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Abstract This paper proposes a semi-analytical method for solving the Black-Scholes equation using the framework of
Reproducing Kernel Hilbert Spaces (RKHS). By embedding the solution space into an RKHS defined by a positive definite
kernel, the problem is reformulated as a regularized interpolation task based on observed data. The approach leverages
the representer theorem to derive a finite-dimensional approximation of the solution, resulting in a linear system for the
kernel coefficients. Both synthetic trajectories and real financial data (e.g., AAPL stock prices) are analyzed to evaluate
the performance of the method. The RKHS-based model captures the intrinsic structure of the stochastic dynamics while
providing numerical stability and flexibility in parameter estimation. Comparative results demonstrate that the proposed
technique achieves high accuracy with fewer data points and offers an interpretable alternative to traditional finite difference
schemes. The methodology is particularly well suited for data-driven financial modeling under uncertainty.
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1. Introduction

The Black-Scholes model remains one of the most influential frameworks in quantitative finance, modeling the
evolution of asset prices as a stochastic process. In its classical formulation, the price St of a financial asset is
assumed to follow the stochastic differential equation (SDE)

dSt = µSt dt+ σSt dWt, (1)

where µ is the drift, σ is the volatility, and Wt is a standard Brownian motion [2]. This model captures the
continuous-time evolution of asset prices under uncertainty and forms the foundation for a wide class of pricing
and hedging strategies.

In this work, we adopt a semi-analytical perspective by decomposing the solution of the Black-Scholes SDE
into two components: a deterministic part driven by the drift term, and a stochastic part governed by volatility and
Brownian motion. The exact solution to (3) can be written as

St = S0 exp (µt) · exp
(
σWt −

1

2
σ2t

)
, (2)

which naturally separates the exponential growth from stochastic fluctuations. This decomposition motivates a
novel approach: we embed both components into a Reproducing Kernel Hilbert Space (RKHS) to reconstruct the
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underlying dynamics from observed trajectories. In particular, the deterministic component is approximated via
regularized kernel regression, while the stochastic part is modeled using an autoregressive representation in RKHS
[4, 3].

The RKHS framework provides a non-parametric, data-driven method for functional reconstruction, where
solutions are represented as finite linear combinations of kernel evaluations at observed time points [1, 5]. This
enables efficient numerical implementation and robust interpolation, especially in the presence of sparse or noisy
financial data.

The main contributions of this paper are as follows:

• We propose a decomposition of the Black-Scholes solution into deterministic and stochastic components,
embedding each into a suitable RKHS.

• We develop a hybrid numerical method that combines regularized kernel regression with autoregressive modeling
for stochastic processes.

• We validate the method on both synthetic and real asset trajectories (e.g., AAPL), demonstrating accurate
recovery with low computational cost.

2. Introduction

The Black–Scholes model remains one of the most influential frameworks in quantitative finance, modeling the
evolution of asset prices as a stochastic process. In its classical formulation, the price St of a financial asset is
assumed to follow the stochastic differential equation (SDE)

dSt = µSt dt+ σSt dWt, (3)

where µ is the drift, σ is the volatility, and Wt is a standard Brownian motion [2, 6]. This model captures the
continuous-time evolution of asset prices under uncertainty and forms the foundation for a wide class of pricing
and hedging strategies [9].

In this work, we adopt a semi-analytical perspective by decomposing the solution of the Black–Scholes SDE
into two components: a deterministic part driven by the drift term, and a stochastic part governed by volatility and
Brownian motion. The exact solution to (3) can be written as

St = S0 exp (µt) · exp
(
σWt −

1

2
σ2t

)
, (4)

which naturally separates the exponential growth from stochastic fluctuations [7]. This decomposition motivates a
novel approach: we embed both components into a Reproducing Kernel Hilbert Space (RKHS) to reconstruct the
underlying dynamics from observed trajectories. In particular, the deterministic component is approximated via
regularized kernel regression, while the stochastic part is modeled using an autoregressive representation in RKHS
[4, 3, 11].

