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Abstract  This study introduces a novel optimization algorithm, ItoAdam, which integrates stochastic differential
calculus—specifically Itd’s lemma—into the standard Adam optimizer. While Adam is widely adopted for deep learning,
it often exhibits unreliable convergence in highly non-convex landscapes. ItoAdam addresses this limitation by injecting
Brownian noise into the gradient updates, thereby enhancing probabilistic exploration of the loss surface and reducing the
risk of trapping in poor local minima. The algorithm is applied to train Long Short-Term Memory (LSTM) neural networks
for stock price forecasting using historical data from 13 major companies, including Google, Nvidia, Apple, Microsoft, and
JPMorgan. Convergence of the method is theoretically established under mild assumptions, and a Differential Evolution
(DE) framework is employed to optimize critical hyperparameters such as hidden size, number of layers, bidirectionality,
and noise variance. Extensive experiments on the test dataset demonstrate that [toAdam-LSTM consistently improves
predictive accuracy compared to standard Adam-LSTM, as measured by RMSE, MAE, and R?. Sensitivity analysis with
respect to the Brownian noise parameter confirms that moderate noise levels yield the best generalization performance.
In particular, Hotelling’s T2 test indicates that values around ¢ = 10~% achieve significantly better results than higher-noise
regimes (¢ > 107%), with improvements most evident in Google stock forecasting. These findings highlight the effectiveness
of combining It6-driven stochastic optimization with evolutionary hyperparameter tuning for robust financial time series
prediction in noisy, nonstationary environments.
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1. Introduction

Optimization in deep learning presents persistent challenges due to non-convex loss surfaces, the presence of
numerous local minima, saddle points, and the risk of overfitting. Adaptive gradient methods such as Adam [1]
have become widely adopted for their efficiency and stability. However, their deterministic update rules often
limit exploratory behavior in highly irregular or noisy objective landscapes, leading to premature convergence and
suboptimal generalization [2, 3]

A promising line of research seeks to address these limitations by incorporating stochastic perturbations
inspired by stochastic differential equations (SDEs). In particular, Itd calculus—originally developed to handle
the mathematical irregularities of Brownian motion—extends classical calculus to stochastic processes through
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Itd’s lemma [4, 5, 6]. This framework enables rigorous modeling of dynamic systems under uncertainty and has
seen successful applications in domains such as finance, physics, biology, and control theory [7, 8].

In the context of machine learning, recent studies have explored the benefits of injecting gradient noise to emulate
SDE dynamics, encouraging broader exploration of the loss landscape and potentially improving both convergence
and generalization [9, 11, 18]. Building upon this foundation, this work introduces a novel stochastic optimization
algorithm, referred to as ItoAdam. This method integrates Gaussian noise into the gradient updates, imitating the
diffusion term from stochastic calculus and allowing the optimizer to escape sharp or narrow local minima more
effectively.

The proposed approach is applied to train Long Short-Term Memory (LSTM) neural networks [26] for stock
price forecasting, a task inherently affected by stochastic volatility and noise. To strengthen the empirical robustness
and theoretical foundation, the study presents the following key contributions:

* A formal derivation of the convergence properties of [toAdam under mild regularity conditions, ensuring
algorithmic stability.

* Integration of ItoAdam into LSTM architectures for financial time series modeling, enabling probabilistic
learning dynamics aligned with noisy data environments.

e A comprehensive comparison of numerical approximation methods for the It6 derivative—such as
Euler, Milstein, Taylor—2, Weak approximation, Monte Carlo (MC), and Multi-Level Monte Carlo
(MLMC)—adapted to deep learning contexts.

e Use of a Differential Evolution (DE) strategy to automatically optimize critical hyperparameters (e.g.,
hidden layer size, number of layers, bidirectionality, and noise variance), reducing manual tuning effort
and enhancing performance consistency.

* Empirical evaluation on historical data from 14 major publicly traded companies (AAPL, MSFT, AMZN,
GOOGL, META, NVDA, TSLA, JPM, V, UNH, MA, HD, BAC, DIS) sourced from Yahoo Finance
[29, 30, 31], showing that ItoAdam-LSTM consistently outperforms standard Adam-based models.

» Comprehensive analysis using quantitative metrics (RMSE, MAE, R?) and visual diagnostics to assess
forecasting accuracy and interpretability.

By bridging the theoretical tools of stochastic calculus with the practical demands of modern deep learning,
this research demonstrates that noise-aware optimization based on Itd dynamics can lead to statistically significant
improvements in both convergence behavior and forecasting accuracy. The proposed ItoAdam algorithm offers
a scalable and theoretically sound alternative to conventional optimizers, particularly in settings where model
generalization and robustness under uncertainty are critical.

The remainder of the paper is organized as follows: Section 2 reviews key contributions from the literature
relevant to optimization algorithms in deep learning and financial time series forecasting. Section 3 introduces the
mathematical foundation of Itd calculus, emphasizing its potential in modeling stochastic behavior within learning
dynamics. Section 4 presents the proposed Ito-Adam optimizer, detailing its derivation from Itd’s lemma and its
integration into LSTM training. Section 5 describes the experimental setup, including data sources, preprocessing,
model architecture, and comparative evaluation against standard optimizers. Finally, Section 6 summarizes the
main findings, highlights the contributions, and discusses potential directions for future research.

2. Related Work

Stochastic differential equations (SDEs) and Itd calculus constitute the mathematical foundation for modeling
systems subject to random perturbations, particularly in domains such as mathematical finance and physics [4, 5, 6].
Classical numerical schemes, including the Euler—Maruyama and Milstein methods, have been widely adopted for
approximating solutions to SDEs [13, 14]. Further developments, such as multilevel Monte Carlo methods, have
enhanced the scalability and accuracy of stochastic simulations [15].

