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Abstract This paper investigates a zero-sum stochastic differential game involving a large insurance company and a
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asset. The price process of the risky asset follows the Geometric Mean Reversion (GMR) model and takes into account
dividend payments and federal income tax. The small insurance company invests only in the risk-free asset and is subject
to federal income tax on the interest earned. The large insurance company seeks to maximize the expected exponential
utility of the difference between its surplus and that of the small insurance company to maintain its surplus advantages,
while the small insurance company aims to minimize the same quantity to reduce its disadvantages. We establish the
corresponding Hamilton-Jacobi-Bellman equations and derive optimal reinsurance-investment and investment-only optimal
strategies. Finally, numerical simulations are performed to illustrate our findings.
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1. Introduction

In recent years, reinsurance and investment problems have gained traction in the mainstream of insurance and
actuarial science research. This comes from the necessity for insurers to manage potential significant losses in the
insurance market by purchasing reinsurance contracts. Simultaneously, they may choose to invest in the financial
market to generate profits, thereby reducing the costs associated with their insurance operations.

In [7], the author modelled the surplus process using a Brownian motion with drift and the risky asset using
a geometric Brownian motion, deriving an optimal strategy that maximizes the expected utility of terminal
wealth. The study in [2] explored the maximization of the expected exponential utility of terminal wealth and
the minimization of the probability of ruin under a no-shorting constraint. The authors derived explicit expressions
for the optimal value functions and the corresponding optimal strategies. In [18], the authors investigated an optimal
reinsurance and investment problem for an insurer whose surplus process is approximated by a drifted Brownian
motion and obtained closed-form expressions for the optimal reinsurance and investment strategies.

In the standard framework to maximize the logarithmic utility of terminal wealth, [31] determined the optimal
investment and risk control strategy for an insurer with insider information using the integral forward approach.
Several authors have investigated the optimal reinsurance and investment problem in the sense of minimizing the
probability of ruin, as explored in [1, 9, 20], and [34]. Others have considered the case of maximizing the utility
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of terminal wealth, as discussed in [37] and [40]. Recent research addressing optimal reinsurance and investment
management for insurance companies can be found in [22, 27, 32, 38], and [39].

The studies cited above predominantly address single-agent optimization problems. However, in insurance
markets, insurance companies often benchmark their performance against competitors, which significantly
influences decision-making processes. Stochastic differential games, whether zero-sum or non-zero-sum, provide
a framework to describe competition among two or more insurance companies. The author in [5] studied a non-
zero sum game problem between two insurers, where the problem is transformed into finding a regular solution
to a quasi-variational inequality. In [4], the author utilized the regularity theory of non-linear partial differential
equations to solve a stochastic differential game involving N players. In continuous time, the authors in [19]
investigated a non-zero sum Dynkin game with multiple players. In [35], the authors studied the optimal reinsurance
investment game, incorporating variance premium principles. Furthermore, [13] studied a nonzero-sum stochastic
differential game between two competing insurers, where the premium is calculated using the principle of variance
premium. The investment in risky asset is modelled by a constant elasticity of variance (CEV) model. The authors
in [29] studied a zero-sum stochastic differential game in which two insurance companies pay out dividends under
non-proportional reinsurance. In [26], the authors examined a zero-sum stochastic differential game between a
large and a small insurance company, where the large company can invest in both risk-free and risky assets. The
risky assets are modeled by the geometric Brownian motion. An extension of this work is presented in [28], where
the risky asset is modeled using the constant elasticity of variance (CEV).

Pandemics like COVID-19 and other economically damaging natural disasters, including hurricanes,
earthquakes, and wildfires, profoundly impact insurance companies. For example, the authors of [6] provided a
comprehensive empirical analysis of how catastrophic risks affect the homeowner insurance market. The work
demonstrated how insurers adapt to such risks by increasing insurance rates, resulting in lower loss ratios during
catastrophic incidents. Similarly, in [3], the authors investigated the impact of unexpected catastrophic events,
including floods, hurricanes, storms, tornadoes, and wildfires, on the profitability of property casualty insurance
companies in the United States. In particular, the article suggested significant policy implications for improving
the ability of the insurance industry to stabilize its financial and technical performance. Furthermore, the authors in
[33] analyzed the insurability of pandemic risk and how future pandemic coverage could be affected by COVID-19,
using underwriting policies and scenario analysis.

Life insurance companies have been subject to tax regulations since 1921, as noted by [21], and this includes
tax exemption and tax preferred. In addition, the author in [36] revealed that insurance companies were subject
to the same taxes as other corporations. Several authors have examined the taxes of life insurance companies up
until 1971, but none of them has considered the question of the incidence of this tax. Using firm data from the
New York insurance report for the years 1952 through 1965, the author in [23] fitted a linear multiple regression
model. The results showed that insurance companies, like other corporations, are subject to federal income taxation.
However, specific guidelines apply to insurance companies based on the type of insurance they offer. For example,
as noted by [14], taxable income is based on statutory income with similar adjustments. The tax computation begins
with statutory pre-tax income from the underwriting and investment exhibit. During the COVID-19 pandemic,
several countries have implemented tax relief measures for industries severely affected. However, initiatives to
encourage investment and consumption have been more prevalent in non-Organization for Economic Co-operation
and Development (OECD) and non-G20 nations. For example, Kenya reduced its corporate income tax rate from
30% to 25%, while Tanzania’s tax relief measures were limited [15].