The RKHS framework provides a non-parametric, data-driven method for functional reconstruction, where
solutions are represented as finite linear combinations of kernel evaluations at observed time points [1, 5, 10].
This enables efficient numerical implementation and robust interpolation, especially in the presence of sparse or
noisy financial data.

The main contributions of this paper are as follows:

• We propose a decomposition of the Black–Scholes solution into deterministic and stochastic components,
embedding each into a suitable RKHS.

• We develop a hybrid numerical method that combines regularized kernel regression with autoregressive modeling
for stochastic processes.
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2 RKHS-BASED SOLUTION OF BLACKSCHOLES

• We validate the method on both synthetic and real asset trajectories (e.g., AAPL), demonstrating accurate
recovery with low computational cost.

3. Content

In this section, we start from the classical Black–Scholes stochastic differential equation (SDE) and derive its
integrated form. We demonstrate how the solution naturally splits into a deterministic component and a stochastic
component [12]. We then show how the stochastic term can be modeled as a martingale, and how this martingale
component admits an autoregressive representation in a Reproducing Kernel Hilbert Space (RKHS). We develop
the corresponding autoregressive equations, show how to solve the associated preimage problem, and finally
describe the estimation of the deterministic component using the representer theorem [11, 10]. This leads to a
fully kernel-based approximation of the Black–Scholes solution.

3.1. Integrated Black–Scholes Model and Decomposition

The classical Black–Scholes model assumes that the asset price St satisfies the stochastic differential equation
(SDE):

dSt = µSt dt+ σSt dWt, (5)

where µ denotes the drift coefficient, σ > 0 is the volatility, and Wt is a standard Brownian motion [6].
Integrating both sides of this SDE from 0 to t, we obtain:

St − S0 = µ

∫ t

0

Ss ds+ σ

∫ t

0

Ss dWs. (6)

Here, the term
∫ t

0
Ss dWs is an Itô integral and, under standard assumptions on St, defines a martingale. This

martingale term captures the stochastic dynamics of the model and is the primary focus of our RKHS-based
representation [8].

Rather than relying on the analytical solution of the SDE for modeling purposes, we treat the stochastic integral
directly. Since

∫ t

0
Ss dWs is a martingale, we discretize it over time and interpret it as a realization of a stochastic

process. For modeling purposes, we define the sequence:

Γt :=

∫ t

0

Ss dWs, (7)

which represents the stochastic component of the Black–Scholes model. The process {Γt}t∈Z can be regarded as
an autoregressive (AR) process when viewed in discrete time.

Embedding this AR process into a Reproducing Kernel Hilbert Space (RKHS) H allows us to define a feature
map Φ : X → H such that the embedded dynamics satisfy a linear structure in H. This yields the autoregressive
representation:

Φ(Xt) =

p∑
j=1

αjΦ(Xt−j) + εt, (8)

where the coefficients αj ∈ R characterize the embedded AR dynamics, and εt ∈ H is a residual term.

Financial Interpretation. While the representation in RKHS is abstract, it carries important financial meaning:

• Martingale Property: The original stochastic integral Γt is a martingale. The RKHS embedding preserves this
property in expectation, meaning that the model does not introduce artificial drift and respects the no-arbitrage
condition inherent to financial markets.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



E. M. CARDONA, E. A. VALENCIA AND C. A. RAMÍREZ-VANEGAS 3

• Volatility Clustering: The AR structure in RKHS allows the model to capture temporal correlations and clustering
of large movements in the stochastic component. Through the kernel, past observations influence the current
value in a nonlinear yet structured way.

• Hyperparameter Interpretation: The kernel hyperparameter σk acts as a temporal correlation scale: larger values
correspond to smoother, long-range dependence, while smaller values emphasize short-term fluctuations. This
provides a direct connection between model parameters and the characteristic timescale of volatility in the asset.

Estimation of AR Coefficients. The coefficients αj are obtained by minimizing the mean squared error functional:

J(α) = E

∥∥∥∥∥Φ(Xt)−
p∑

j=1

αjΦ(Xt−j)

∥∥∥∥∥
2

H

 . (9)

Expanding the squared norm and applying the reproducing property ⟨Φ(x),Φ(y)⟩ = k(x, y) leads to:

J(α) = E[k(Xt, Xt)]− 2

p∑
j=1

αjE[k(Xt, Xt−j)]

+

p∑
i,j=1

αiαjE[k(Xt−i, Xt−j)].

