2,...,X,)". The marginal c.d.f. for each group of variables XD X3 are:

F(XW)= lim F(X)

X® 500

_HG

q

)| (1+ Z i1+ 2 (1= Gi(Xi) ) + 3 Aiz(f[ G5(X;)) (1~ ca(xi))] ©)

i=1 i=1 j=1
p
FX®) = X<111>m F(X) = H (1 + Z i+ Apr1)(1 Gz’(Xi)))
= e j=a+1 i=g+1
p p
+ Z )\iQ( H Gj(Xj))(l_Gi(Xi))] (10)
i=qtl j=qt1

joint marginal p.d.f. of X M js partial derivative of F'(X (1)) ¢ times relative to all variables of X V) be:

Stat., Optim. Inf. Comput. Vol. 14, December 2025



3130 MULTIVARIATE CUBIC TRANSMUTED FAMILY OF DISTRIBUTION WITH APPLICATIONS

q (1 q
HED) = S = Hg] ( #3o00 ) 2@(&:)))
Zj 2 (1_11 ) (2-3Gi(X ))1 (11)

In the same way the joint marginal (p.d.f.) of X@ pe.

(“)(p_‘Z)F(X(Q)
(2) (X,
) = ot B = T )| (14 3 (a+ )= 26,05
Jj=q+1 i=q+1
p p
+277 N N ( 11 Gj(Xj)> (2 3Gi(Xi))1 (12)
1=q+1 Jj=q+1
The joint conditional p.d.f. of XV | X® is:
X q
FEEXW | X®) = LTQ)) = [ 9i(X)) 2s(X) Co(X®) (13)
F®)
where
p p p
AQ(K) =14+ Z()\il + )\p+1)(1 - 2GZ(X1)) + op—1 Z Aio (H GJ(XJ)> (2 - 3GZ(Xl)),
i=1 i=1 j=1
and
4 4 -1
Co(X 1+ Z (it + Aps1)(1 = 2G5(X)) + 277771 Y )\i2< 11 Gj(Xj)> (2—3Gi(Xi))]
1=q+1 i=q+1 ji=q+1
In the Same way, the joint conditional p.d.f. of X | XMy
FE® | xM) = H 9;(X;) A2(X) Cr(XW) (14)

Jj=q+1

where

CrXW) = [14) (i1 + App1)(1 = 2G5(X3)) +2771> "Ny (H

=1 i=1

joint conditional c.d.f. of XV | X is:
FXOX®)= [ px® ) x®)ax® (15)

Put (13) into (15), then:
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FXW | x®) = (HGJ )(H—Z z1+)\p+1)(1—G-(Xi))>
+§:A <ﬁ i ) — Gi(Xy))| Ca(X@). (16)

The joint conditional c.d.f. of X | X j

F(X® | xW) = (HG )(H—Z Ai1 + Api1) l—G(Xi))>
Jj=q+1 i=q+1
P P
+ 3 Aﬂ( II Gj<Xj>> (1—-Gi(X))| Cr(x™M). (17
i=q+1 j=qt1
2.2. Joint moments:
1. The joint moments between all variables of (X)) of order (ry,rs,...,7p) is:

E <H1X> -/ <H1X> F(x) dx ()

Put (8) into (18), the joint moment of (X) of order (r1,72,...,rp) is:

£(f1r) - e
j=1

P P L
+> (i + Ap+1)] -3 a+ Apt1) EX( (5 0 [1&x7

i=1 i=1

ENY

p p
D IR 1 S B v | | 2 19

i=1 j=1
Jj#i

Where EX '7 is the r;-th moment around zero of X; on the baseline density g;(X;) for j =1,2,...,p, and

