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Abstract This paper proposes and evaluates advanced solution techniques for nonlinear power flow analysis in monopolar
low-voltage direct-current (DC) networks. Its key contribution lies in the systematic comparison between the classical
Newton-Raphson method and a derivative-free multivariable Steffensen approach, demonstrating that the latter offers
a practical alternative with superlinear convergence, reduced computational complexity, and simpler implementation.
Numerical simulations on benchmark 33- and 69-bus systems show that both methods converge rapidly within less than
six iterations, with Steffensen’s method maintaining competitive solution times and accuracy while significantly reducing
the effort needed for Jacobian evaluations. The findings confirm that the Steffensen method is highly suitable for real-time
large-scale power system analysis, especially when derivative calculations are expensive or unreliable. Overall, the results
validate the Steffensen approach as a robust, efficient, and scalable solution method for modern DC power systems, paving
the way for improved operational reliability and the integration of renewable energy sources.
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1. Introduction

The modern landscape of energy distribution is undergoing a transformative shift driven by the increasing
integration of renewable energy sources and the rapid evolution of advanced power distribution systems. This shift
has sparked the need for the development and optimization of low-voltage direct-current (DC) networks, which
hold promise for revolutionizing energy efficiency and control [1, 2]. In particular, monopolar DC architectures
have garnered significant attention due to their intrinsic simplicity, high efficiency, and ease of control. These
attributes make monopolar DC systems particularly attractive for various applications, including microgrids, data
centers, and electric vehicle charging stations [3–5]. As these applications become increasingly pervasive, the
need for accurate and efficient power flow analysis has become paramount. Such analyses are critical for ensuring
operational security, optimizing system performance, and enabling real-time control [6–8].

Traditional power flow models, historically applied to alternating-current (AC) systems, primarily rely on
intricate nonlinear equations based on phasor representations [9, 10]. In contrast, DC power systems—especially
monopolar configurations—provide a unique opportunity to leverage a linear algebraic approach [11]. This
approach utilizes admittance matrices, with nonlinearities predominantly emerging from voltage-dependent power
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injections and the inverse relationship between voltage and current at the load nodes [12, 13]. Developing precise
and computationally viable models for these systems is crucial for comprehensive network analysis and strategic
planning [14].

The inherent nonlinearities of the monopolar DC power flow can be encapsulated by two algebraic formulations.
The first hinges on inverse voltage dependence, utilizing the fundamental relationships between power, voltage,
and current, which leads to characteristically reciprocal voltage terms [6]. The second formulation focuses on
the multiplicative interactions between voltages and admittance parameters, resulting in equations reminiscent
of quadratic forms [12]. Each formulation captures the essential physical behaviors of the network while posing
distinct computational challenges, particularly concerning the convergence and efficiency of numerical solution
methods.

Iterative algorithms, most notably the classical Newton-Raphson method, have been the cornerstone for
solving nonlinear power flow equations, appreciated for their quadratic convergence traits [14]. Nonetheless, the
computational burden involved in the computation and inversion of Jacobian matrices, especially in large-scale
systems, cannot be overstated. In addressing these computational demands, derivative-free methods such as the
multivariable Steffensen method have emerged as promising alternatives. These methods are characterized by
simpler implementations and competitive convergence rates without the need for derivative information.

This paper undertakes a comprehensive exploration of both traditional and modern iterative algorithms applied
to the power flow problem in monopolar DC networks. With a focus on computational efficiency and robustness, it
rigorously analyzes their performance through extensive numerical simulations on established benchmark systems.
Particular emphasis is placed on examining the influence of algorithm parameters (e.g., the finite difference step-
size in Steffensen’s method) on the convergence behavior. Our results unequivocally demonstrate the potential of
these approaches to deliver reliable, rapid, and scalable solutions suitable for contemporary DC power systems.

The remainder of this document is structured as follows. Section 2 delves into the power flow modeling of
monopolar DC networks, deriving the nonlinear equations and discussing their physical significance. Section 3
introduces the solution algorithms with a detailed presentation of derivative-free Steffensen methods. Section 4
addresses implementation aspects and computational considerations. Numerical validations and the results obtained
are comprehensively presented in Section 5, followed by some concluding remarks in Section 6, highlighting key
findings and potential directions for future research.