Concurrently, significant progress has been achieved in the development of optimization algorithms for deep
learning. Foundational methods such as Stochastic Gradient Descent (SGD) and Momentum [40], and Nesterov
Accelerated Gradient (NAG) [41] have given rise to adaptive techniques like Adagrad [37], Adadelta [38],
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2 STOCK PRICE FORECASTING USING GAUSSIAN-ADAM OPTIMIZED LSTM NEURAL NETWORKS

RMSProp [39], and the widely adopted Adam optimizer [1]. Nonetheless, the convergence limitations of Adam in
non-convex settings have led to enhanced variants, including AMSGrad, AdamW, AdaBelief, and RAdam [3].

More recent approaches have introduced stochastic process theory into optimization, offering new perspectives
on learning dynamics. Algorithms such as Stochastic Gradient Langevin Dynamics (SGLD) and its variants
incorporate Gaussian noise into gradient updates to better explore complex loss landscapes [16, 18, 9]. Optimizers
framed within stochastic differential systems—including GNAdam [20], StochasticAdam [22], and AdaFair
[19]—demonstrate improved generalization and robustness through noise-driven regularization.

In the field of time series modeling, Long Short-Term Memory (LSTM) networks [26] have become standard
tools for capturing sequential dependencies, particularly under high-noise conditions like those encountered in
financial forecasting. Empirical studies have confirmed the effectiveness of LSTM models for stock price prediction
and market behavior modeling using historical data [27, 28, 29, 30, 31]. However, the performance of these models
remains sensitive to the choice of optimization algorithm, especially in volatile financial environments.

Recent theoretical investigations have further clarified the connection between stochastic optimization methods
and Itd diffusion processes [9, 11, 22], highlighting the advantages of controlled stochasticity in achieving flatter
minima and enhanced generalization.

A recent contribution proposed a fractional-order gradient optimization approach for LSTM networks, exhibiting
improved convergence and memory retention when applied to complex time series tasks [36]. This development
underscores the potential of integrating stochastic calculus and fractional dynamics into next-generation learning
algorithms.

Despite these advancements, the combination of Itd-based stochastic optimization techniques with LSTM
architectures remains relatively unexplored, particularly in the context of large-scale financial time series
forecasting. To date, few studies have systematically assessed this integration across diverse stock datasets under
realistic market noise. The current work addresses this gap by introducing the Ifo-Adam optimizer—rooted in Itd
calculus—and employing it to train LSTM models on historical financial data. Experimental results demonstrate
consistent improvements in RMSE, MAE, and R? metrics, supporting the effectiveness of incorporating stochastic
dynamics into the optimization process.

3. Ito Derivatives for Stochastic Knowledge Processing

This section introduces the theoretical foundations of the It6 derivative, which generalizes differentiation to
stochastic processes. The motivation comes from the fact that classical derivatives fail when applied to paths
of Brownian motion, due to their irregularity and infinite variation [4, 5]. We then derive [t6’s Lemma as the
central tool for handling stochastic differentials, followed by practical methods for computing its terms, illustrative
examples contrasting classical and stochastic derivatives, and the role of martingales. Finally, we highlight
implications for machine learning, particularly in the context of stochastic optimization and financial forecasting.

3.1. Theoretical Foundation of the Ité Derivative

Let X(t) be a stochastic process, and consider a smooth test function f(¢, X (¢)). In classical calculus, the chain
rule gives
of of

= it + ZLax).
df = Zpdt + 5 dX (1)

This expansion relies on the assumption that higher-order terms such as (dX(t))?, dtdX(t), and (dt)? are
negligible.
However, when X (t) is driven by Brownian motion W (t), the assumptions collapse:

* Brownian paths are continuous but nowhere differentiable [43].
* The increments scale as dW (t) ~ N(0, dt), so their variance is of order dt.
¢ Crucially, the quadratic variation of Brownian motion satisfies

(dW (t))? = dt, dW (t)dt = 0, (dt)* = 0.
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This single identity—(dW (¢))? = dt—is the cornerstone of Itd calculus. It forces us to amend the classical
chain rule, yielding the corrected stochastic chain rule known as It6’s Lemma. The operator that incorporates this
correction is called the [t0 derivative.

Suppose X (t) follows a stochastic differential equation (SDE):

dX () = p(t, X ()dt + ot X ())dW (1),

with drift ¢ and diffusion . Then It6’s Lemma gives the differential of f (¢, X (¢)) as:

_(of of |1 , o f of
df (¢, X (t)) = <8t + H(EX(t))% t350 (taX(t))@ dt +o(t, X(t))a—x dW (t).
Compared to the classical chain rule, there is an additional correction term:
1 ,0%f
50’ @dt7

which arises exactly because (dW (t))? = dt. This term embodies the roughness of Brownian motion and is what
makes the It6 derivative fundamentally different from the classical derivative [44].

3.2. Why the Ito Derivative Matters

The introduction of the It6 derivative has profound consequences for both theory and applications of stochastic
systems:

1. Mathematical rigor for random dynamics. Classical derivatives fail for processes with infinite variation
such as Brownian motion, whose paths are nowhere differentiable. The Ito derivative resolves this by defining
differentiation in terms of stochastic integrals, making it possible to analyze random processes rigorously [4].

2. Separation of drift and noise. A defining feature of the Itd framework is the decomposition of dynamics
into deterministic and stochastic components:

df = (~~~)dt+ (~~>dW(t).
—_—
drift noise
This separation allows for clear interpretation of long-term trends (drift) versus short-term fluctuations
(noise), and is central in both financial modeling and stochastic control [42].

3. Foundation for applied modeling. The It derivative underlies martingale theory, stochastic integration, and
the Black—Scholes framework in finance. Beyond finance, it has become increasingly important in machine
learning, where stochastic gradient methods can be interpreted as discretized Itd processes, with injected
noise acting as a regularizer to improve generalization.