EX"  EX' be the 7" moments around zero of X, based on greatest order statistic of random samples
J(2 2) 3(3,3) J J

of size 2 and 3 taken from the baseline density g;(X;) for j = 1,2, ..., p, respectively.
2-The marginal joint moments of X be:

q q
1+ Z i1+ Ap+1)1 — Z()\ﬂ + )\p+1)EXZ_T(i2’2) H EX;J

i=1 i=1 i=1 j=1
j#i
q q q
= Mo EXy HEX oy | Y N (H 22)> (20)
= i=1 =1

J#Z
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and marginal joint raw moments of X ) be:

p P P
£(T130) = 11 63 1+ 3 0aen] = 3 Oweneingy | 11 630
Jj=q+1 Jj=aq+1 i=q+1 1=q+1 Jj=q+1
JFi
p P
- > by | T 8y |+ S e ( [T ).
i=q+1 Jj=q+1 1=q+1 =q+1
JF#i
2.3. Conditional moments.
The conditional moments 0f< XX (2)) be:

o({1

=1

q
X®@ | = / X5l A(x®W ) x®@) ax® 22
) Xm(il:[l)f( |X®) ax 22)

Put (13) into (22), then

E (ﬁx X<2>> Ay(X) + Cy (X(2)> l(ﬁ Ex;”j> (1 +i(&»1 +A,,+1)>

i1 j=1 i=1
q a . 4 CH
o Z(Au + Ap+1) i(2,2) H EX; - Z)‘ﬂ EXi(3,3) H EX;(2)
=1 =1 i=1 j=1
i 7
q a
s (i)
i=1 j=1
T (1)
andE< imgr1 X | X )
p
E< I xr X“)) = A2<X>+01<X<“>[
1=q+1
P R P p ~ P -
H EX;J (1 + Z (/\11 + Ap-‘rl)) — Z ()\il + /\p+1)EXZ‘(i2,2) H EX;J
j=a+1 i=q+1 i=q+1 g=atl
J#i
P ~ P P L
— 3 MeBEX[y EXy |+ > >\¢2< 11 EXf)] 24)
i=q+1 j=q+1 i=q+1 J=a+l1

J#i

The benefit of using joint, marginal and conditional moments of CT'p family lies in the ability to provide a deeper
understanding, a more flexible and comprehensive distributional view of the structure of the data distribution
especially for extreme values, the shape and behavior of the tail and outliers. The modeling is more robust in
non-normal and heavy-tailed cases, for example: in the field of finance, engineering and insurance. The extreme
values are important in modeling rainfall, maximum losses, . .. .etc.
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2.4. Dependence measures.

Measure of dependence are important for the association among variables. Some of these popular measures are
obtained for proposed C'T'p family:

1- Kendall’s Tau coefficient The 7 coefficient measures the dependence between two random variables X;, X/
where j # j and j = 1,2,...,p defined as [4]:

T= 4/ FX®) f(x®yox® — 1
X (1)

Where X(V) = (X; X;/) and F(X(™), f(X()) defined in (10), (11) respectively. Putting (10), (11) in the formula
of 7 above and defining one to one transformations:

u; = Gj(Xj), Ujr = Gj/(Xj/) so that 8uj = gj(Xj)an 3’U,j/ = gj/(Xj/) 8Xj/ where 0 < uj, uy < 1
And making mathematical simplifications 7 as:

1 1 Al 2Xja Ajro
7= P20+ A2 0] = 5 gz + Ajrz + 2051 651+ Ajr2 g1+ X2 ] + 5 — =0
Where

01 = Nj2 +Apy1, O = N+ Apy1, —1<651,01 <1, —1<6;+6;10 <1, —2< Njp, Ajp < 1.

The 7 coefficient was determined at different values of parameters, these values shown in Table(1).

Table 1. Kendall’s Tau coefficient of C'T5 family at different values of transmutation parameters

5, =050, =05 N =—1.9 . 0; =10 =1, \jip=—19
T )\jg T )\jg
0.807 -1.3 0.958 -1.2
0.577 -1 0.898 -1.1
0.406 -0.7 0.846 -1
0.269 0.3 0.800 -0.9
0.322 0.5 0.728 -0.7
0.401 0.7 0.683 -0.5
0.507 0.9 0.673 -0.1
0.687 0
0.707 0.1
0.857 0.5
0.872 0.7

From Table(1) above, we observe that there is a positive strong hierarchical association between X, X;» when
d0; =1, 05 = =1, Ajsa = —1.9. While the association is between weak and strong positive when 0; = d;» = 0.5
and \jo = —1.9 with different values of Ajo. It is seen that the increasing values of Aj> from —1.2 up to —0.9
increases the strength of the positive relationship between two variables, and if the values of Ajo > —1.2 the
strength of association decreases. On the other hand, the increasing values of J; and decreasing values of d;, and
another parameters are constant make the association stronger.