2. Power flow modeling in monopolar DC networks

In monopolar DC distribution architectures, the electrical relationships governing the network can be captured
through an admittance matrix that links nodal voltages to current injections via a linear model [12]. Y ∈ Rn×n is
defined as the nodal admittance matrix, where n is the total number of buses within the system. The fundamental
relation is expressed as follows [15]:

I = YV, (1)

where I ∈ Rn and V ∈ Rn denote the bus current injections and voltage magnitude vectors, respectively.
For a detailed analysis, the nodes are distinguished between generation (controlled voltage sources) and load

(demand) buses. Partitioning the network accordingly yields the following [16]:

[
IG

IL

]
=

[
YGG YGL

YLG YLL

] [
VG

VL

]
, (2)

where VG and VL are the voltage vectors at the generation and load nodes, respectively, with dimensions
corresponding to their node counts.

The core challenge involves finding the bias voltages at the load buses VL, such that the power flow constraints
are met, given the fixed voltages at the generation nodes VG and the active power demands PL. The currents
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associated with load and generation nodes can be related to their power injections via the following expression [6]:[
IG

IL

]
=

[
diag(VG)

−1PG

diag(VL)
−1PL

]
, (3)

assuming constant power injections and proportional relationships.
The nonlinear power flow problem boils down to solving for VL such that the network equations align with the

specified power demands. By integrating the CUrrent Equations (3) into the network admittance expressions, two
alternative algebraic formulations are obtained:

1. First formulation: DC relation with inverse voltage dependence:

F1 (VL) = YLLVL +YLGVG + diag(VL)
−1PL = 0. (4)

2. Second formulation: Power balance expressed through quadratic-like relations:

F2 (VL) = diag(VL) (YLLVL +YLGVG) +PL = 0. (5)

Both system forms, i.e., F1 (VL) and F2 (VL), represent the nonlinear power flow equations for monopolar
DC systems. Iterative numerical techniques, such as fixed-point iteration or Newton-Raphson methods, can be
employed to solve these models depending on convergence and computational efficiency requirements. This
approach provides a comprehensive framework for analyzing and solving the DC power flow problem through
algebraic reformulation, avoiding direct dependence on existing formulations.

3. Multivariable Steffensen method: general theory

Solving nonlinear systems of equations is a fundamental issue in numerical analysis, particularly when the
computation of derivatives is either analytically intractable or computationally expensive [17, 18]. Traditional
Newton-type methods rely heavily on the explicit formation and inversion of the Jacobian matrix J(x) = ∂F

∂x ,
which can be a significant drawback in high-dimensional or complex problems.

In light of the above, the multivariable Steffensen method emerges as an effective and derivative-free iterative
technique that approximates solutions to nonlinear systems by employing finite difference schemes to approximate
the Jacobian matrix at each iteration [19, 20]. This approach circumvents the explicit computation of derivatives,
offering a computationally attractive alternative that is particularly suited for problems where derivatives are
computationally prohibitive or analytically unavailable [21].

Let F : Rn → Rn be a nonlinear vector-valued function. The objective is to find a solution x⋆ ∈ Rn such that

F(x⋆) = 0.

If the Jacobian J(x) = ∂F
∂x is difficult to compute analytically, the multivariable Steffensen method offers a

derivative-free iterative approach that leverages finite differences for numerical approximation. Starting from an
initial guess, the method approximates the Jacobian matrix via finite differences [22] and iteratively updates the
solution without requiring explicit derivatives [23]. This makes it a practical and efficient alternative for solving
complex nonlinear systems, especially when analytical Jacobians are challenging to obtain.

1. Initialization. Select an initial guess:
x(0) ∈ Rn.

2. Iterative step. For k = 0, 1, 2, . . ., perform the following:

(a) Evaluate the function:
F(k) := F(x(k)).
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(b) Approximate the Jacobian: For each i = 1, 2, . . . , n, use finite differences to compute:

∆F
(k)
i :=

F(x(k) + hei)− F(x(k))

h
,

where:
• h > 0 is a small scalar step size,
• ei ∈ Rn is the i-th canonical basis vector (i.e., 1 in the i-th component and 0 elsewhere).

Assemble the approximate Jacobian as:

Jk ≈
[
∆F

(k)
1 ∆F

(k)
2 . . . ∆F(k)

n

]
∈ Rn×n.

(c) Solve the linear system:
Jk∆x(k) = −F(k),

to obtain the update step ∆x(k).
(d) Update the iterate:

x(k+1) = x(k) +∆x(k).

The multivariable Steffensen method is a derivative-free iterative technique that is particularly suitable for
functions obtained through simulations or other numerical procedures. It generally exhibits superlinear convergence
when the underlying function is sufficiently smooth, the Jacobian approximations are accurate, and the Jacobians
remain nonsingular in the vicinity of the solution [24]. This method extends the scalar Steffensen approach
to vector-valued functions and is often regarded as a quasi-Newton method that utilizes forward difference
approximations to estimate the Jacobian matrix [25].