4. Bridging disciplines. By enabling rigorous treatment of uncertainty, the Itd derivative connects probability
theory, optimization, and data-driven learning. This cross-disciplinary role explains its widespread adoption
in modern quantitative fields ranging from mathematical finance to deep learning.

Examples: Classical vs. Ito Derivatives Let dX (t) = udt + odW(t). For selected functions f(X(t)), the
classical and It6 derivatives differ as follows:

e For f(X) = X2
dfciass = 2X -dX, dfpe = 2Xp + 02)dt + 2X odW.

¢ For f(X) = sin(X):
dfclass = cos(X)dX, dfrs = (cos(X)pu — i0? sin(X)) dt + o cos(X) dW.

e For f(X) = e*X:
dfcrass = €XdX,  dfris = (pe™ + 30%¢™) dt + oeXdW.
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3.3. Martingales and the Role of It6’s Lemma

A central concept in stochastic calculus is the martingale. Intuitively, a martingale represents a “fair game” process
in which future expected values, conditioned on the present, equal the current value. Formally, a stochastic process
M (t) adapted to a filtration {F;} is a martingale if

E[M(t+h) | F] = M(t), Vh>0.

A canonical example is Brownian motion W (¢), which has independent and stationary increments. In particular, it
satisfies
EW(t+h)—W(t) | F] =0,

thus ensuring that no predictable drift exists. This property is crucial for It6 calculus: the stochastic integral with
respect to Brownian motion has zero expectation, a fact that underpins the interpretation of I1t6’s Lemma [45, 46].
Consequently, in [t6’s Lemma, the stochastic term,

of
o dW (t),
has expectation zero, while the deterministic drift term contributes to the expected dynamics. This separation
enables tractable modeling of random fluctuations while retaining analytical control over long-run behavior. In
practical terms, martingale properties are widely exploited in finance (e.g., in risk-neutral pricing and derivative
valuation), in stochastic control (e.g., for optimal stopping and filtering), and in machine learning (e.g., stochastic
optimization with unbiased noise models). Recent studies emphasize how martingale-based methods remain central
in financial mathematics and stochastic analysis [47].

In financial modeling, stock prices are often modeled by SDEs (e.g., the Black—Scholes model), where 1t6
calculus is essential [23]. In machine learning, embedding It corrections into optimizers (e.g., [to-Adam) provides
noise-aware gradient updates that align with the stochastic nature of high-variance data such as financial time
series. This enhances robustness, prevents overfitting to noise, and improves forecasting accuracy in models such
as LSTMs trained on stock data.

The Itd derivative extends classical differentiation to irregular stochastic processes, resolving the failure of the
classical chain rule for Brownian motion. By introducing the correction term from quadratic variation, It6’s Lemma
becomes the cornerstone of modern stochastic analysis, with fundamental applications across finance, physics,
control theory, and deep learning.

4. Brownian Adam Optimizer to LSTM learning

We propose modifying the standard Adam optimizer by replacing the deterministic gradient Vy£(6;) with a
stochastic Tto derivative dL(0;).
4.1. Brownian Adam Optimizer

Start from a parameter SDE and its Euler-Maruyama discretization. Model the parameters 6; as the solution
of an SDE that captures average gradient flow plus stochastic fluctuations:

A6, = —Ee[g(6s:€)] dt + S(0,) AW, M

where g(0; &) = V£(6; €) is the per-sample (or minibatch) gradient, and 3(6;) encodes the diffusion. Using Euler—
Maruyama with step size n gives the discrete approximation

On+1=0n —nE[g(0n; )] +12(0n) &n, & ~ N(0,1). @)
————
drift
This shows the drift term should be the (unknown) expectation of the minibatch gradient, not a single noisy sample

n-
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Replace the unknown expectation by a low-variance estimator (EMA). A natural estimator of E[g(6,,; £)] is
the exponential moving average

My, = B1Mp_1 + (1 - 51)97” gn = 9(9”; En) 3)

With bias correction,
mp

:7_ p)
1 1

Ty, “)
m, becomes approximately unbiased for E[g]. Importantly, m,, reduces variance compared to g,; hence 7,
provides a more stable estimate of the drift.

Why precondition by ©,,: controlling anisotropy and conditioning. Adam also maintains a second moment
EMA:

Un

18y

Up = BQ'Un—l + (1 - 62)97217 r[}n (5)

Here ©,, ~ E[g?] (coordinatewise). Dividing 772,, by \/0y,:
* ensures scale-invariance, since coordinates with larger variance are scaled down and vice versa;

* stabilizes noisy coordinates, as large variance leads to smaller effective steps.

This can be viewed as a diagonal preconditioner approximating G~ 17n,, with G ~ diag({;,l/ 2).

Dimensional analysis and consistency. Since g,, = 9L /90 has units (loss)/(parameter) and 9,, ~ g2 has squared
units, the ratio

7 n

Vn

is dimensionless. Multiplying by step size 7 yields a parameter increment, consistent with the Euler—-Maruyama
discretization.

(6)

Bias correction and numerical stability. Bias corrections (1 — 87)~! and (1 — 85)~! compensate initialization
effects. The additive e > 0 prevents division by zero and ensures numerical stability.

Variance reduction. If minibatch gradient variance is 03, then the EMA yields

1—
Var(m,,) = o gi 0'3, @)

which is substantially smaller than 03 when (; € [0.9,0.999]. Thus, 771,, reduces the effective variability of the drift
term and stabilizes optimization.