2- Spearman’s p coefficient

Stat., Optim. Inf. Comput. Vol. 14, December 2025
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The Spearman’s rho (p) coefficient is another popular measure for dependence among variables. This coefficient
is defined as [14]:

1 1
p = 12/ / R(u]‘, u]'/) de de/ -3
0 Jo

where R(uj,u; ) is a bivariate cubic transmuted cdf obtained from (6). After some mathematical simplifications
the p coefficient becomes as:

p=0;+08; + 5 N2+ Ajra)
-1<6§;+6;4 <1
For the value of p to fall within the interval [0, 1], with condition
=314 +9;:) < Na+Xjre < 3(1—9; —0;r)

must be met. The p coefficient was determined at different values of C'T5 transmutation parameters, the results are
presented in Table(2).

Table 2. Spearman’s rho coefficient at different values of C'T5 transmutation parameters

63- =0.08, §; = 0.2, 5; =0; =0.2 63- =0.5,0; = —0.9 6;- =0.5,0; = —0.9
/\;.2 = -2 )\92 =1 )\;2 =-2 /\;.2 =—-1.8

/\j2 14 )\12 14 )\12 14 /\j2 14
-1.3 -0.94 -1 0.4 0.2 -1 0 -1
-1.1 -0.84 -0.8 | 0.4666 | 0.4 -1 0.2 -0.9333
-09 -0.806 -0.6 | 0.5333 | 0.6 -0.93333 0.4 -0.866
-0.6 -0.706 -04 0.6 0.7 -0.86667 0.6 -0.8
-0.3 -0.60667 -0.2 | 0.6666 | 0.8 -0.8 0.8 -0.733
-0.1 -0.54 0.2 0.8 1 -0.73333 1 -0.666
0.4 -0.373 0.4 | 0.8666
0.6 -0.306 0.6 | 0.9333
0.8 -0.24 0.8 1

1 -0.253 1 1

It is noted from Table(2) above that the values of the transmutation parameters have an effect on the Spearman
correlation values. It is noted that all values of Spearman correlations are negative and lies between very strong
and medium strength when \j;» = —2, while the correlation is positive, it lies between moderate and highly
relationship. This result indicates that A/ CT), can be used for modeling variables with positive and negative
correlations [12, 15].

2.5. Multivariate Cubic Transmuted Weibull Distribution.

In this section, we use the CT}, family on Weibull baseline distributions to construct a new multivariate cubic
transmuted Weibull distribution (CTpW ). The baseline distributions for each X1, X»,..., X, are .
X; ~Wi(ay,B;) forj=1,2,...,p, where (p.d.f.'s), (c.d.f.'s) are:

. X\ % C(X5\ %
gj(Xj): ;iX?j_le_(ﬁJ R Gj(Xj):l—e (Bj) s forj=1,2,...,p. (25)
J

where X; > 0; «;,8; >0, forj=1,2,...,p.
Putting (25) into (7) and (8), the (c.d.f.) , (p.d.f.) of CT,W are:
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P

p(gg)::II (1__8‘(ﬁf)aj> X

Jj=1

. ,,1 M(ﬁ (1<>)><>] 6)

i= j=1

(1 + zp:(A,»l + Ap+1)(2e’(%)% — 1))

j=1 i=1
p p X\ x;\ i
+2771Y "N ( II <1 _e (&) ) )(3e‘<ﬁi) - 1)] 27
i=1 j=1
where the transmutation parameters \;i, Ajz fori =1,2,... pand A, satistfy all conditions mentioned in

section (2). The marginal (c.d. f.) for each group X M and X are:

y (1+i(Ai1+Ap+1)e(§f)%) +im<f{ <1e<§a)a‘7>>e(§f)%1 (28)
&) - _ (&)
F(X®) Fl:[ﬂ <1 )
S e G074 3 m( 1 <1_e(?§>%>)e<?f>%] (29)
1=q+1 1=q+1 Jj=q+1