This approach is highly versatile and can be effectively applied to various nonlinear formulations. For instance,
in the context of DC networks, it can be used to compute voltage profiles at load nodes—arising from the inverse
voltage dependence associated with constant power loads or from the multiplicative interactions between voltage
and current [11]. The flexibility of the method in handling different nonlinear models makes it attractive for a wide
range of applications in power systems analysis and beyond.

A key advantage of the multivariable Steffensen method lies in its ability to bypass explicit Jacobian
computations. Instead, it relies on finite difference approximations based on perturbations along basis vectors,
simplifying complex matrix operations such as inversion or element-wise voltage scaling. Its derivative-free nature
enhances its robustness and computational efficiency, especially in scenarios where model complexity or hardware
limitations restrict the feasibility of classical Newton-type methods. Consequently, this approach offers a practical
and reliable alternative for solving large nonlinear systems where derivative evaluations are costly or impractical.

4. Numerical validation

In order to evaluate the computational efficiency of the proposed approach, numerical tests were carried out using
MATLAB R2024b. All simulations were executed on a personal computer featuring an AMD Ryzen 7 3700
processor with a base speed of 2.3 GHz, as well as 16 GB of RAM, running a 64-bit version of Windows 10.

4.1. Test network descriptions

The corresponding performance assessments were conducted on two established test systems that are frequently
employed in research studies: the 33- and 69-bus radial distribution networks. These feeders were adapted for
DC operation, as described in [6]. They were selected because of their different sizes and structural complexities,
which provide a broad basis for evaluating the robustness and efficiency of the proposed numerical approach across
diverse system configurations [13].

Figure 1 presents the layouts of both test systems, highlighting their radial topology and layered structure. Each
network is anchored by a single slack node, which functions as a steady voltage source at 12,660 V. The other
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nodes mainly represent load points with constant power demand, and the transmission lines are modeled as purely
resistive elements [26].
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Figure 1. Topology diagrams of the 33- and 69-bus DC distribution feeders [6].

The system parameters, including the resistance of the distribution line and the constant power loads at each
bus, were taken from the data provided in [6]. These parameters are detailed in Tables 1 and 2. The use of
these standardized datasets ensured consistency with prior research and enabled straightforward validation through
a comparison with existing results. Both test networks simulated realistic operating conditions, allowing for a
comprehensive evaluation of convergence properties, computational efficiency, and voltage profile accuracy when
applying the Steffensen method to solve the nonlinear DC power flow equations.

Table 1. System data for the 33-bus grid

Node k Node m Rkm (Ω) Pm (kW) Node k Node m Rkm (Ω) Pm (kW)
1 2 0.0922 100 17 18 0.7320 90
2 3 0.4930 90 2 19 0.1640 90
3 4 0.3660 120 19 20 1.5042 90
4 5 0.3811 60 20 21 0.4095 90
5 6 0.8190 60 21 22 0.7089 90
6 7 0.1872 200 3 23 0.4512 90
7 8 1.7114 200 23 24 0.8980 420
8 9 1.0300 60 24 25 0.8960 420
9 10 1.0400 60 6 26 0.2030 60
10 11 0.1966 45 26 27 0.2842 60
11 12 0.3744 60 27 28 1.0590 60
12 13 1.4680 60 28 29 0.8042 120
13 14 0.5416 120 29 30 0.5075 200
14 15 0.5910 60 30 31 0.9744 150
15 16 0.7463 60 31 32 0.3105 210
16 17 1.2890 60 32 33 0.3410 60

4.2. Effect of the h-factor

The numerical performance of the Steffensen method in solving the power flow problem for monopolar DC
networks is significantly influenced by h-factor selection. This parameter affects convergence and directly impacts
the number of iterations required to reach a solution.
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Table 2. System data for the 69-bus grid