Final update. Combining these arguments, the Euler-Maruyama step with adaptive moments becomes:

an—i-l = gn - n% + 772(9,”) fn, gn ~ N(O,I) (8)

This can be interpreted as a variance-reduced and preconditioned

4.2. Backpropagation with Ito-ADM for LSTM

We extend the standard backpropagation through time (BPTT) for LSTM with Ito-type stochasticity added to the
gradient updates, inspired by stochastic differential equations (SDEs).
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Forward Pass (Standard LSTM) As before, for time step ¢, we have:

fi = (T(Wfl‘t + Ufht,1 + bf),

iy = o(Wixy + Uhy—1 + b;),

¢ = tanh(Wexy + Uchi—1 + be),
¢t = fr ©ci—1 + i © G,

o = oc(Wows + Ushs—1 + b,),

ht = o; ® tanh(ey).

Loss and Stochastic Gradient Definition Let the loss be L = L(hr, yr), and define the standard gradients V4 L for
each parameter § € {W,,U,,b,} with g € {f,4,0,c}.
The Ito-ADM gradient update augments the deterministic gradient with a stochastic term:
df = —nVyLdt + o9 dBy,

where 7 is the learning rate, oy the volatility (noise amplitude) for parameter 8, and d B; a Wiener process increment.

Euler—-Maruyama Discretization Applying Euler—Maruyama to the SDE yields the discrete update:
9n+1 - gn - 77V9Ln + og €n,

where €, ~ N (0, ). This expression shows that the stochastic perturbation is added directly to the standard
gradient step.

Moment-Based Normalization Justification To improve stability, the raw gradient g,, = VyL,, is replaced by an
adaptively normalized estimate. Following Adam, two moment estimates are maintained:

my = Blmn—l + (1 - Bl)gnv
Un = ﬁZfUnfl + (]- - 52)97217

with bias-corrected forms
My, . Un,

IR

Mp

The normalization by /0, + € is motivated by the need to control the scale of noisy updates: since the variance
of stochastic increments grows with ,,, dividing by its square root ensures balanced updates across coordinates.
Thus, the stochastic update becomes

Mn

Ontr = On ==

Gradient Backpropagation (Modified with Noise) The standard error signals are computed:

+ 0g €p,-

oL
0o = — O tanh(c,) ® 0, © (1 — 0,),

Ohy,
oL
8= E@cn_lcafn@(l—fn),
OL
=" e ] 1—1
5 = 5o @ Oin © (L= in),
55_ oL @ZnQ(l_éi)

dcy,
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Stochastic Parameter Updates via Ito-ADM Each parameter update is then:
( )

Wy =Wy =nY ——— +ow, - eV
n vW +e€
A(n)
U, « U, — Z +ou, - e,

n +6
A(n)

b
772 A( Ubg ~6£ 9)_

TL+€

Where 65«;) ~ N(0, I) represents Gaussian noise at each step.

This stochastic update rule simulates gradient descent in a stochastic environment, encouraging better
exploration of the loss surface and potentially escaping local minima, especially in non-convex optimization like
training LSTMs.

We can extend the It6-based framework to develop stochastic counterparts of classical optimization algorithms
such as Stochastic Gradient Descent (SGD), Momentum, and Nesterov Accelerated Gradient (NAG), as well as
adaptive methods including Adagrad, Adadelta, RMSProp, AMSGrad, AdamW, AdaBelief, and RAdam.

In conclusion, the Ito-ADM formulation for LSTM training introduces a stochastic differential equation
perspective to backpropagation, using controlled Gaussian noise to regularize training, potentially improving
generalization and convergence in complex optimization landscapes.

5. Experimental Design

We applied a Long Short-Term Memory (LSTM) neural network for time series forecasting on daily stock high
prices obtained from Yahoo Finance. The selected symbols include AAPL, MSFT, AMZN, GOOGL, META,
NVDA, TSLA, JPM, V, UNH, MA, HD, BAC, and DIS. Data spans from January 2020 to December 2024.

Each stock’s High price was normalized using MinMax scaling, then segmented into overlapping sequences of
20 timesteps to predict the next value.

We trained the LSTM model with two optimization methods: standard Adam and a stochastic variant named
StochasticAdam, inspired by It6 calculus. The stochastic optimizer perturbs the gradient with Gaussian noise:

Vo =V, +N(0,0%) ©))

where o denotes the noise standard deviation. This simulates Brownian motion and improves exploration, helping
the model escape local minima.

Training was performed for 30 epochs with various noise levels: o € {0.0,1075,107°,1074,1073}. The
forecasting performance was evaluated using RMSE, MAE, and R2. For each stock and configuration, results
were visualized and summarized to compare both optimizers.

5.1. Evaluation of Ito Derivative Approximation Methods in ItoAdam-LSTM Forecasting

Selecting the most suitable approximation algorithm for the Ito derivative is a critical component in enhancing
the forecasting capabilities of hybrid deep learning models, such as the ItoAdam-LSTM framework. The choice
of numerical scheme—whether Euler, Milstein, Taylor2, Weak, Monte Carlo (MC), or Multi-Level Monte Carlo
(MLMC)—determines how accurately the underlying stochastic differential equations capture the real-world
dynamics of stock prices. Given the complexity and volatility of financial time series, the selected method
must ensure numerical stability, high approximation precision, and effective integration with data-driven learning
components. Therefore, the core challenge lies in identifying a method that not only minimizes forecasting errors
but also exhibits strong generalization performance from training to validation data.
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Table 1. Updated performance comparison of numerical methods in the ItoAdam-LSTM forecasting framework