After putting (25) into (11) and (12), the marginal probability density functions (p.d.f.) for each X 1) and X
are:

F(XM) = H [ a-j/ X?‘fle_(?;)aj] X (1 + i()\il + )\p+1)(2e_(%)ai - 1))

j=1 B;XJ ! i=1
1 i Xji\%i X, | %
+2q_12)\i2<H (]_ —e_(Tj) ) )(3e_<51‘,> _ 1)1 (30)
i=1 j=1
@y = T [ xem1 ()" - ()"
FX) = H 3% X;7 e N X <1 + Z (Ni1 + Apy1)(2e VP — 1))
j=q+1 J i=q+1
P P X5\ X; | @i
4+ op—a-1 Z >\i2< H (1 — e_<Tj> ) )(36_(51') — 1)‘| (31)
i=q+1 j=q+1
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Putting (25) into (13) and (14), the conditional probability density functions (p.d.f.) of XV | X  x® | x1)
respectively are:

13 0+ e e (BT )

=1

o q aj a1 7(%)%‘
FXO ) x@ H - XS i

4 2pr1 Z/\2<ﬁ (1 - e<)‘§;)%) )(36@)% - 1)]
<1+ 37 it Ape)(2e (nyi—l))

i=q+1
P p X5\ % X\ i -t
et 3 A( I (1-) ))Cge(ﬁ;) 1>] @)
1=q+1 Jj=q+1

1+ (A + /\p+1)(2e‘(%>ai —1)

=1

@ xOy = TT | %yt~ (32)”
FEP 1 xD)= ] X; J

Qg
Jj=q+1 ﬁ

+2v07! im (ﬁ (1 - e(;(;.)%) ) (36*(%)% - 1)]

(1 + io\il + )‘p+1)(267(%)ai _ 1))

=1

1941 zq: Aio ( ﬁ (1 _ e(;{;)aj> > (387(%>ai — 1)] (33)

X

Putting (25) into (16) and (17), the conditional cumulative distribution functions (c.d.f.) of XV | X®® and
X@ | XM are, respectively:

q X5\ % q X\ @i
F(X(l) |K(2)):H (1_e_<ﬁj) ) 1+Z()‘“+)‘p+1)e (m)
j=1 i=1
q X\ %5 X\ Qi
+Z)\22<H (1_6 (%) ))e—(ﬁf) ]
i=1 j=1
p X; | “i
<1+ 7 (Nin+ Apr1)(2e” (5" _ 1))
1=q+1
P p X5\ % X,; 0\ i -1
vt Y Aﬁ( 11 <1—e‘(ﬂj) >>(3e—(m) _1)] (34)
i=q+1 Jj=gq+1
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F® | x0) = ] (=) |+ 3+ apege ()
Jj=q+1 i=q+1
.S ( 1 (<>))<>]
i=q+1 Jj=q+1
’ (1 * i()\u e ()7 - 1)>

i=1

4 gat i&?(ﬁ (1 _ e‘(?ﬁ)%) )(36—@?)% _ 1)] 35)
i=1 j=1

2.6. Moments of CT,W distribution

The rﬁh moment about zero of the baseline Weibull distribution is:

E* X :/3§-7‘F(1+”), forj=1,2,...,p (36)
aj

The r;h moment around zero of largest order statistic of random samples of sizes (2) and (3) taken from baseline
Weibull distribution are:

*yTi QT rj -
X (140 R A
EX;(’373)—36;’1“<1+O;> (12 g ﬁ)) (38)

Substituting (36), (37), (38), into (19), (20), (21), (23) and (24), the joint moments between variables of X,
X(l),X(z) of some orders are:

E(lle) - <‘_15;J‘F(1+Zé>> 1+Z;(,\“+)\p+1)]
" ) p 7/.. T‘L p r-
S e (s (14 2) (28 T (142
=1 1 j=1 7

i

3 75 TI. .

