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Abstract This paper proposes a semi-analytical method for solving the Black-Scholes equation using the framework of
Reproducing Kernel Hilbert Spaces (RKHS). By embedding the solution space into an RKHS defined by a positive definite
kernel, the problem is reformulated as a regularized interpolation task based on observed data. The approach leverages
the representer theorem to derive a finite-dimensional approximation of the solution, resulting in a linear system for the
kernel coefficients. Both synthetic trajectories and real financial data (e.g., AAPL stock prices) are analyzed to evaluate
the performance of the method. The RKHS-based model captures the intrinsic structure of the stochastic dynamics while
providing numerical stability and flexibility in parameter estimation. Comparative results demonstrate that the proposed
technique achieves high accuracy with fewer data points and offers an interpretable alternative to traditional finite difference
schemes. The methodology is particularly well suited for data-driven financial modeling under uncertainty.
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1. Introduction

The Black-Scholes model remains one of the most influential frameworks in quantitative finance, modeling the
evolution of asset prices as a stochastic process. In its classical formulation, the price S; of a financial asset is
assumed to follow the stochastic differential equation (SDE)

dSt = /,l,St dt+0'5t th, (1)

where p is the drift, o is the volatility, and W; is a standard Brownian motion [2]. This model captures the
continuous-time evolution of asset prices under uncertainty and forms the foundation for a wide class of pricing
and hedging strategies.

In this work, we adopt a semi-analytical perspective by decomposing the solution of the Black-Scholes SDE
into two components: a deterministic part driven by the drift term, and a stochastic part governed by volatility and
Brownian motion. The exact solution to (3) can be written as

1
Sy = Spexp (ut) - exp <0Wt - 202t> , 2)

which naturally separates the exponential growth from stochastic fluctuations. This decomposition motivates a
novel approach: we embed both components into a Reproducing Kernel Hilbert Space (RKHS) to reconstruct the
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underlying dynamics from observed trajectories. In particular, the deterministic component is approximated via
regularized kernel regression, while the stochastic part is modeled using an autoregressive representation in RKHS
[4, 3].

The RKHS framework provides a non-parametric, data-driven method for functional reconstruction, where
solutions are represented as finite linear combinations of kernel evaluations at observed time points [1, 5]. This
enables efficient numerical implementation and robust interpolation, especially in the presence of sparse or noisy
financial data.

The main contributions of this paper are as follows:

* We propose a decomposition of the Black-Scholes solution into deterministic and stochastic components,
embedding each into a suitable RKHS.

* We develop a hybrid numerical method that combines regularized kernel regression with autoregressive modeling
for stochastic processes.

* We validate the method on both synthetic and real asset trajectories (e.g., AAPL), demonstrating accurate
recovery with low computational cost.

2. Introduction

The Black—Scholes model remains one of the most influential frameworks in quantitative finance, modeling the
evolution of asset prices as a stochastic process. In its classical formulation, the price .S; of a financial asset is
assumed to follow the stochastic differential equation (SDE)

dSt = ,LLSt dt + O'St th, (3)

where p is the drift, o is the volatility, and W, is a standard Brownian motion [2, 6]. This model captures the
continuous-time evolution of asset prices under uncertainty and forms the foundation for a wide class of pricing
and hedging strategies [9].

In this work, we adopt a semi-analytical perspective by decomposing the solution of the Black—Scholes SDE
into two components: a deterministic part driven by the drift term, and a stochastic part governed by volatility and
Brownian motion. The exact solution to (3) can be written as

1
Sy = Spexp (ut) - exp <0‘Wt - 202t> , )

which naturally separates the exponential growth from stochastic fluctuations [7]. This decomposition motivates a
novel approach: we embed both components into a Reproducing Kernel Hilbert Space (RKHS) to reconstruct the
underlying dynamics from observed trajectories. In particular, the deterministic component is approximated via
regularized kernel regression, while the stochastic part is modeled using an autoregressive representation in RKHS
[4,3, 11].

The RKHS framework provides a non-parametric, data-driven method for functional reconstruction, where
solutions are represented as finite linear combinations of kernel evaluations at observed time points [1, 5, 10].
This enables efficient numerical implementation and robust interpolation, especially in the presence of sparse or
noisy financial data.

The main contributions of this paper are as follows:

* We propose a decomposition of the Black—Scholes solution into deterministic and stochastic components,
embedding each into a suitable RKHS.

* We develop a hybrid numerical method that combines regularized kernel regression with autoregressive modeling
for stochastic processes.
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* We validate the method on both synthetic and real asset trajectories (e.g., AAPL), demonstrating accurate
recovery with low computational cost.