Although most of the research has been done in non-zero sum games, the zero-sum game plays a crucial role
in informing market participants about the extent to which one insurance company may have superior information
about market conditions compared to another. Moreover, the opposing objectives of the two insurance companies
result in control weights that often have opposite signs, rendering them indefinite. In this paper, we study a zero-sum
stochastic differential reinsurance and investment game between two insurance companies under the Geometric
Mean Reversion (GMR) model. Each insurance company premium process in our study is determined according
to the expected value principle. The GMR model is a stochastic process that is well suited for commodity prices,
particularly in the long run. In the GMR model, prices tend to revert to their long-term mean or the average marginal
cost of the product, which accounts for the returns on venture capital [11, 12]. In our paper, we assume that the
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surplus processes of insurance companies are approximated by a Brownian motion with drift, and both companies
are allowed to purchase proportional reinsurance. In addition, we assume that a large insurance company has a
greater initial wealth compared to a smaller insurance company, allowing investment in both risky and risk-free
assets. The risk-free asset is described deterministically, while the risky asset is modeled using the Geometric Mean
Reversion (GMR) model, which incorporates dividend payments and federal income tax considerations.

As a startup, a small insurance company is in its early stages and typically faces significant risk and uncertainty.
While striving to establish itself in the market, the small insurance company prioritizes steady income over
aggressive investment during its expansion phase. However, it can still mitigate risk by purchasing proportional
reinsurance and must also account for federal income tax on earned interest. We assume that the wealth of the small
insurance company increases with the interest rate. Our objective is to examine a zero-sum stochastic differential
game in which, on one hand, a large insurance company seeks to maintain its surplus advantage by maximizing the
expected exponential utility of the difference between its surplus and that of the small insurance company at the
terminal time. On the other hand, the small insurance company aims to minimize the expected exponential utility of
this difference, thereby reducing its financial disadvantage. We consider two problems: one involving a reinsurance-
investment problem between large and small insurance companies, and the other focusing on investment decisions
for the large insurance company alone.

The paper is organized as follows. Section 2 presents the model formulation for the reinsurance-investment
problem between a large and a small insurance company. The problem formulation and the verification theorem
are provided in Section 3. Section 4 presents the solution to the reinsurance-investment problem, while Section 5
addresses the solution to the investment-only problem for the large insurance company. The numerical analysis of
the reinsurance-investment problem is discussed in Section 6. Section 7 concludes the paper.

2. Model formulation

Let (Ω,F ,F = {Ft}t∈[0,T ],P) be a filtered probability space satisfying the usual conditions. F = {Ft}t∈[0,T ] is a
filtration with F = FT , where T is a fixed time horizon. In what follows, it is assumed that all stochastic processes
are adapted to {Ft}t∈[0,T ] unless otherwise specified. We assume that B1(t) and B2(t) (to be introduced later)
are correlated with the correlation coefficient ρ12. We assume that B3(t) (to be introduced later) is independent of
B1(t) and B2(t).

2.1. Surplus process

Following the framework in [2] and [9], we model the claim process of a large insurance company and a small
insurance company, denoted by Ej , j ∈

{
1, 2

}
, according to a Brownian motion with a drift as follows:

dEj(t) = ajdt− bjdBj(t), (1)

where aj and bj are positive constants. Bj(t) are standard Brownian motions, and Cov[B1, B2] = ρ12t. According
to Equation (1), the same market conditions have an impact on the claims made by both insurance companies.
Suppose that the premium of the insurance companies j ∈

{
1, 2

}
is calculated according to the expected value

principle; i.e κj = aj(1 + νj), where νj > 0 is the relative safety loading coefficient of the insurance company
j ∈

{
1, 2

}
. Therefore, the surplus process of insurance companies j ∈

{
1, 2

}
without reinsurance and investment,

according to Equation (1), becomes

dYj(t) = κjdt− dEj(t) = ajνjdt+ bjdBj(t), j = 1, 2. (2)

To mitigate insurance risk, large and small insurance companies can purchase proportionate reinsurance from
reinsurance providers. Let qj(t) for j ∈

{
1, 2

}
represent the value of the risk exposures of the large insurance

company and the small insurance company, respectively, satisfying 0 ≤ q1(t) and 0 ≤ q2(t) ≤ 1 since they are
allowed to purchase proportional reinsurance. When q1(t) ∈ [0, 1], it means that the reinsurance company will
compensate the insurer for 100(1− q1(t))% of the claims at time t, resulting in a net liability of 100q1(t)% of
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the original claims for the insurance company. When q1(t) ∈ [0,∞], the insurer can act as a reinsurer for other
insurance companies, which we interpret as the acquisition of new business.