_Z)‘ﬂ <3B;T (1+ Z) <1 —2 +3—(ai+1)>)
Qy
i=1
i "y - & P r. T
T J T ) T T e

() (-2 ) Xl (+2) (-2%) o

7;1 J p e ;

JF1
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(0= ([ ()

1+ Z(Au + )\p-&-l)]

i=1

_i()\ﬂ—i—)\;ﬁl) (5’F< )(1—2 m))f[lﬁ;fr <1+Z>

i

zq: i (:w“F (1+ ) <1—2‘5’; +3—(2’i+1)>>

v q q ' "
BT (14-;’_) (1—2%>+Z)\i2H/B;JF(1+;j> <1—2%‘> (40)
j i=1  j=1 J

':j@ I

SLUS
il
EENTE

1+ Z z1+/\p+1]

()=o) 5

> e (0 (14 1) (1-27%)) T e (14 2)

1=q+1 Jj=q+1
J#i

- Z Aio <3ﬂ“I‘ <1+ ><1—25i +3‘(3;+1)>>
X H ﬁ”r(l—k >< ) Z i2 H 5”F<1+ )( 2_;7%) A1

7 ;1£+1 i=q+1 j=q+1
Ve

q q q
B <H X' | X<2>> = 2o(X) + 0y (X)) (H BT (1 + ;)) 1+ (a + Apml
Jj=1 j=1 J i—1
q -
3 i1+ Apr) (ﬂi”l“ (1 + ;) (1 - 2)> [[s/r <1 + 5 >
i=1 v j=1
Jj#i

- Z%z (3/53"F <1 + ;) (1 B 3—(;‘3+1)>>

i 4 g .
xHﬂ“P(H ) (1—2‘%) +Y X [] 80T <1+;]j> (42)
i=1 j=1

Jj=1
J#i
where
p X\ % p p X, 0\ @) X5\ i
Ao(X) =1+ Z()\n + Apt1) <26_(/*i) - 1> + 2p~1 Z)\iQ (H (1 - €_<Tj) >> <3e—<ﬁi) - 1>
i=1 =1 Jj=1
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e (x) =

1+ Z i1+ )\p+1 (26(?;)% — 1>

i=q+1

e i_él . (jlﬂ (1 B 6(2)%)) <3e(}f§f)% _ 1> ] h

P
E( 11 X§j|X“)> = 2o(X) + €y (X0 )(H 6”F<1+ >> 1+ Z 71+/\p+1]
Jj=q+1 Jj=q+1 i= q+1

- Z (i1 + A1) (ﬂp‘r (1+2> (1—2‘5’;)> H 5T7F<1+TJ>

i=q+1 Jj=q+1
J#i

- Z Aio (:WT <1+ ) <1—25¥'i- +3(33“))>
x H 5%( )(1—2 ) Z o H BT’F<1+TJ> 43)

J ;]Zrl i=q+1 Jj=q+1
JFi
where
4 X; | ¥
Cl(z(l)) — (1 —+ Z(A71 —+ >‘p+1) <2@ (Tz) — 1))
i=1 . . e —1
+2(p—q— 1)2&2 (H (1 - 67<ng') )) <36(ﬂf) - 1>] (44)
i=1 j=1

3. Parameters Estimation
Assuming parameters of the CT,W distribution are unknown. By providing a complete sample of size n, the

(M L) estimators for all parameters of C'T,,J¥ under two-sided inequality constraints on the vector of transmutation
parameters. A = (A;1, A2, fori =1,2,... p, )\p+1)’. The likelihood function is:

o= H { H ;gj X;:;_l P <_ <);’k]>%> x |1+ Z()\il + Apt1) (26();?)% — 1>
! ] .