3. Content

In this section, we start from the classical Black—Scholes stochastic differential equation (SDE) and derive its
integrated form. We demonstrate how the solution naturally splits into a deterministic component and a stochastic
component [12]. We then show how the stochastic term can be modeled as a martingale, and how this martingale
component admits an autoregressive representation in a Reproducing Kernel Hilbert Space (RKHS). We develop
the corresponding autoregressive equations, show how to solve the associated preimage problem, and finally
describe the estimation of the deterministic component using the representer theorem [11, 10]. This leads to a
fully kernel-based approximation of the Black—Scholes solution.

3.1. Integrated Black—Scholes Model and Decomposition

The classical Black—Scholes model assumes that the asset price S; satisfies the stochastic differential equation
(SDE):
dSt = /,l,St dt + O'St th, (5)

where p denotes the drift coefficient, o > 0 is the volatility, and W, is a standard Brownian motion [6].
Integrating both sides of this SDE from O to ¢, we obtain:

i t
St - SO = ,LL/ Ss ds + U/ Ss dW@ (6)
0 0

Here, the term fot S dWs is an Itd integral and, under standard assumptions on S, defines a martingale. This
martingale term captures the stochastic dynamics of the model and is the primary focus of our RKHS-based
representation [8].

Rather than relying on the analytical solution of the SDE for modeling purposes, we treat the stochastic integral
directly. Since fot Ss dWy is a martingale, we discretize it over time and interpret it as a realization of a stochastic
process. For modeling purposes, we define the sequence:

t
- / S, dW,, 7
0

which represents the stochastic component of the Black—Scholes model. The process {I';}:cz can be regarded as
an autoregressive (AR) process when viewed in discrete time.

Embedding this AR process into a Reproducing Kernel Hilbert Space (RKHS) H allows us to define a feature
map ¢ : X — H such that the embedded dynamics satisfy a linear structure in 7. This yields the autoregressive
representation:

P
@(Xt) = Zajcl)(Xt_j) + &¢, (8)

j=1
where the coefficients «; € R characterize the embedded AR dynamics, and €, € H is a residual term.
Financial Interpretation. While the representation in RKHS is abstract, it carries important financial meaning:

* Martingale Property: The original stochastic integral I'; is a martingale. The RKHS embedding preserves this
property in expectation, meaning that the model does not introduce artificial drift and respects the no-arbitrage
condition inherent to financial markets.
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* Volatility Clustering: The AR structure in RKHS allows the model to capture temporal correlations and clustering
of large movements in the stochastic component. Through the kernel, past observations influence the current
value in a nonlinear yet structured way.

* Hyperparameter Interpretation: The kernel hyperparameter o, acts as a temporal correlation scale: larger values
correspond to smoother, long-range dependence, while smaller values emphasize short-term fluctuations. This
provides a direct connection between model parameters and the characteristic timescale of volatility in the asset.

Estimation of AR Coefficients. The coefficients «; are obtained by minimizing the mean squared error functional:

2

P
J(@) =E [||2(X)) = > a;®(X; ;) ©)
Jj=1 H
Expanding the squared norm and applying the reproducing property (®(z), ®(y)) = k(z, y) leads to:
p
T(@) = E[R(X;, X)) = 2 ayE[R(Xs, Xi-y)]
j=1
P
+ > oy BlR(Xei, Xi ).
i,j=1
Setting the derivative with respect to o, to zero gives the linear system:
p
> GEEX o, Xej)] = Ek(Xe, X )], m=1,...,p. (10)
j=1
Defining the RKHS covariance matrix:
Ek(Xi—1,Xe—1)] ... Ek(Xiz1, Xi—p)]
K = : : , (11)
Ek(Xi—p X)) - ER(Xep X))l
the coefficient vector:
aq
a=|:]| | (12)
Pl px1
and the cross-covariance vector:
E[k(X:, Xi—1)]
k= : , (13)
E[k(X,, X)) .,
the system can be compactly written as
Ko =k;. (14)
If K is invertible, the solution is
a=K k. (15)
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3.1.1. Financial Interpretation

» The matrix K encodes the temporal dependencies of the stochastic component in the RKHS via the chosen kernel
k(- -).

* The vector k; captures the influence of past observations on the current state.

* Solving for a determines how each lagged observation contributes to the embedded stochastic evolution,
preserving temporal correlation and martingale properties.

* The kernel hyperparameter o can be interpreted as a temporal correlation scale: smaller oy, captures short-term
fluctuations, while larger o) emphasizes longer-term trends.

This framework provides a flexible, nonparametric, and interpretable way to model stochastic dynamics directly
in an RKHS while maintaining a clear connection to financial properties such as volatility clustering and martingale
behavio

In summary, the RKHS-AR approach provides a flexible, nonparametric framework to model the stochastic
component of asset prices. Its strength lies in the combination of (i) preserving martingale properties, (ii) capturing
temporal dependencies, and (iii) offering interpretable hyperparameters that relate directly to the timescale of
fluctuations in financial markets.