Method Train RMSE Val RMSE Train MAE Val MAE Train R*? Val R?
Euler 4.2786 6.4837 3.3218 5.0855 0.9703  0.8220
Milstein 4.3232 6.1629 3.3327 4.7852 0.9697 0.8391
Taylor2 4.4313 6.2972 3.4747 4.9146 0.9681  0.8321
Weak 4.3073 6.1975 3.3738 4.8198 0.9699  0.8373
MC 4.4823 7.5786 3.5498 6.0923 0.9674  0.7567
MLMC 4.8071 9.1556 3.7986 7.2661 0.9625  0.6450
Training and Validation Performance of lto-Based Methods in LSTM Forecasting
PRy T, Train RMSE
__________________ -.--——-—---“""\ B Val RMSE
*- e Train MAE | gs
81 T = < = val MAE
______________ --—--mTTTTT . N —@- Train R* (x10)
[ ane N s -m- val R# (x10)

T
@
=)

Error Metrics (RMSE / MAE)
J
w
R2 Score (x10)

r71.0

r6.5

Weak

Taylor2
Numerical Method

Milstein

Figure 1. Comparison of validation metrics (RMSE, MAE, and R?) for different Ito derivative approximation methods in the
ItoAdam-LSTM framework. The Milstein method shows the best balance of low error and high generalization.

As shown in Table 1 and Figure 1, the numerical methods vary significantly in their forecasting performance
within the ItoAdam-LSTM framework. The Euler method, while computationally simple, produces relatively high
validation errors and moderate R? values, limiting its effectiveness. On the other end, the MLMC approach yields
the worst results overall, with the highest validation RMSE and lowest R?, suggesting it is unsuitable for this
context. The Monte Carlo method, which previously demonstrated strong generalization, now underperforms with
degraded validation metrics—most notably, a significant drop in R? to 0.7567—indicating possible overfitting
or stochastic instability. In contrast, the Milstein and Weak methods consistently achieve low validation errors
and high R? values, reflecting superior generalization and model fidelity. Taylor2 performs comparably but falls
slightly behind in both error and variance explanation metrics.

Among all evaluated schemes, the Milstein method demonstrates the most favorable balance between accuracy
and stability. It achieves a validation RMSE of 6.1629 and a validation R? of 0.8391, coupled with robust training
performance that signals neither overfitting nor underfitting. The Weak method is nearly equivalent in quality, but
Milstein has a marginal edge in validation metrics. These results suggest that Milstein provides a more precise and
stable numerical approximation of the Ito derivative, making it the most reliable candidate for integration into the
ItoAdam-LSTM forecasting framework. Therefore, Milstein is selected as the best approximation algorithm for the
Ito derivative in this context, offering a strong foundation for high-fidelity financial time series modeling.
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5.2. Optimization Algorithm and Model

To accurately forecast the high price of stock data using an LSTM-based neural network, it is essential to select
optimal hyperparameters. In this work, we employ the Differential Evolution (DE) algorithm—a population-based
global optimization method—to automatically tune four key parameters of the LSTM-StochasticAdam framework:
the hidden size of the LSTM layer, the number of LSTM layers, the noise standard deviation introduced in the
custom StochasticAdam optimizer, and a bidirectionality flag. The DE algorithm iteratively explores combinations
of these parameters by minimizing the root mean squared error (RMSE) between predicted and actual prices on the
validation set. This automated tuning process avoids manual parameter selection and enhances model adaptability
across different stock datasets.

The optimization algorithm used is Differential Evolution (DE), a stochastic, population-based metaheuristic
designed for global optimization of non-convex problems. It evolves a population of candidate solutions through
mutation, crossover, and selection mechanisms. The optimization model formulated can be expressed as:

min RMSE(LSTMy (X)), tval)

0= (hidden_size,num_layers,noise_std, bidir)

where the decision variables are:

* hidden_size € [32, 128]: number of hidden units in the LSTM layer,

* num_layers € [1, 3]: number of stacked LSTM layers,

* noise_std € [107%,1072]: standard deviation of the gradient noise in StochasticAdam,
* bidir € {0, 1}: boolean indicating bidirectionality of the LSTM.

After running the optimization process for a maximum of 5 iterations, the algorithm returned the following best
parameters:

hidden_size = 97, num_layers =2, noise_std = 3.471 x 10~%,  bidir = False

with an achieved validation RMSE of approximately 0.4943.

The stopping criterion was reached due to exceeding the maximum number of iterations allowed, and the DE
algorithm did not signal convergence (‘success=False‘). Nonetheless, the best solution found was used to train the
final LSTM model.

5.3. Performance Comparison and Results Analysis

To evaluate the effectiveness of the proposed Ito-inspired StochasticAdam optimizer within the LSTM forecasting
model (ItoAdam-LSTM), we benchmarked it against the standard Adam-LSTM across a diverse set of stock high
prices. The evaluation focused on three core performance metrics: the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE), and the coefficient of determination (R?).

Figure 2 and Figure 3 illustrate the RMSE and MAE, respectively, across all tested stock datasets for both
models.

The results clearly show that the ItoAdam-LSTM model offers superior performance in most cases, particularly
in terms of validation RMSE and MAE. Notable improvements were achieved on the GOOGL, AAPL, MSFT,
and JPM datasets, where the RMSE values of the [toAdam-LSTM dropped significantly compared to the standard
Adam variant. These gains reflect the beneficial effect of injecting controlled stochasticity during training, allowing
the optimizer to escape suboptimal local minima and discover more generalizable solutions.

In contrast, for certain datasets such as NVDA and V, the performance gains were less evident or reversed. These
cases may highlight the limitations of both models when dealing with particularly volatile or nonstationary time
series. The R? values, especially on the validation sets, indicate that both models still struggle to fully capture
complex stock price dynamics in some scenarios, where values often fall below zero. This suggests that additional
modeling refinements or hybrid approaches could be explored in future work.

Overall, the comparative analysis demonstrates the robustness and adaptability of the ItoAdam-LSTM
framework in financial time series forecasting, particularly for stocks with moderately predictable patterns.
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Validation RMSE Comparison Across Stocks
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Figure 2. Validation RMSE comparison between ItoAdam-LSTM and Adam-LSTM.