k=1 \j=1 i=1
p Xpi ) @i p Xpg \ @i
+2771Y " <3e(ﬂ%') — 1> (H <1 _e () >> ] } (45)
i=1 j=1

Where
Q: (g é ﬁ & AP+1)/7 o= (0417012,...70419),, é: (ﬂl?ﬂQv"'vﬂp)l7
)\1 = ()\117 >\127 AR Alp)l7 AQ = (>\217 >\22; DR )‘2]7)/-

Taking log, to both sides of eq.(45), the vector @ which maximizes L(6) or log, (L(6)) under two-sided linear
inequality constraints on all transmutation parameters is the same as the vector & which minimizes [—L(0)] or

[—log, (L(9))].
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The optimum solution for 8 can be found by using constrained non-linear optimization via fmincon with the
interior-point algorithm [7, 9].

6 is the maximum likelihood (ML) estimator for 6 under the condition that the information matrix is negative
definite. For a large sample size, 0 is approximately distributed as:

)

Taking log, to both sides of eq.(45), the vector @ which maximizes L(6) or log, (L(8)) under two sided linear
inequality constraints on all transmutation parameters is the same of a vector & which minimizes [—L(8)] or
[~ log, (L(8))]. The optimum solution for 6 can be found by using the constrained non-linear optimization with
using fmincon with the interior-point-algorithm [9].

6 is the ML estimator for 8 with condition that the Fisher information matrix is a negative definite matrix. A
sample size is large, 6 is approximately distributed as:

—1
R 821 L(6)
BNNB(H’ _< 96 00’ ‘9—@) )

- 9?InL(0)
0~ N (9,( 96 00’

4. Real Application

In this section a real data set for a bone density test is taken from [8]. This test determines whether a person has
osteoporosis. The test usually uses X-rays to measure grams of calcium and other bone minerals in a slice of bone.
It is known that women were more susceptible to osteoporosis than men, so we used the measures of bone density
of older women. This data contains the measures of bone density by photon absorption in the peripheral bones
of (25) older women. The measurements were taken of three dominant bones: forearms (X;), humerus (X5), and
ulna (X3). The bone density for older women dataset were displayed in Table(3).

Table 3. Bone density measurements for 25 older women (forearms X1, humerus Xs, ulna X3).

No. | X; | Xo | X3 [No.| X1 | X2 | X3 [No.| X3 | Xo | X
1 | 1.103 [ 2.139 [ 0.873 | 10 | 0921 | 1.954 | 0.823 | 19 | 0.856 | 2.028 | 0.578
2 10842 | 1.873 [ 0590 | 11 | 0.792 | 1.624 | 0.686 | 20 | 0.890 | 2.187 | 0.758
3 10925 1.887 | 0767 | 12 | 0.815 | 2.204 | 0.678 | 21 | 0.688 | 1.650 | 0.533
4 0857|1739 | 0.706 | 13 | 0.755 | 1.508 | 0.662 | 22 | 0.940 | 2.334 | 0.757
5 10795 | 1.734 | 0549 | 14 | 0.880 | 1.786 | 0.810 | 23 | 0.493 | 1.037 | 0.546
6 | 0787 | 1.509 | 0.782 | 15 | 0.900 | 1.902 | 0.723 | 24 | 0.835 | 1.509 | 0.618
7 10933 | 1695|0737 | 16 | 0.764 | 1.743 | 0.586 | 25 | 0.915 | 1.971 | 0.869
8 | 0.799 | 1.740 | 0.618 | 17 | 0.733 | 1.863 | 0.672 | - - - -

9 0945 | 1.811 | 0.853 | 18 | 0.932 | 2.028 | 0.836 | - - - -

Some descriptive statistics were measured and given in table(4).
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Table 4. Summery important measures of bone variables

Measures X, X5 X3
Minimum  0.493 1.037 0.533
Maximum 1.103 2.334 0.873

Mean 0.8438 1.8102 0.7044
@1 0.7895 1.6725 0.604
Median 0.856 1.811  0.706
Qs 0.923  1.9995 0.796