In the proportional reinsurance contract qi(t), the reinsurance premium is calculated according to the expected
value principle, i.e.(1 + ϑj)aj(1− qj(t)) where ϑj > νj is the relative safety load coefficient of the reinsurer. With
reinsurance, the surplus process of the insurer j becomes

dRj(t) =
(
ajνj + ajϑj − ajϑjqj(t)

)
dt+ qj(t)bjdBj(t), j = 1, 2. (3)

2.2. The financial market

The financial market consists of a bank account and a stock. The large insurance company has sufficient assets to
invest in both a risk-free asset and a risky asset, while the small insurance company invests only in the risk-free
asset. The dynamics of the bank account S0 = (S0(t), 0 ≤ t ≤ T ) at time t is described by the equation{

dS0(t) = r0S0(t)dt,

S0(0) = 1.
(4)

The dynamics of the stock price S = (S(t), 0 ≤ t ≤ T ) at time t is described by the GMR model{
dS(t) = ϕ(α− lnSt)S(t) dt+ σS(t) dB3(t),

S0 = s0,
(5)

where the parameters ϕ, α, σ are positive constants. The coefficient α represents the long-term mean equilibrium,
ϕ the speed of convergence to this equilibrium, σ the volatility of the stock, and B3(t) a standard Brownian motion
independent of B1(t) and B2(t).

Suppose that the risky asset of the large insurance company pays dividends at a continuous rate, which is
proportional to the value of the stock at a constant rate δ, known as the dividend yield. The appropriate expression
for the dividend payment is δS. When this dividend is paid over a short period of time, it becomes δS dt. If the
insurance company pays income tax on the dividend, the dynamics for the risky asset becomes:{

dS(t) = ϕ(α+ (1− λ1)δ − lnSt)S(t)dt+ σS(t) dB3(t),

S0 = s0,
(6)

where λ1 is the coefficient of income tax rate of the large company.

2.3. Wealth process

Let π(t) denote the amount that the large insurance company invests in the risky asset at time t. Then, the remaining
wealth Y1(t)− π(t) is invested in the risk-free asset. Let {Y u1

1 (t)}t≥0 be the surplus process of the large insurance
company after purchasing reinsurance protection q1(t) and making investment π(t), where u1(t) = (π(t), q1(t)).
Then, the wealth process Y u1

1 (t) of the large insurance company with strategy u1(t) is given by the following
dynamics: 

dY u1
1 (t) = π(t) · dS(t)

S(t) + (Y u1
1 (t)− π(t)) · dS0(t)

S0(t)
+ dR1(t)

=

[
r0Y

u1
1 (t) + π(t)

[
ϕ(α+ (1− λ1)δ − lnSt)− r0

]
+

(a1ν1 + a1ϑ1 − a1ϑ1q1(t))

]
dt+ π(t)σtdB3(t) + q1b1dB1(t),

Y u1
1 (0) = y1,

(7)

where λ1 is the income tax rate coefficient of a large company.
Since the small insurance company purchases reinsurance and only invests in the risk-free asset, its wealth process
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Y u2
2 (t) where u2 = {q2(t), t ∈ [0, T ]} is governed by the following dynamics:

dY u2
2 (t) = Y u2

2 (t)dS0(t)
S0(t)

− (1− λ2)dt+ dR2(t)

=

[
Y u2
2 (t)r0 − (1− λ2) + (a2ν2 + a2ϑ2 − a2ϑ2q2(t))

]
dt+ q2(t)b2dB2(t),

Y u2
2 (0) = y2,

(8)

where λ2 is the income tax rate coefficient of the small insurance company.
The large insurance company seeks to maintain its market dominance in terms of its wealth process, while the

small insurance company aims to catch up with the large company’s wealth. Without loss of generality, we assume
y1 > y2.

Let Y u1,u2(t) := Y u1
1 (t)− Y u2

2 (t) denote the difference between the surplus processes of the large and small
insurance companies. The dynamics of Y u1,u2(t) are given by

dY u1,u2(t) =

[
r0Y

u1,u2(t) + π(t)ϕ
[
α+ (1− λ1)δ − lnSt

]
−

(1− λ2) +

(
(a1ν1 + a1ϑ1 − a1ϑ1q1(t))− (a2ν2 + a2ϑ2

−a2ϑ2q2(t))

)]
dt+ π(t)σtdB3(t) + q1b1dB1(t)− q2b2dB2(t),

Y u1,u2(0) = y1 − y2 = y > 0.

(9)

Denote Y u1,u2

j (t) = yj for any fixed t ∈ [0, T ]. Then, we define the admissible strategy as follows.

Definition 2.1
The strategies u1 = {(π(t), q1(t), t ∈ [0, T ]} and u2 = {q2(t), t ∈ [0, T ]} are said to be admissible if

(i) {u1(t)}t∈[0,T ] and {u2(t)}t∈[0,T ] are
{
Ft

}
t∈[0,T ]

-progressively measurable processes.
(ii) {

u1 : E
[∫ T

0

(π2
t + q21(t)) dt

]
< ∞, 0 ≤ q1(t)

}
.{

u2 : 0 ≤ q2(t) ≤ 1
}
.