3.2. Preimage Problem: Fixed Point Equation

Given the estimate: .
Y=Y ;X ),
j=1
we aim to recover a point x; € X such that:
v; = argmin || () — vy, (16)
Expanding the squared norm, we have:
Je(@) = [|@(2)* — 2((x), ve) + ]|

P
=k(z,z) — 2 Z ajk(z, X )+ C,
j=1

where C' = ||9);|? is constant with respect to  and can be omitted in the minimization.

For the Gaussian kernel,
r —a'|?
k N — fni
(z,z") = exp < 572 ,

the gradient with respect to x is:
1
V. Ji(z) = fgzgajk(xt_j,z)(xt_j — ). 17
J:

Setting the gradient to zero yields the fixed-point equation:

o = >y gk (Xej, 2f) Xej (18)
' Z?:l o k(Xi—j, x7)

Equation (18) can be solved via a simple iterative scheme:
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1. Initialize xio), for example, as the weighted mean of the previous observations X;_;.

2. Forn=0,1,2,...:
L) _ Py aik(Xe—j,a") X

t - n
?:1 ok (Xi—j, x,g ))

3. Stop when the relative change is below a predefined tolerance e:

n+1 n
R |

5|

This iteration is guaranteed to converge under mild conditions, in particular if the mapping is a contraction in the
neighborhood of the solution. Empirically, convergence is typically observed within a few iterations for properly
scaled Gaussian kernels.

3.3. Deterministic Component via the Representer Theorem

Let {¢;,S(t;)}?_, be observed values. The regularized regression problem is:
min Y " (f(t:) — S(t:))* + Al I3, - (19)
By the Representer Theorem, the solution has the form:
f(t) = Zn:oéik(tti),
i=1

where a € R" is determined by solving:

(K+MN)a=y, (20)
with K;; = k(ti, tj) andy = [S(tl), R S(tn)]T.
3.4. Final Expression for the Black-Scholes Solution

We reconstruct the solution as:

n p
;=Y aik(tt)+ Y B (S, @h
i=1 Jj=1
Deterministic Stochastic

where the data-dependent weights [, (t) are:
a;k(Xi—j, )
Doy Qik( Xy, xf)

Bi(t) = (22)

Hyperparameter Selection The performance of the RKHS-AR model depends on the choice of the autoregressive

order p and the regularization parameter \. These can be selected using:

* Cross-validation: Split the data into training and validation sets, and choose (p, A) minimizing the validation
error.

¢ Marginal likelihood maximization: When the model is interpreted in a probabilistic framework, select (p, A)
that maximizes the marginal likelihood of the observed data.

* Heuristic rules: For example, choose p to cover characteristic periods of the stochastic process, and set A
inversely proportional to the variance of the residuals.
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Pseudocode Summary

Input: observations {X_t}, AR coefficients {alpha_j}, kernel k, tolerance epsilon
Output: preimage x*_t

1: Initialize x_t~(0) (e.g., weighted mean of {X_{t-3}})

2: repeat

3: numerator = sum_7Jj alpha_j *» k(X_{t-3J}, x_t " (n)) = X_{t-7j}
4: denominator = sum_7j alpha_j * k(X_{t-J}, x_t"(n))

5 x_t" (n+l) = numerator / denominator

6: until ||x_t " (n+l) - x_t™(n)|| / ||x_t"(n)|| < epsilon

7: return xx_t = x_t” (n+l)

4. Synthetic Data

¢ Generating model. We simulate the Geometric Brownian Motion (GBM) dS; = uS; dt + ¢Sy dW; with
closed—form solution Sy = Sg exp((p — 302)t + cW,).

* Base parameters.

Parameter Symbol  Value
Growth rate I 0.10
Volatility o 0.20
Time horizon T 1.0
Simulation step At 1072
Total steps n 100

* Reproducibility. Each run is initialized with a different random seed; the same increment vector AW, is used
for both the exact GBM path and the Euler—Maruyama scheme to isolate discretization error.

* Anchor points for RKHS. We fix p = 5 equally spaced pairs (¢;, 5%, ); in Sec. 4.1 we also study p = 10 and
p=20.

4.1. RKHS vs. Exact Solution

Figure 1 shows an exact GBM trajectory (generated with the same seed in all columns) and the RKHS-fitted curve
using three different kernels. Visually, the Gaussian kernel reproduces better the short—term oscillations of the
process, whereas the Polynomial kernel introduces a slight oversmoothing due to its global nature.
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Figure 1. Comparison between the exact trajectory (dashed black line) and RKHS fits using Gaussian, Laplacian, and

Polynomial kernels.