Skewness -0.84 -0.61 -0.02
Kurtosis 3.22 1.59 -1.20

The measures in Table (4) indicate that X7, X5, X3 are negatively skewed.This means the values of the variables
accumulate near the maximum values. This is clear because the median is smaller than the mean for each variable.
It is seen that the kurtosis of X3 and X5 is greater than zero, which means the distributions of these variables are
heavy-tailed and more peaked central area, while kurtosis of X3 is negative, which means the distribution of X3
has a lighter tail and a flatter central area. The positive kurtosis indicates that the sample data for X; and X5 have
outlier observations from the left, while the sample data of X5 do not have outliers.

The estimated Spearman rho correlation coefficients.

p(Xl,XQ) = 0628, p(Xl,Xg) = 0766, p(XQ,Xg) = 0.459.
p — value = 0.0009937, 0.00001575, 0.0337

It is seen that all correlations are significant because all p < 0.05.
Fits of data has been done by our proposed C'T5W density defined in (24) and the trivariate families:

1-Trivariate transmuted Weibull (T5W) distribution where the joint p.d. f. of this family is:

- Q) aj;—1 X; Y
=gl (3))

j=1"17

1+ i(xﬂ +a9)(1-2(1- exp<— <;§>a) ))] . (46

i=1

3
—1< g, M < 1, 1< A+ <1, —1<) (i +3A\) < Lfor i=1,2,3.
=1

2- A new class of multivariate (NC3) family of distributions: The (NC3) family proposed by [4] depending on the
baseline pdf and cdf Weibull distribution defined in (23), the new class trivariate Weibull (NC3W) pdf defined as:

3 X\ Y ¢j71
(H@%H%Q—ﬂ%>> ] 47
j=1

3 , X, \ %
ﬂﬂ=Hﬁgﬁ”fW)
j=1 "3

Where

—l<é<2min(y;l), ¢ =1

The calculations of the constrained nonlinear optimization method using the fmincon algorithm with interior-point
were performed in M AT LAB software. The starting points for the C'T3W, TsW, and NC3W parameters were
randomly selected, provided that all constraints imposed on them were satisfied in each model. By calling fmincon,
which is to minimize the negative of the likelihood function for each model. The optimum solutions that satisfy
the objective function represent the ML estimators. These estimators, Akaike’s and Bayesian information criterion
(AIC), (BIC) were put in Table(5).
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Table 5. Maximum likelihood estimation and goodness of fit measures for three trivariate Weibull distributions

Distribution Parameter Estimator AIC BIC
o1 7.9150
s 8.6351
o3 7.6780
51 0.8547
B 0.8902
53 0.8714
CT3W A1 -0.1270 -162.0649 -146.2196
21 -0.9380
A31 0.9066
A4 -0.00005
A12 -1.7354
A2 -1.9336
A39 0.9228
a1 8.6143
Qo 8.6050
o3 9.3385
51 0.8906
B 0.8898
T3W B4 0.9051 -146.159 -133.970
A1 -0.8480
Aa21 -0.9918
A31 0.9910
A4 -0.0037
o 6.859
(65) 8.616
a3 8.588
51 0.844
B2 0.889
NC3W By 0.890 -151.401 -141.212
P 1.608
o 3.000
3 1.000
£ -1.000

From Table(5), it is show C'T3W is the most suitable for a bone density test data, set which has the smaller AIC
and BIC criteria. It is also observed that the estimators of transmutation parameters A;; for i = 1,2,3 and \4 in
CT3W and T5W have the same signs.

5. Contributions

In this paper, a new multivariate family of distribution was introduced. This family based on a generalization
of univariate cubic transmuted family to a multivariate family, Different statistical properties of new family have
been studied. It is concluded in theoretical analysis that the marginal distributions belong to transmutation family
of order three, the joint and marginal moments are functions of moments of the largest order statistics of random
samples of sizes two and three taken from baseline densities. In application, the C'T3W is the best fit than the T5 W
and NC3W distributions, so that CT5W is a good fit for bone density studies.
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