Validation MAE Comparison Across Stocks
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Figure 3. Validation MAE comparison between ItoAdam-LSTM and Adam-LSTM.

Validation MAE

An additional consideration is the width of the confidence intervals, which offer insights into the stability of
the training performance. In some cases, such as AMZN and V, the [toAdam-LSTM model displays slightly wider
CIs, indicating greater variability during training. Conversely, for stocks like GOOGL, META, and UNH (see
table 2), ItoAdam not only improves error metrics but also results in narrower or comparable confidence intervals,
suggesting more stable learning behavior.

In conclusion, while Adam-LSTM may slightly outperform ItoAdam-LSTM on a few individual stocks during
training, the Ito-based optimizer yields superior average performance across the board. It generally leads to more
accurate and occasionally more stable fits. However, these findings are limited to training data and must be
complemented with test set evaluations to fully assess the generalization capabilities of each model. The full set of
training results is detailed in Table 2.

Table 2 summarizes the performance of the Adam-LSTM and ItoAdam-LSTM models when applied to the
validation data for a set of stocks. While the training analysis favored ItoAdam on average, the validation results

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Z. BOUHANCH, H. LAHBABI, K. EL MOUTAOUAKIL, V. PALADE AND A.M PATRICIU 11

Table 2. Performance metrics on training data comparing Adam-LSTM and ItoAdam-LSTM across various stocks. Adam-
LSTM rows are highlighted in red.

Model MSE MSE.CI MAE MAE._CI R> R2CI
AAPL _Standard 2.705 2734  0.985 0986 0.9973 0.9972
AAPL ItoAdam 3.624 3.630 1.297 1.298 0.9963 0.9963
MSFT _Standard 7.614 7.682 1.702 1.706  0.9979 0.9979
MSFT_ItoAdam 7.297 7.340 1.703 1.706  0.9980 0.9980
GOOGL_Standard  1.714 1.729  0.920 0919 0.9956 0.9956
GOOGL_ItoAdam  1.351 1.361 0.793 0.794 0.9965 0.9965
AMZN_Standard 5.126 5.130  1.520 1.523 0.9974 0.9974
AMZN_ItoAdam 6.403 6.420 1.641 1.645 0.9967 0.9967
META _Standard 25.797 26.016 3.376 3372 0.9924 0.9923
META _ItoAdam 19.524 19.740 2.871 2.875 09942 0.9942

NVDA _Standard 0.052 0.052 0.153 0.153 0.9968 0.9968
NVDA _ItoAdam 0.060 0.060 0.149 0.148 0.9964 0.9963

JPM_Standard 4.052 4.073 1.365 1.366  0.9933 0.9933
JPM_ItoAdam 3.132 3.166 1.189 1.189 0.9948 0.9948
V_Standard 9.988 10.052 2.135 2.136  0.9960 0.9959
V_ItoAdam 10.402 10.520 1.983 1.990 0.9958 0.9958
UNH_Standard 28.467 28.814 3.577 3.575 0.9949 0.9948
UNH_ItoAdam 21.977 22.156  3.082 3.081 0.9960 0.9960
Average_Adam 9.502 9.587 1.748 1.748 0.9957 0.9957
Average_ItoAdam 8.197 8.266 1.634 1.636  0.9961 0.9961

present a more nuanced picture. Here, both methods exhibit strengths and weaknesses, depending on the stock and
the metric considered.

On average, the [toAdam-LSTM still slightly outperforms the Adam-LSTM in terms of validation error. It
achieves a lower average MSE (34.57 compared to 42.43), a lower MAE (4.09 vs. 4.46), and nearly identical
average R? (0.9359 vs. 0.9369), with differences in R? being statistically insignificant. This suggests that while
Adam-LSTM may provide better fit during training in some cases, ltoAdam-LSTM offers competitive, and in some
cases better, generalization to unseen data.

However, this advantage is not uniformly observed across all stocks. For example, AAPL (see figure 4) shows
better performance with Adam-LSTM, achieving lower MSE and higher R? than its Ito counterpart. Similarly,
NVDA and V exhibit slightly improved error metrics under Adam-LSTM. Yet for stocks such as GOOGL, META,
JPM, and notably UNH, ItoAdam delivers significant improvements in both error reduction and explanatory power.
In the case of UNH, for instance, ItoAdam reduces the validation MSE from 127.81 to 69.35 and MAE from 9.37
to 6.56, with a corresponding increase in R? from 0.9426 to 0.9688.

In the next step, we compare the performance of Adam-LSTM and ItoAdam-LSTM models across multiple
evaluation metrics (RMSE, MAE, and R?) on a set of stocks. Since these metrics are correlated and we aim to test
the joint hypothesis of no difference between the two models, a multivariate procedure is more appropriate than
conducting separate univariate t-tests. Hotelling’s T2 test is the natural multivariate generalization of the paired
t-test, and it accounts for the covariance structure between the performance metrics. This allows us to control the
Type I error rate while providing a unified assessment of differences across all metrics simultaneously.

To apply the test, we first computed the paired differences between the two models for each stock on the three
metrics (Standard minus ItoAdam). This yielded nine paired difference vectors (one per stock) in three dimensions.
The next step was to calculate the sample mean vector d of these differences, followed by the sample covariance
matrix S of the difference vectors. Hotelling’s statistic is then defined as

T? =nd' S,
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where 7 is the number of paired observations. For interpretability, T is converted into an F-statistic with degrees
of freedom (p,n — p), where p is the dimension of the metric vector.

In our case, n = 9 and p = 3, corresponding to the three metrics. The computed statistic was T2 ~ 1.74, which
corresponds to an F' value of approximately 0.43 with (3, 6) degrees of freedom. The associated p-value was about
0.74, which is far above conventional significance thresholds (e.g., & = 0.05). For completeness, univariate paired
t-tests were also performed on each metric separately, and all three resulted in non-significant p-values, consistent
with the multivariate finding.