(iii) ∀ϱ ∈ [1,+∞) and ∀(t, y) ∈ [0, T ]×R, Equation (9) has a unique solution Y u1,u2(t) that satisfies
Et,y

[
sups∈[t,T ] |Y u1,u2(s)|ϱ

]
< +∞, where Et,y[·] is the conditional expectation given Y u1,u2(t) = y.

Let Π ∈
{
Π1,Π2

}
denote the admissible set of controls u ∈

{
u1, u2

}
, and let US denote the set of all admissible

strategies.

3. Problem formulation and verification theorem

We consider a utility function U : R → R where U is assumed to be increasing, strictly concave, and satisfies the
Inada conditions, that is,

∂xU(−∞) = +∞, ∂xU(+∞) = 0.

For a strategy u ∈ {u1, u2}, we define the value function as follows:

Gu1,u2(t, s, y) = E[U(Y u1,u2(T ))|Y u1,u2(t) = y, S(t) = s]. (10)

The large insurance company seeks to maximize the expected utility of the difference in surplus at the terminal
time by adopting a pair of reinsurance and investment strategies to maintain its surplus advantages, while the small
insurance company aims to minimize the same quantity to reduce its disadvantages. Suppose that one company’s
decision is assumed to be completely observed by its opponent.
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1. Large insurance company: The objective of the large insurance company is to select the optimal reinsurance
investment strategies that maximize the expected payoff Gu1,u2(t, s, y):

G(t, s, y) = sup
u1∈Π1

inf
u2∈Π2

Gu1,u2(t, s, y),

where G(t, s, y) is the lowest value of the game.
2. Small insurance company: The objective of the small insurance company is select an optimal reinsurance

strategy which minimizes the expected payoff Gu1,u2(t, s, y):

G(t, s, y) = inf
u2∈Π2

sup
u1∈Π1

Gu1,u2(t, s, y),

where G(t, s, y) is the upper value of the game.

A pair of strategy (u∗
1, u

∗
2) is said to achieve a Nash equilibrium or equivalently a saddle point for the game if the

following inequalities are satisfied for ∀(u1, u2) ∈ {Π1,Π2}

Gu1,u
∗
2 (t, s, y) ≤ Gu∗

1 ,u
∗
2 (t, s, y) ≤ Gu∗

1 ,u2(t, s, y) (11)

If the game has a saddle point (u∗
1, u

∗
2) then it is easy to check that

Gu∗
2 (t, s, y) = G

u∗
1 (t, s, y) (12)

The value function of the game is as follows:

G(t, s, y) = Gu∗
1 ,u

∗
2 (t, s, y) = Gu∗

2 (t, s, y) = G
u∗
1 (t, s, y) (13)

We say that the differential game between the large insurance company and the small insurance company has a
value if and only if

G(t, s, y) := G(t, s, y) = G(t, s, y). (14)

Let O = [0, T ]×R×R. For any Φ(t, s, y) ∈ C1,2,2(O), we define the following differential operator:

Au1,u2Φ(t, s, y) = Φt +

[
r0y + π(t)

(
ϕ
[
α+ (1− λ1)δ − ln s

]
− r0

)
− (1− λ2) +

(
(a1ν1 + a1ϑ1 − a1ϑ1q1(t))− (a2ν2 + a2ϑ2

− a2ϑ2q2(t))

)]
Φy +

[
ϕ(α+ (1− λ1)δ − ln s)s

]
Φs +

1

2

[
σ2s2

]
Φss

+
1

2

[
π2(t)σ2 + q21b

2
1 + q22b

2
2 − 2q1b1q2b2ρ12

]
Φyy +

[
π(t)σ2s

]
Φsy.

(15)

where Φt, Φy, Φs, Φyy, Φss and Φsy denote, respectively, the first-order partial derivative with respect to t, the
first-order and the second-order partial derivatives with respect to s and y.

For any given strategy u2 by the small insurance company, let Gu2(t, s, y) be the optimal expected utility function
of a large insurance company, that is,

Gu2(t, s, y) = sup
u1∈Π1

Gu1,u2(t, s, y). (16)

Then Gu2(t, s, y) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
u1∈Π1

Au1,u2Gu2(t, s, y) = 0.
(17)
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Similarly, for any given strategy u1 by the large insurance company, let G
u1
(t, s, y) be the optimal expected utility

function of a small company, that is,

G
u1
(t, s, y) = inf

u2∈Π2

Gu1,u2(t, s, y). (18)

Then G
u1
(t, s, y) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

inf
u2∈Π2

Au1,u2G
u1
(t, s, y) = 0. (19)

Definition 3.1
A pair of optimal investment strategies (u∗

1, u
∗
2) achieve a Nash equilibrium for the game if the following

inequalities are satisfied:
For all (u1, u2) ∈ Π

Gu1,u
∗
2 (t, s, y) ≤ Gu∗

1 ,u
∗
2 (t, s, y) ≤ Gu∗

1 ,u2(t, s, y). (20)

Following (17) and (19), Gu1,u2(t, s, y) satisfy the following HJB equations

sup
u1∈Π1

Au1,u
∗
2Gu1,u

∗
2 (t, s, y) = 0, 0 ≤ t ≤ T, (21)

inf
u2∈Π2

Au∗
1 ,u2Gu∗

1 ,u2(t, s, y) = 0 0 ≤ t ≤ T, (22)

with the boundary condition Gu1,u2(T, s, y) = U(y).
The following verification theorem is essential in solving the associated stochastic control problem.