Node k Node m Rkm (Ω) Pm (kW) Node k Node m Rkm (Ω) Pm (kW)
1 2 0.0005 0 3 36 0.0044 26
2 3 0.0005 0 36 37 0.0640 26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0215 0 38 39 0.0304 24
5 6 0.3660 2.6 39 40 0.0018 24
6 7 0.3810 40.4 40 41 0.7283 102
7 8 0.0922 75 41 42 0.3100 0
8 9 0.0493 30 42 43 0.0410 6
9 10 0.8190 28 43 44 0.0092 0
10 11 0.1872 145 44 45 0.1089 39.2
11 12 0.7114 145 45 46 0.0009 39.2
12 13 1.0300 8 4 47 0.0034 0
13 14 1.0440 8 47 48 0.0851 79
14 15 1.0580 0 48 49 0.2898 384
15 16 0.1966 45 49 50 0.0822 384
16 17 0.3744 60 8 51 0.0928 40.5
17 18 0.0047 60 51 52 0.3319 3.6
18 19 0.3276 0 9 53 0.1740 4.35
19 20 0.2106 1 53 54 0.2030 26.4
20 21 0.3416 114 54 55 0.2842 24
21 22 0.0140 5 55 56 0.2813 0
22 23 0.1591 0 56 57 1.5900 0
23 24 0.3463 28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 100
25 26 0.3089 14 59 60 0.3861 0
26 27 0.1732 14 60 61 0.5075 1244
3 28 0.0044 26 61 62 0.0974 32
28 29 0.0640 26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 227
30 31 0.0702 0 64 65 1.0410 59
31 32 0.3510 0 65 66 0.2012 18
32 33 0.8390 10 66 67 0.0047 18
33 34 1.7080 14 67 68 0.7394 28
34 35 1.4740 4 68 69 0.0047 28

Figures 2a and 2b illustrate the relationship between the h-factor and the number of iterations needed for
convergence in the 33- and 69-bus DC grid models. The plots display a semi-logarithmic scale, highlighting how
different h values can drastically alter convergence performance.

In general, smaller h-factors tend to facilitate faster convergence, reducing the iteration count. For example, in
the 33-bus system, an h-factor of 0.01 achieves convergence within approximately four iterations, whereas larger
h values, such as 0.1, require more iterations (around five) or may fail to converge efficiently. Similarly, for the
69-bus system, very small h-values (e.g., 10−6) result in rapid convergence (around five iterations), while larger
values may cause slower convergence.

The aforementioned figures further demonstrate that choosing an overly large h-factor can hinder convergence, as
reflected by the higher iteration counts or the observed instability beyond certain thresholds. In this vein, selecting
an appropriate h-value is crucial, and it should be tailored to the specific problem to optimize convergence speed
and numerical stability.

5. Analysis of computational performance

This section provides a comprehensive evaluation of the computational efficiency of various iterative algorithms
applied to the monopolar power flow problem in DC systems. The algorithms assessed include the classical
Newton-Raphson method, applied to two different nonlinear formulations, and Steffensen’s method, which was
similarly implemented. To ensure fairness and consistency, dedicated MATLAB routines were developed for each
algorithm. Each simulation was executed 1000 times, and the mean execution time was recorded in order to obtain
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Figure 2. Number of iterations for solving the power flow problems in monopolar DC networks: (a) the 33-bus grid, and (b)
the 69-bus grid

statistically robust results. All methods employed a standardized stopping criterion: a maximum of 100 iterations
or a convergence threshold of ε = 1× 10−10. Such standardization guaranteed the meaningful comparability of
convergence behavior and computational performance.

The primary performance metrics summarized in Table 3 include the number of iterations for convergence, the
average processing time (in ms), the minimum nodal voltage (in p.u.), and the system’s total power losses (in
kW). These results are presented for both the 33- and 69-bus grids. The data demonstrate that both approaches
achieve rapid convergence, typically within fewer than six iterations, highlighting their suitability for fast
power flow solutions. Although the Newton-Raphson method slightly surpasses Steffensen’s method in terms of
raw speed—which can be attributed to its straightforward Jacobian calculations—Steffensen’s method exhibits
comparable iteration counts along with marginally higher computational times, given its matrix operations and
iterative correction steps.

Table 3. Numerical assessment of the monopolar power flow problem in DC systems using Newton- and Steffensen-based
algorithms

33-bus grid
Method Iterations Avg. processing time (ms) Min. voltage (p.u.) Power losses (kW)

Newton-Raphson (4) 4 0.1466
Newton-Raphson (5) 5 0.2482

Steffensen (4) 4 0.2499 0.9339 135.26
Steffensen (5) 5 0.2796

The 69-bus Grid
Newton-Raphson (4) 4 0.2823
Newton-Raphson (5) 5 0.7173

Steffensen (4) 4 0.8121 0.9274 153.85
Steffensen (5) 5 0.9257

The numerical results presented in Table 3 provide valuable insights into the performance of the evaluated
algorithms, revealing several key aspects:
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i. Convergence speed. Both the Newton-Raphson and Steffensen methods exhibit rapid convergence, typically
reaching the prescribed tolerance in fewer than six iterations across all test cases. This confirms their high
efficiency and suitability for real-time power flow applications, where fast and reliable solutions are critical.
The minimal iteration counts observed also suggest that both methods are robust against different initial
conditions, maintaining high convergence rates even in complex network scenarios.