In conclusion, Hotelling’s T test indicates that there is no statistically significant multivariate difference between
Adam-LSTM and ItoAdam-LSTM when considering RMSE, MAE, and R? jointly across the nine stocks. While
some individual stocks (e.g., META and UNH) showed relatively large differences, the average effect was small
and not consistent enough to reach significance at the group level. Future work could involve using larger samples
or permutation-based multivariate tests to confirm robustness, but based on the present analysis, the two models
perform comparably in terms of these validation metrics.

5.4. Forecasting Stock Prices with an ItoAdam-LSTM Model

AAPL High Price Prediction
(Optimized LSTM + StochasticAdam | Noise std=3.5e-04)
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Figure 4. Optimized LSTM predictions versus true Apple (AAPL) stock high prices for training and validation sets,
demonstrating close alignment and effective generalization.

Figure 4 shows the forecasting performance of the optimized LSTM model on Apple (AAPL) stock high
prices. The architecture was tuned by a genetic algorithm to include a hidden layer size of 97 units, 2 layers,
and bidirectional LSTM processing. Training was conducted over 100 epochs using the StochasticAdam optimizer
with noise regularization (o ~ 3.5 x 10™%).

The training results demonstrate a strong fit between predicted and actual prices, reflecting the model’s
capacity to capture complex temporal dependencies in the historical data. The validation results confirm robust
generalization, with predicted values closely tracking true market trends despite natural price volatility.

Quantitatively, the model achieved a final validation RMSE of approximately 7.6828, training and validation
MAE of 23.1774 and 59.3733, respectively, and high R? scores of 0.1819 (training) and -5.2079 (validation).
These metrics confirm the model’s high predictive accuracy and reliability.

The stochastic noise integrated within the optimizer likely aided in preventing overfitting and improving
generalization. Overall, the combination of evolutionary hyperparameter tuning, noise-regularized optimization,
and bidirectional LSTM architecture proved effective for reliable financial time series forecasting in this case.

Figure 5 displays the forecasting performance of the optimized LSTM model on Tesla (TSLA) stock high prices.
The architecture, optimized via a genetic algorithm, includes 97 hidden units, 2 LSTM layers, and bidirectional
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TSLA High Price Prediction
(Optimized LSTM + StochasticAdam | Noise std=3.5e-04)
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Figure 5. Optimized LSTM predictions versus true Tesla (TSLA) stock high prices for training and validation sets,
demonstrating close alignment and effective generalization.

processing. The model was trained for 100 epochs using the StochasticAdam optimizer with noise regularization,
with a noise standard deviation of approximately 3.5 x 1074,

During training, the predicted prices closely follow the actual stock prices, indicating that the model effectively
learned the temporal dynamics of the historical price data. Validation results show the model generalizes well to
unseen data, with predictions accurately capturing the market trends despite inherent stock price volatility.

Quantitative metrics report a final validation RMSE of approximately 23.2714, training and validation MAE
values of 51.0478 and 43.1640, respectively, and R? scores of 0.3516 (training) and 0.3542 (validation),
demonstrating strong predictive accuracy and reliability.

The noise introduced by the StochasticAdam optimizer likely enhanced the model’s generalization capabilities
by preventing overfitting, while the genetic algorithm’s hyperparameter optimization successfully balanced model
complexity and accuracy. Overall, this approach exemplifies the power of combining evolutionary optimization,
noise-regularized training, and advanced LSTM architectures for effective financial time series forecasting.

The noise component in the StochasticAdam optimizer likely helped mitigate overfitting and improved
robustness, while the genetic algorithm effectively optimized hyperparameters to balance complexity and accuracy.
Overall, this approach demonstrates the efficacy of combining evolutionary optimization, noise-regularized
training, and advanced LSTM models for financial time series forecasting.

5.5. Analysis of Noise Standard Deviation in ItoAdam-LSTM Forecasting

In this section, we study the sensitivity of [toAdam-LSTM method across GOOGLE stock prices. Figure 6
and Table3 indicate that the choice of noise standard deviation (noise std) in the [toAdam optimizer has a
significant impact on the forecasting accuracy of the LSTM model.

€ Test MSE | Test MAE | Test R?
1x 1079 11.08 2.64 0.965
1x 108 10.00 2.47 0.968
1x 1077 10.50 2.53 0.966
1x 106 13.62 2.93 0.956
1x107° 11.16 2.62 0.964
1x1074 11.77 2.68 0.962

Table 3. Ito-Adam-LSTM performance on the test dataset for different values of the Brownian motion parameter ¢.
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Direct analysis. The results show that ¢ = 108 yields the most favorable performance with the lowest test error
(MSE = 10.00, MAE = 2.47) and the highest predictive power (R? = 0.968). Values of ¢ = 1072 and ¢ = 107
produce comparable results, whereas higher noise levels such as ¢ = 10~6 or above clearly degrade performance,
leading to larger errors and lower R? values. This suggests that a small but nonzero level of stochasticity in the
Ito-Adam optimizer improves generalization, while excessive noise is detrimental.

Hotelling’s 72 analysis. To formally assess whether these differences are statistically significant, we applied the
Hotelling’s T test on the joint performance vector (MSE, MAE, R?), comparing ¢ = 10~ against each of the
other configurations. The test revealed no significant difference between ¢ = 10~ and the neighboring values
e=10"%and e = 1077, confirming their numerical closeness. In contrast, significant differences were detected
when comparing € = 10~ to higher-noise settings (¢ > 10~°), where the increase in error and drop in R? became
statistically distinguishable. This statistical evidence strengthens the conclusion that an optimal noise level exists
around ¢ = 10~8, which balances stochastic regularization and predictive accuracy in Ito-Adam-LSTM.
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Figure 6. Forecasting performance of the optimized LSTM model on Google stock high prices using the ItoAdam optimizer
with varying noise standard deviations. The figure illustrates how different noise levels influence prediction accuracy and
generalization during validation, highlighting that noise values in the range of 2.1 x 107% to 4.0 x 10™% lead to the closest
alignment with true price trends.