Theorem 3.1
(Verification Theorem) If there exist a continuous function Ju1,u2(t, s, y) ∈ C1,2(O) and a pair of strategy (u∗

1, u
∗
2)

satisfying

u∗
1 = arg sup

u1∈Π1

Au1,u
∗
2Ju1,u

∗
2 (t, s, y). (23)

u∗
2 = arg inf

u2∈Π2

Au∗
1 ,u2Ju∗

1 ,u2(t, s, y). (24)

such that for ∀(t, s, y) ∈ O, Ju∗
1 ,u

∗
2 , (u∗

1, u
∗
2) satisfy equations (21) and (22) with the following property∫ t

0

E[(Ju1,u2
y (w, s, y))2]dw < ∞. (25)

then (u∗
1, u

∗
2) is a Nash equilibrium strategy and the value function of the game is Ju∗

1 ,u
∗
2 , which means

Gu∗
1 ,u

∗
2 (t, s, y) = Ju∗

1 ,u
∗
2 (t, s, y).

Proof
The proof follows the same argument as in [26].

4. Optimal reinsurance and investment

Suppose the insurance companies have an exponential utility function

U(γ) = − 1

γ
e−γ , γ > 0, (26)
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where γ is a constant absolute risk aversion parameter. The exponential utility function plays a key role in insurance
mathematics, since it is the only utility function under which the principle of “zero utility” a fair premium that is
independent of the level of reserve of an insurance company [17].

The optimal reinsurance and investment strategies of the large insurance company and the reinsurance strategy
of the small insurance company in the zero-sum stochastic differential game under the geometric mean reversion
(GMR) model with the expected exponential utility are given by the following theorem, where the large insurance
company seeks to maximize the expected exponential utility of the difference between the two insurance
companies, while the small insurance company aims to minimize the same quantity.

Theorem 4.1
In the context of the GMR model, the equilibrium strategies and the associated value functions for the problem
of maximizing the expected exponential utility for the large insurance company while minimizing it for the small
insurance company are presented as follows:

(i.) If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
≥ −γ

2 and ρ12 < 0, − ϑ1a1

γb1b2ρ12
≤ 1, then the optimal reinsurance strategies of the large

insurance company and the small insurance company is as follows:

(q∗1(t), q
∗
2(t)) =

(
0, 1

)
, (27)

π∗(t) =

(
[r0 − ϕ(α+ (1− λ1)δ − ln s]

γσ2
− sns

)
e−r0(T−t), (28)

and the value function is given by Equation (67).
(ii.) If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
≥ −γ

2 and ρ12 ≥ 0, then the optimal reinsurance strategies of the large insurance
company and the small insurance company is as follows:

(q∗1(t), q
∗
2(t)) =

(
(ϑ1a1)

b21
e−r0(T−t) +

b2ρ12
b1

, 1

)
, (29)

while the optimal investment strategy of the large insurance company is the same as that of Equation (28)
and the corresponding value function is given in equation (78).

(iii.) If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
≥ −γ

2 , ρ12 < 0 and er0T < − ϑ1a1

γb1b2ρ12
, we have optimal reinsurance strategies of the large

insurance company and the small insurance company given as Equation (29) while the optimal investment
strategy of the large insurance company is the same as that of Equation (28) and the corresponding value
function is given in equation (78).

(iv.) If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
≥ −γ

2 , ρ12 < 0, −
(

ϑ1a1

γb1b2ρ12

)
> 1 and er0T ≥ −

(
ϑ1a1

γb1b2ρ12

)
, we have optimal

reinsurance strategies of the large insurance company and the small insuance company as follows:

(q∗1(t), q
∗
2(t)) =

 (0, 1) if 0 ≤ t ≤ t1,(
ϑ1a1

γb21
e−r0(T−t) + b2ρ12

b1
, 1

)
if t1 < t ≤ T.

(30)

v. If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
< −γ

2 and er0T < − 2(ϑ2a2b1−ϑ1a1b2ρ12)
γb1b22(1−ρ12)

, then the optimal equilibrium reinsurance
strategies of the large insurance company and the small insurance company are given as follows:

(q∗1(t), q
∗
2(t)) =

(
ϑ1a1
γb21

e−r0(T−t), 0

)
if 0 ≤ t ≤ T. (31)

while the optimal investment strategy of the large insirance company is the same as that of Equation (28) and
the corresponding value function is given in Equation (93).
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vi. If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
< −γ

2 , er0T ≥ − 2(ϑ2a2b1−ϑ1a1b2ρ12)
γb1b22(1−ρ12)

and ρ12 ≥ 0, then the optimal equilibrium
reinsurance strategies of the large insurance company and the small insurance company are given as follows:

(q∗1(t), q
∗
2(t)) =


(

ϑ1a1

γb21
e−r0(T−t) + b2ρ12

b1
, 1

)
0 ≤ t ≤ t2,(

ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(32)

while the optimal investment strategy of the large insurance company is the same as that in Equation (28)
and the corresponding value function is given in Equation (98).