Setting the derivative with respect to αm to zero gives the linear system:

p∑
j=1

αjE[k(Xt−m, Xt−j)] = E[k(Xt, Xt−m)], m = 1, . . . , p. (10)

Defining the RKHS covariance matrix:

K =

E[k(Xt−1, Xt−1)] . . . E[k(Xt−1, Xt−p)]
...

. . .
...

E[k(Xt−p, Xt−1)] . . . E[k(Xt−p, Xt−p)]


p×p

, (11)

the coefficient vector:

α =

α1

...
αp


p×1

, (12)

and the cross-covariance vector:

kt =

E[k(Xt, Xt−1)]
...

E[k(Xt, Xt−p)]


p×1

, (13)

the system can be compactly written as
Kα = kt. (14)

If K is invertible, the solution is
α = K−1kt. (15)
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4 RKHS-BASED SOLUTION OF BLACKSCHOLES

3.1.1. Financial Interpretation

• The matrix K encodes the temporal dependencies of the stochastic component in the RKHS via the chosen kernel
k(·, ·).

• The vector kt captures the influence of past observations on the current state.

• Solving for α determines how each lagged observation contributes to the embedded stochastic evolution,
preserving temporal correlation and martingale properties.

• The kernel hyperparameter σk can be interpreted as a temporal correlation scale: smaller σk captures short-term
fluctuations, while larger σk emphasizes longer-term trends.

This framework provides a flexible, nonparametric, and interpretable way to model stochastic dynamics directly
in an RKHS while maintaining a clear connection to financial properties such as volatility clustering and martingale
behavio

In summary, the RKHS-AR approach provides a flexible, nonparametric framework to model the stochastic
component of asset prices. Its strength lies in the combination of (i) preserving martingale properties, (ii) capturing
temporal dependencies, and (iii) offering interpretable hyperparameters that relate directly to the timescale of
fluctuations in financial markets.

3.2. Preimage Problem: Fixed Point Equation

Given the estimate:

ψt =

p∑
j=1

αjΦ(Xt−j),

we aim to recover a point x∗t ∈ X such that:

x∗t = argmin
x∈X

∥Φ(x)− ψt∥2H . (16)

Expanding the squared norm, we have:

Jt(x) = ∥Φ(x)∥2 − 2⟨Φ(x), ψt⟩+ ∥ψt∥2

= k(x, x)− 2

p∑
j=1

αjk(x,Xt−j) + C,

where C = ∥ψt∥2 is constant with respect to x and can be omitted in the minimization.
For the Gaussian kernel,

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
,

the gradient with respect to x is:

∇xJt(x) = − 1

σ2

p∑
j=1

αjk(Xt−j , x)(Xt−j − x). (17)

Setting the gradient to zero yields the fixed-point equation:

x∗t =

∑p
j=1 αjk(Xt−j , x

∗
t )Xt−j∑p

j=1 αjk(Xt−j , x∗t )
. (18)

Equation (18) can be solved via a simple iterative scheme:
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1. Initialize x(0)t , for example, as the weighted mean of the previous observations Xt−j .

2. For n = 0, 1, 2, . . .:

x
(n+1)
t =

∑p
j=1 αjk(Xt−j , x

(n)
t )Xt−j∑p

j=1 αjk(Xt−j , x
(n)
t )

.

3. Stop when the relative change is below a predefined tolerance ϵ:

∥x(n+1)
t − x

(n)
t ∥

∥x(n)t ∥
< ϵ.

This iteration is guaranteed to converge under mild conditions, in particular if the mapping is a contraction in the
neighborhood of the solution. Empirically, convergence is typically observed within a few iterations for properly
scaled Gaussian kernels.