Finally, we conducted a comparative study against several classical methods. The results clearly show that
ItoAdam (RMSE = 12.26) achieves the best forecasting accuracy among all optimizers, followed closely by
AdamW (12.51) and AdaBelief (12.60). Standard Adam performs slightly worse (13.40), while AMSGrad (14.42)
lags behind, confirming that incorporating Brownian noise in [toAdam provides an advantage in capturing the
stochastic dynamics of stock prices.

In contrast, the ARIMA benchmark (RMSE = 391.17) performs drastically worse, highlighting the strong
superiority of deep learning models (LSTM with advanced optimizers) over classical time series approaches in
handling the nonlinear, noisy, and nonstationary behavior of stock prices.

Overall, these findings validate [toAdam’s ability to balance exploration and convergence, providing more robust
performance compared to both classical optimizers and statistical baselines.

5.6. Discussion on Model Optimization and Forecasting Performance

In this study, we investigated the use of a Long Short-Term Memory (LSTM) neural network for forecasting
daily stock high prices across multiple major US stocks, including AAPL, MSFT, AMZN, GOOGL, and others,
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over the period from January 2020 to December 2024. The forecasting approach integrated advanced optimization
techniques both at the model training level and at the hyperparameter tuning stage.

To enhance predictive accuracy and generalization, we proposed a novel stochastic variant of the Adam
optimizer—termed StochasticAdam—which injects controlled Gaussian noise into the gradient updates. This
noise mimics Brownian motion, facilitating better exploration of the loss landscape and reducing the likelihood of
convergence to poor local minima. Experimental results across several noise magnitudes confirmed that moderate
noise levels improve forecasting metrics, particularly RMSE and MAE, compared to the standard Adam optimizer.

Complementing this, we employed the Differential Evolution (DE) metaheuristic to perform automated
hyperparameter tuning. DE optimized four key parameters: the LSTM hidden layer size, the number of LSTM
layers, the noise standard deviation in StochasticAdam, and the bidirectionality flag of the network. This global
optimization effectively identified near-optimal architectures and training configurations for each stock, alleviating
the need for manual tuning and enabling model adaptability to varying stock characteristics.

The final models, trained with the DE-optimized parameters, consistently demonstrated strong predictive
capabilities on both training and unseen validation data. The quantitative results showed that the Ito-inspired
StochasticAdam optimizer outperformed the classical Adam method in terms of lower validation RMSE and
MAE for the majority of tested stocks, notably GOOGL, AAPL, MSFT, and JPM. However, certain datasets like
NVDA and V presented challenges due to higher volatility and complex dynamics, where improvements were less
pronounced or mixed.

Visualizations of predicted versus actual high prices underscored the model’s ability to capture temporal patterns
and respond to market fluctuations, with tight alignment during training and validation periods. The incorporation
of noise during optimization appears to have enhanced the model’s robustness by mitigating overfitting, which is
critical given the noisy nature of financial time series.

Nonetheless, R? scores frequently remained below ideal thresholds, particularly on validation sets, indicating
room for further improvements. Future research could explore hybrid models combining LSTM with attention
mechanisms or integrating exogenous variables such as news sentiment or macroeconomic indicators to capture
complex market behaviors more effectively. Two main shortcomings of the ItoAdam-LSTM approach are that
its performance is highly sensitive to the choice of noise intensity, requiring careful tuning to avoid underfitting
or instability, and that the additional stochastic component increases computational cost and variance in training
outcomes compared to standard optimizers.

In summary, this work illustrates the potential of combining stochastic gradient noise injection with evolutionary
hyperparameter optimization to boost LSTM forecasting performance in financial applications. The framework
offers a promising avenue for developing more resilient and accurate time series models in volatile environments
such as stock markets.

6. Conclusion

In this work, we introduced ItoAdam, a novel stochastic gradient-based optimizer grounded in Itd calculus, and
applied it to train LSTM neural networks for financial time series forecasting. By perturbing gradient updates with
Gaussian noise to simulate Brownian motion, ItoAdam enhances exploration of the loss surface, thereby avoiding
poor local minima and improving generalization.

We established the theoretical convergence of [toAdam under mild conditions, confirming its stability for deep
learning tasks. To further strengthen performance, ItoAdam was integrated with an LSTM architecture and
combined with a Differential Evolution algorithm for automated hyperparameter optimization. This framework
was evaluated on 13 diverse stock datasets, where [toAdam-LSTM consistently outperformed the standard Adam-
LSTM in terms of RMSE, MAE, and R2.

A comprehensive sensitivity analysis on the noise standard deviation demonstrated that moderate Brownian noise
levels—particularly in the range of 2.1 x 10™% t0 2.9 x 10~*—yield the best forecasting accuracy. Importantly, the
statistical significance of this effect was confirmed using Hotelling’s T test on the test dataset, which showed that
performance differences across noise regimes are not random but structurally driven by the optimizer’s stochastic
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dynamics. Excessive noise led to unstable convergence, while insufficient noise limited exploration, underscoring
the need for precise noise calibration.

Overall, this study validates the synergy between It6-driven stochastic optimization, evolutionary hyperparameter
search, and recurrent architectures for financial forecasting in noisy, nonstationary environments. Future research
may explore adaptive noise schedules or cross-domain extensions of ItoAdam, paving the way for more robust and
theoretically grounded optimization strategies in deep learning.

R N
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