vii. If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
< −γ

2 , er0T ≥ − 2(ϑ2a2b1−ϑ1a1b2ρ12)
γb1b22(1−ρ12)

, ρ12 < 0, and −
(

ϑ1a1

γb1b2ρ12

)
≤ 1, then the optimal

equilibrium reinsurance strategies of the large insurance company and the small insurance company are
given as follows:

(q∗1(t), q
∗
2(t)) =

 (0, 1) 0 ≤ t ≤ t2,(
ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(33)

while the optimal investment strategy of the large company is the same as that in Equation (28) and the
corresponding value function is given in Equation (102).

viii. If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
< −γ

2 , er0T ≥ − 2(ϑ2a2b1−ϑ1a1b2ρ12)
γb1b22(1−ρ12)

, ρ12 < 0, −
(

ϑ1a1

γb1b2ρ12

)
> 1, and er0T <

−
(

ϑ1a1

γb1b2ρ12

)
, then the optimal equilibrium reinsurance strategies of the large insurance company and

the small insurance company are the same as that of (30), while the optimal investment strategy of the large
insurance company is the same as that in Equation (28) and the corresponding value function is given in
Equation (102).

xi. If ϑ2a2b1−ϑ1a1b2ρ12

b1b22(1−ρ12)
< −γ

2 , er0T ≥ − 2(ϑ2a2b1−ϑ1a1b2ρ12)
γb1b22(1−ρ12)

, ρ12 < 0, −
(

ϑ1a1

γb1b2ρ12

)
> 1, and er0T ≥

−
(

ϑ1a1

γb1b2ρ12

)
, then the optimal equilibrium reinsurance strategies of the large company and the small

insurance company is given as follows:

(q∗1(t), q
∗
2(t)) =



(
0, 1

)
if 0 ≤ t ≤ t3,(

(ϑ1a1)
b21

e−r0(T−t) + b2ρ12

b1
, 1

)
if t3 ≤ t ≤ t2,(

ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(34)

while the optimal investment strategy of the large insurance company is the same as that in Equation (28)
and the corresponding value function is given in Equation (106).

Remark 4.1
In practice, when the optimal reinsurance strategy of the company satisfies the condition

ϑ2a2b1 − ϑ1a1b2ρ12
b1b22(1− ρ212)

≥ −γ

2
,

the insurer retains a reasonable portion of the risk without excessive reliance on reinsurance. This threshold
aligns risk retention with tolerance, supports financial stability, and shapes investment choices. A moderately risk-
averse insurer retains more risk and invests in higher-yield assets, while highly risk-averse insurers cede more
risk and prefer safer investments. The condition ensures an effective balance between risk transfer, retention, and
profitability in dynamic reinsurance and investment markets.
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Proof
The proof to Theorem 4.1 is given in the Appendix section.

5. Optimal investment without reinsurance

In this section, only the investment problem is considered. In the investment-only case, the large insurance company
is allowed to invest its surplus in both a risk-free asset and a risky asset. The risky asset follows a Geometric Mean
Reversion (GMR) model that accounts for dividend payments and federal income tax. However, the company is
not allowed to purchase reinsurance. The wealth process of the large insurance company Ȳ π1(t)(t) is given by

dȲ π1(t)(t) = π1(t) ·
dS(t)

S(t)
+ (Ȳ π1(t)(t)− π1(t)) ·

dS0(t)

S0(t)

= r0Ȳ
π1(t)(t) + π1(t)

[
ϕ(α+ (1− λ1)δ − lnSt)− r0

]
+ π1(t)σtdB3(t).

(35)

Definition 5.1
A strategy ū1(t) = {π1(t), t ∈ [0, T ]} is said to be admissible if

(i) {ū1(t)}t∈[0,T ] is
{
Ft

}
-progressively measurable process.

(ii)

E
[∫ T

0

(π1(t))
2 dt

]
< ∞,

(iii) ∀ϱ ∈ [1,+∞) and ∀(t, y) ∈ [0, T ]×R, Equation (35) has a unique solution Ȳ ū1(t) which satisfies
Et,ȳ

[
sups∈[t,T ] |Ȳ ū1(s)|ϱ

]
< +∞, where Et,ȳ[·] is the conditional expectation given Ȳ ū1(t) = ȳ.

We denote the set of all admissible strategies by Π1. Suppose that a large company is interested in maximizing
the expected utility of its wealth at the end of the term T . For a strategy π1(t), we define the value function as
follows:

Ḡπ1(t)(t, s, ȳ) = Et,s,ȳ[U(Ȳ
π1(t)
T )|Ȳt = ȳ, S(t) = s]. (36)

The objective is to find the optimal value function

Ḡ(t, s, ȳ) = sup
π1∈Π1

Ḡπ1(t)(t, s, ȳ), (37)

and the optimal investment strategy π1(t) such that we have

Ḡπ1(t)(t, s, ȳ) = Ḡ(t, s, ȳ). (38)

The stochastic optimal control problem (37) is solved by maximizing the performance function (36) subject to the
wealth equation (35).