Table 1. Mean error of RKHS approximation w.r.t. the exact solution (100 trajectories, mean =+ std. deviation).

Kernel RMSE MAE MAPE (%)
Gaussian (o, = 0.1)  9.2x1072 +£1.1x1073 6.8x1073 0.94
Laplacian (o, = 0.3) 1.3x1072 9.9%x1073 1.38
Polynomial (d = 2) 1.7x1072 1.3x1072 1.86

Numerical results in Table 1 confirm that the Gaussian kernel achieves the lowest RMSE (= 9 x 10~3), followed

by the Laplacian and the Polynomial.

4.2. RKHS vs. Euler-Maruyama

In this comparison, the RKHS curve (Gaussian kernel, o, = 0.1) is contrasted with the Euler—Maruyama (EM)
scheme using Atgy = 2A¢ = 0.02. Both methods use the same Wiener increments, so the error is due only to

discretization or approximation capacity.
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Figure 2. Exact GBM path (black dashed) and Euler—Maruyama (blue) with Atgy; = 0.02.
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Figure 3. Exact GBM path (black dashed) and RKHS approximation (red) with Gaussian kernel, o, = 0.1.

Table 2. Average RMSE (100 trajectories) vs. exact solution.

Method RMSE MAE
Euler-Maruyama (Atgy = 0.02)  1.15x1072  8.7x1073
RKHS (Gaussian, o, = 0.1) 9.2x1073% 6.8x10°3

RKHS slightly outperforms Euler-Maruyama in all metrics (Table 2). The advantage grows when the number of
anchor points is reduced (p = 5) or when EM step size is increased.

5. Real Data Application (AAPL)

5.1. Dataset

* Asset: APPLE INC. (AAPL), adjusted closing price.
* Time window: May 1, 2024 — May 1, 2025 (n = 252 observations).
* Source: downloaded via yfinance; fallback to Stooq if API rate-limit is exceeded.

¢ Preprocessing: (i) linear fill for missing holidays, (ii) normalization to Sy = 1.

5.2. RKHS Fitting Configuration
* Anchor points: first p = 30 pairs (¢;, St, ).

* Kernel: Gaussian with o, = 20 selected via in—sample RMSE minimization.

* Regularization: \ = 1076,

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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5.3. Quantitative Results

Table 3. Errors of RKHS fit vs. real AAPL prices.

Method RMSE MAE MAPE (%)
RKHS (Gaussian, oy, = 20) 1.98x1072 1.53x10°2 0.74
Euler-Maruyama (Atgy = 1 day)  2.59x1072  2.04x 1072 0.99

5.4. Graphical Results

Exacta vs RKHS vs Euler—-Maruyama

= Soluci6n exacta —=—- Euler-Maruyama }
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180

2024-07 2024-09 2024-11 2025-01 2025-03 2025-05
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Figure 4. Real AAPL price (black), RKHS fit (red), and Euler-Maruyama simulation (blue).

Figure 4 shows that the RKHS model captures both the uptrend and subsequent correction, maintaining smaller
deviations from the real price compared to Euler—-Maruyama.

5.5. Discussion
 With only p = 30 observations (~12% of the data), the RKHS model achieves an RMSE of ~ 2 x 1072,

e The gain over Euler—Maruyama is about 23% in RMSE, reflecting the kernel’s ability to encode global
correlations from limited data.

* The chosen o = 20 corresponds to a temporal scale similar to the average fluctuation width of the asset,
reinforcing its interpretation as a temporal correlation filter.

6. Conclusions

This work presented a semi—analytical method for approximating the solution of the Black—Scholes equation by
embedding both its deterministic and stochastic components into a Reproducing Kernel Hilbert Space (RKHS).
The approach reformulates the problem as a regularized interpolation task, leveraging the representer theorem for
the deterministic term and an autoregressive structure in RKHS for the stochastic term.

The main findings can be summarized as follows:
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* On synthetic GBM trajectories, the RKHS method achieved lower errors than the Euler-Maruyama scheme, even
when using a small number of anchor points. This demonstrates its ability to capture global path structure with
limited data.

* On real financial data (AAPL), the RKHS model maintained an RMSE of approximately 2 x 10~2 using only
12% of the available observations, outperforming Euler—Maruyama by about 23% in RMSE.

* The optimal Gaussian kernel width o, was consistent with the characteristic time scale of the underlying process
in both synthetic and real scenarios, reinforcing the interpretability of kernel parameters.

* The method offers numerical stability and flexibility in parameter selection, avoiding exhaustive cross—validation
by employing an analytical criterion based on marginal likelihood.
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