ii. Computational efficiency. An analysis of average processing times indicated that the Newton-Raphson
approach slightly outperforms Steffensen’s method in the examined test systems, primarily due to its
direct Jacobian computation and linear algebraic structure, which benefits from well-optimized numerical
libraries. Despite this, Steffensen’s method achieved similar iteration counts but incurred a marginally higher
computational overhead due to its iterative matrix operations and the finite difference approximations used
to estimate the Jacobian-like matrices. These results demonstrate that, while Newton-Raphson is marginally
faster in terms of raw processing speed, Steffensen’s method remains a competitive alternative, especially
considering its derivative-free nature and potential for simpler implementation.

iii. Voltage and power losses. The minimum nodal voltages obtained are well within the operational safety
margins, ensuring system stability and reliability. The slight variations observed (i.e., often in the form
of marginally lower voltages) do not threaten system security and are indicative of convergence towards
physically meaningful solutions. The total power losses confirm the algorithms’ ability to accurately evaluate
real power dissipation within the network, validating the physical plausibility of the solutions achieved within
the specified tolerance levels.

iv. Scalability. Performance data for the 33- and 69-bus systems demonstrate that both methods scale effectively
to larger network sizes. They maintain low iteration counts and reasonable processing times, which
underscores their robustness and flexibility for application to more extensive and complex power systems.
This scalability is crucial for practical deployment in large-scale power grids, where computational efficiency
directly impacts operational feasibility.

This performance comparison confirms that both the Newton-Raphson and Steffensen-based algorithms are
highly effective for solving the monopolar power flow problem in DC systems. Although the Newton-Raphson
method offers slightly faster processing times due to its direct Jacobian evaluations, Steffensen’s method provides
a competitive alternative with similar convergence characteristics and a lower per-iteration computational cost,
thanks to its derivative-free approach with superlinear convergence. Both methods demonstrate excellent scalability
to larger network configurations, consistently maintaining low iteration counts and reasonable computational times.
As a result, these techniques constitute reliable and efficient options for real-time and large-scale power system
analysis, with the optimal choice depending on specific application requirements and implementation convenience.

6. Conclusions and future work

This study demonstrates the compelling advantages of employing the multivariable Steffensen method for
solving nonlinear power flow problems in monopolar DC networks. Its derivative-free nature eliminates the
need for explicit Jacobian calculations, significantly simplifies implementation, and reduces the computational
burden, especially in large-scale or complex systems. Despite this simplification, the method consistently exhibits
superlinear convergence, achieving accurate solutions within a few iterations. Its robustness and flexibility across
various nonlinear formulations highlight its potential as a practical and attractive alternative to traditional methods
such as the Newton-Raphson approach, particularly in scenarios where derivative evaluations are challenging,
noisy, or computationally expensive.

Looking ahead, several research directions could further enhance the effectiveness and broad applicability
of the Steffensen method. Incorporating adaptive step-size strategies for finite difference approximations could
improve convergence speed and numerical stability, particularly in ill-conditioned or highly nonlinear problems.
Developing hybrid algorithms that combine the strengths of Steffensen’s approach with other iterative techniques
could optimize performance across diverse problem regimes, offering a more versatile toolkit for power system
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analysis. Additionally, exploring the parallelization of finite difference evaluations—leveraging modern high-
performance computing architectures—is crucial for scaling the method to real-time, large-scale applications.
These advancements aim to position the Steffensen method as a reliable, efficient, and flexible tool for future power
systems analysis and control, especially as the integration of renewable energy sources and distributed generation
continues to grow.
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6. Oscar Danilo Montoya, Walter Gil-González, and Alejandro Garces. Numerical methods for power flow analysis in DC networks:
State of the art, methods and challenges. International Journal of Electrical Power & Energy Systems, 123:106299, December 2020.

7. Jinxin Zhao and Florian Dörfler. Distributed control and optimization in DC microgrids. Automatica, 61:18–26, November 2015.
8. Babak Abdolmaleki and Gilbert Bergna-Diaz. Distributed Control and Optimization of DC Microgrids: A Port-Hamiltonian

Approach. IEEE Access, 10:64222–64233, 2022.
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18. José Mario Martı́nez. Practical quasi-Newton methods for solving nonlinear systems. Journal of Computational and Applied
Mathematics, 124(1–2):97–121, December 2000.
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