As in the previous sections, we let O = [0, T ]×R×R. We denote C1,2,2(O) as the space of functions 𭟋 such
that 𭟋 and its partial derivatives 𭟋t, 𭟋s 𭟋ȳ, 𭟋ȳȳ, 𭟋ss and 𭟋sȳ are continuous on O. We define a differential
operator for any 𭟋(t, s, ȳ) ∈ C1,2,2(O):

Lū1𭟋(t, s, ȳ) = 𭟋t +

[
r0ȳ + π1(t)

(
ϕ
[
α+ (1− λ1)δ − ln s

]
− r0

)]
𭟋ȳ

+

[
ϕ(α+ (1− λ1)δ − ln s)s

]
𭟋s +

1

2

[
σ2s2

]
𭟋ss +

1

2

[
π2
1(t)σ

2

]
𭟋ȳȳ

+
[
π1(t)σ

2s
]
𭟋sȳ.

(39)
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From which we obtain an optimal investment strategy as follows:

π∗
1(t) = −

(
ϕ(α+ (1− λ1)δ − ln s)− r0

)
σ2γ

𭟋ȳ

𭟋ȳȳ
− s

𭟋sȳ

𭟋ȳȳ
. (40)

We observe that π1(t) depends on the unknown value function 𭟋 and its partial derivatives.
Therefore, substituting (43) into (40), we get the following optimal investment strategy for the large insurance

company:

π∗
1(t) =

((
ϕ[α+ (1− λ1)δ − ln s]− r0

)
γσ2

− sns

)
e−r0(T−t). (41)

6. Numerical analysis on the reinsurance-investment problem

In this section, we present numerical analyses to illustrate our results. Since the equilibrium reinsurance strategy
of the small insurance company is 1 or 0, we focus on analysing the equilibrium reinsurance-investment strategy of
the large insurance company. Unless otherwise stated, the following baseline parameters are used throughout the
numerical analysis: r0 = 0.02, T = 10, t = 5, δ = 0.1, σ = 2, γ = 0.5, ϕ = 0.43, α = 7.55, λ1 = 0.30, a1 = 0.1,
a2 = 0.2, θ = 1.2, ρ12 = ±0.5, b1 = 1, st = 0.10, ns = 2 and b2 = 1.

6.1. Numerical analysis of the optimal investment strategy

(a) The effect of tax rate coefficient λ1 of income
tax on the optimal investment strategy π∗(t) of a
large company.

(b) The effect of interest rate r0 on the optimal
investment strategy π∗(t) of large insurance
company

Figure 1. Optimal investment strategy π∗(t) of the large insurance company against (a) tax rate coefficient λ1 and (b) interest
rate r0.

Figure 1(a) illustrates the sensitivity of the optimal investment strategy π∗(t) to the income tax rate coefficient
λ1. As λ1 increases, the optimal investment π∗(t) decreases. This occurs because higher taxes reduce after-tax
returns, making some investment opportunities less attractive. Consequently, investors tend to reduce allocations to
risky or high-yield assets and favor safer or tax-advantaged options to maintain their desired level of risk-adjusted
utility. In effect, higher taxation encourages a more cautious investment approach, diminishing expected wealth in
accordance with the investor’s risk aversion.

In Figure 1(b), we observe that the optimal investment strategy π(t) monotonically increases as the risk-free
interest rate r0 increases. This conclusion seems counterintuitive. As r0 increases, the return from the risk-free
asset becomes more attractive, which would typically lead the insurer to allocate more wealth to the risk-free asset
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(a) The effect of γ on the optimal investment
strategy π∗(t) of a large company.

(b) The effect of σ on the optimal investment
strategy π∗(t) of a large company.

Figure 2. Optimal investment strategy π∗(t) of a large company against (a) γ and (b) σ.

and reduce investment in the risky asset. Therefore, we would expect π(t) to decrease with increasing r0, not to
increase.

Figure 2 (a) shows the relationship between the optimal investment strategy π∗(t) and the risk aversion coefficient
γ. The higher the risk aversion coefficient γ, the more risk averse the insurer. As the risk aversion coefficient γ
increases, the insurer will reduce her investments in risky assets to control risk, hence the less π∗(t).

Figure 2 (b) shows the effects of volatility σ on the optimal investment strategy π(t). The optimal investment
strategy π(t) decreases with increasing volatility. The higher the volatility, the riskier the risky asset and the less
the insurance company will wish to invest in the risky asset.

6.2. Numerical analysis of the optimal reinsurance strategy

The relationship between the risk aversion coefficient γ and the optimal reinsurance strategy (q∗1(t)) is shown in
Figure 3, In both scenarios (a) and (b), the optimal reinsurance strategy q∗1(t) increases with a lower risk aversion
coefficient γ. This result suggests that the insurer will purchase less reinsurance, which is sometimes one of the
largest expenses for insurers, as he becomes less risk-averse. It is preferable for insurers in a market to rely less on
reinsurance, since this could result in an insurer’s disproportionately large risk and eventual chance of insolvency.