3.3. Deterministic Component via the Representer Theorem

Let {ti, S(ti)}ni=1 be observed values. The regularized regression problem is:

min
f∈Hk

n∑
i=1

(f(ti)− S(ti))
2 + λ∥f∥2Hk

. (19)

By the Representer Theorem, the solution has the form:

f(t) =

n∑
i=1

αik(t, ti),

where α ∈ Rn is determined by solving:
(K+ λI)α = y, (20)

with Kij = k(ti, tj) and y = [S(t1), . . . , S(tn)]
⊤.

3.4. Final Expression for the Black-Scholes Solution

We reconstruct the solution as:

S∗
t =

n∑
i=1

αik(t, ti)︸ ︷︷ ︸
Deterministic

+

p∑
j=1

βj(t)St−j︸ ︷︷ ︸
Stochastic

, (21)

where the data-dependent weights βj(t) are:

βj(t) =
αjk(Xt−j , x

∗
t )∑p

i=1 αik(Xt−i, x∗t )
. (22)

Hyperparameter Selection The performance of the RKHS-AR model depends on the choice of the autoregressive
order p and the regularization parameter λ. These can be selected using:

• Cross-validation: Split the data into training and validation sets, and choose (p, λ) minimizing the validation
error.

• Marginal likelihood maximization: When the model is interpreted in a probabilistic framework, select (p, λ)
that maximizes the marginal likelihood of the observed data.

• Heuristic rules: For example, choose p to cover characteristic periods of the stochastic process, and set λ
inversely proportional to the variance of the residuals.
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6 RKHS-BASED SOLUTION OF BLACKSCHOLES

Pseudocode Summary

Input: observations {X_t}, AR coefficients {alpha_j}, kernel k, tolerance epsilon
Output: preimage x*_t

1: Initialize x_tˆ(0) (e.g., weighted mean of {X_{t-j}})
2: repeat
3: numerator = sum_j alpha_j * k(X_{t-j}, x_tˆ(n)) * X_{t-j}
4: denominator = sum_j alpha_j * k(X_{t-j}, x_tˆ(n))
5: x_tˆ(n+1) = numerator / denominator
6: until ||x_tˆ(n+1) - x_tˆ(n)|| / ||x_tˆ(n)|| < epsilon
7: return x*_t = x_tˆ(n+1)

4. Synthetic Data

• Generating model. We simulate the Geometric Brownian Motion (GBM) dSt = µSt dt+ σSt dWt with
closed–form solution St = S0 exp

(
(µ− 1

2σ
2)t+ σWt

)
.

• Base parameters.

Parameter Symbol Value

Growth rate µ 0.10
Volatility σ 0.20
Time horizon T 1.0
Simulation step ∆t 10−2

Total steps n 100

• Reproducibility. Each run is initialized with a different random seed; the same increment vector ∆Wk is used
for both the exact GBM path and the Euler–Maruyama scheme to isolate discretization error.

• Anchor points for RKHS. We fix p = 5 equally spaced pairs (ti, Sti); in Sec. 4.1 we also study p = 10 and
p = 20.

4.1. RKHS vs. Exact Solution

Figure 1 shows an exact GBM trajectory (generated with the same seed in all columns) and the RKHS–fitted curve
using three different kernels. Visually, the Gaussian kernel reproduces better the short–term oscillations of the
process, whereas the Polynomial kernel introduces a slight oversmoothing due to its global nature.
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Figure 1. Comparison between the exact trajectory (dashed black line) and RKHS fits using Gaussian, Laplacian, and
Polynomial kernels.

Table 1. Mean error of RKHS approximation w.r.t. the exact solution (100 trajectories, mean ± std. deviation).

Kernel RMSE MAE MAPE (%)

Gaussian (σk = 0.1) 9.2×10−3 ± 1.1×10−3 6.8×10−3 0.94
Laplacian (σk = 0.3) 1.3×10−2 9.9×10−3 1.38
Polynomial (d = 2) 1.7×10−2 1.3×10−2 1.86

Numerical results in Table 1 confirm that the Gaussian kernel achieves the lowest RMSE (≈ 9× 10−3), followed
by the Laplacian and the Polynomial.

4.2. RKHS vs. Euler–Maruyama

In this comparison, the RKHS curve (Gaussian kernel, σk = 0.1) is contrasted with the Euler–Maruyama (EM)
scheme using ∆tEM = 2∆t = 0.02. Both methods use the same Wiener increments, so the error is due only to
discretization or approximation capacity.
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Figure 2. Exact GBM path (black dashed) and Euler–Maruyama (blue) with ∆tEM = 0.02.
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8 RKHS-BASED SOLUTION OF BLACKSCHOLES

0.0 0.2 0.4 0.6 0.8 1.0
Tiempo

1.0

1.1

1.2

1.3

1.4

1.5

1.6
Va

lo
r d

e 
la

 so
lu

ció
n

Exacta vs RKHS
Solución exacta
Aprox. punto fijo (RKHS)

Figure 3. Exact GBM path (black dashed) and RKHS approximation (red) with Gaussian kernel, σk = 0.1.

Table 2. Average RMSE (100 trajectories) vs. exact solution.

Method RMSE MAE

Euler–Maruyama (∆tEM = 0.02) 1.15×10−2 8.7×10−3

RKHS (Gaussian, σk = 0.1) 9.2×10−3 6.8×10−3

RKHS slightly outperforms Euler–Maruyama in all metrics (Table 2). The advantage grows when the number of
anchor points is reduced (p = 5) or when EM step size is increased.

5. Real Data Application (AAPL)

5.1. Dataset

• Asset: APPLE INC. (AAPL), adjusted closing price.

• Time window: May 1, 2024 – May 1, 2025 (n = 252 observations).

• Source: downloaded via yfinance; fallback to Stooq if API rate–limit is exceeded.

• Preprocessing: (i) linear fill for missing holidays, (ii) normalization to S0 = 1.

5.2. RKHS Fitting Configuration

• Anchor points: first p = 30 pairs (ti, Sti).

• Kernel: Gaussian with σk = 20 selected via in–sample RMSE minimization.

• Regularization: λ = 10−6.
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5.3. Quantitative Results

Table 3. Errors of RKHS fit vs. real AAPL prices.

Method RMSE MAE MAPE (%)

RKHS (Gaussian, σk = 20) 1.98×10−2 1.53×10−2 0.74

Euler–Maruyama (∆tEM = 1 day) 2.59×10−2 2.04×10−2 0.99

5.4. Graphical Results
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Figure 4. Real AAPL price (black), RKHS fit (red), and Euler–Maruyama simulation (blue).

Figure 4 shows that the RKHS model captures both the uptrend and subsequent correction, maintaining smaller
deviations from the real price compared to Euler–Maruyama.

5.5. Discussion

• With only p = 30 observations (≈12% of the data), the RKHS model achieves an RMSE of ≈ 2× 10−2.

• The gain over Euler–Maruyama is about 23% in RMSE, reflecting the kernel’s ability to encode global
correlations from limited data.

• The chosen σk = 20 corresponds to a temporal scale similar to the average fluctuation width of the asset,
reinforcing its interpretation as a temporal correlation filter.

6. Conclusions

This work presented a semi–analytical method for approximating the solution of the Black–Scholes equation by
embedding both its deterministic and stochastic components into a Reproducing Kernel Hilbert Space (RKHS).
The approach reformulates the problem as a regularized interpolation task, leveraging the representer theorem for
the deterministic term and an autoregressive structure in RKHS for the stochastic term.

The main findings can be summarized as follows:
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10 RKHS-BASED SOLUTION OF BLACKSCHOLES

• On synthetic GBM trajectories, the RKHS method achieved lower errors than the Euler–Maruyama scheme, even
when using a small number of anchor points. This demonstrates its ability to capture global path structure with
limited data.

• On real financial data (AAPL), the RKHS model maintained an RMSE of approximately 2× 10−2 using only
12% of the available observations, outperforming Euler–Maruyama by about 23% in RMSE.

• The optimal Gaussian kernel width σk was consistent with the characteristic time scale of the underlying process
in both synthetic and real scenarios, reinforcing the interpretability of kernel parameters.

• The method offers numerical stability and flexibility in parameter selection, avoiding exhaustive cross–validation
by employing an analytical criterion based on marginal likelihood.
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