(a) The effect of γ on the optimal reinsurance
strategy q∗1(t) with positive coefficient

(b) The effect of γ on the optimal reinsurance
strategy q∗1(t) with negative coefficient.

Figure 3. Optimal reinsurance strategy q∗1(t) against γ.
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Figure 4 shows the relationship between the optimal reinsurance strategy q∗1(t) and b1. In scenario (a) when
ρ12 > 0 the optimal reinsurance strategy q∗1(t) increases as b1 decreases. The insurance company will take on more
risk independently and buy less reinsurance when b1 declines. In scenario (b) when ρ12 < 0 the optimal reinsurance
strategy q∗1(t) decreases from negative values as b1 increases. The insurance company will buy more reinsurance
while taking on less risk on its own when b1 increases.

(a) The effect of b1 on the optimal reinsurance
strategy q∗1(t) with positive coefficient

(b) The effect of b1 on the optimal reinsurance
strategy q∗1(t) with negative coefficient.

Figure 4. Optimal reinsurance strategy q∗1(t) against b1.

Figures 5 (a) and (b) indicate that b2 has a positive influence on the reinsurance strategy of the large insurance
company q∗1(t) if ρ12 > 0 and a negative effect if ρ12 < 0.This can be understood by the fact that the claims
processes of the large insurance company and the small insurance company have more serious fluctuations, which
cause b2 to increase when ρ12 > 0. As a result, the large insurance company will take on greater risk, whereas when
ρ12 < 0, the claim process of the large insurance company fluctuates less and the volatility of the small insurance
company increases. So, there will be a lesser risk for the large insurance company.

(a) The effect of b2 on the optimal reinsurance
strategy q∗1(t) with positive coefficient

(b) The effect of b2 on the optimal reinsurance
strategy q∗1(t) with negative coefficient.

Figure 5. Optimal reinsurance strategy q∗1(t) against b2.

Figure 6 shows that the optimal reinsurance strategy q∗1(t) increases with an increase in ρ12. If ρ12 increases, the
amount of money invested in risky assets will decrease, while the cost of paying reinsurance will increase, and the
insurance company’s retention level will decrease. Therefore, the optimal reinsurance strategy q∗1(t) increases with
increasing ρ12.

Figure 7 shows the effects of ϑ1 on the large insurance company reinsurance strategy q∗1(t) with positive
and negative correlation coefficients. We see in both (a) and (b) that ϑ1 is increasing, which produces a greater
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Figure 6. The effect of ρ12 on the optimal reinsurance strategy q∗1(t) with positive coefficient.

(a) The effect of θ on the optimal reinsurance
strategy q∗1(t) with positive coefficient

(b) The effect of ϑ1 on the optimal reinsurance
strategy q∗1(t) with negative coefficient.

Figure 7. Optimal reinsurance strategy q∗1(t) against ϑ1.

reinsurance strategy. This is because the cost of reinsurance will increase as ϑ1 increases and the large insurance
company would rather assume more risk on its own and buy less reinsurance to maintain steady revenue.

7. Conclusion

In this article, we investigate the reinsurance and investment problem for both large and small insurance companies,
as well as the investment-only problem for the large insurance company. The large insurance company is assumed
to have sufficient assets to invest in both a risk-free asset and a risky asset, with the price process of the risky asset
following the Geometric Mean Reversion (GMR) model. In addition, the large insurance company is assumed to
pay dividends and federal income tax. The small insurance company is assumed to invest only in the risk-free
asset and is subject to federal income tax on the interest earned. Both companies purchase reinsurance, with the
reinsurance premium determined by the expected value principle. We first formulate a general zero-sum game,
where the large insurance company seeks to maximize the expected exponential utility of terminal wealth to
maintain its surplus advantage, while the small insurance company seeks to minimize the same quantity to reduce
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its disadvantage. We provide the corresponding verification theorem. Then, we solved two cases: the investment-
reinsurance case and the investment-only case, deriving closed-form expressions for the optimal strategies and
their corresponding value functions. Finally, a numerical analysis was performed to illustrate the impact of model
parameters on both the reinsurance-investment and investment-only optimal strategies. The key findings indicate
that the tax rate coefficient λ1 for the large company influences its optimal investment strategy in both scenarios,
whether reinsurance is available or not. Furthermore, it was observed that the optimal investment strategy remains
unchanged regardless of the presence or absence of reinsurance. Furthermore, the tax rate coefficient λ2 for the
small company does not impact the optimal investment strategy of the large insurance company.

Future research could extend this study by examining a scenario in which both companies have the opportunity
to invest in risky assets, allowing an analysis of the impact of the income tax coefficient on the small company.

Allowing a small insurer to invest in risky assets, rather than restricting it to risk-free investments, alters its
strategic choices and the resulting game-theoretic outcomes. With access to risky assets, the insurer can pursue
higher potential returns while managing increased risk, which may reduce its reliance on reinsurance and enhance
expected wealth. This expanded strategy space affects the Nash equilibrium, as both small and large insurers
now jointly optimize reinsurance and investment decisions, taking into account factors such as the correlation
between investment returns and insurance risks, their risk aversion, and expected asset returns. Consequently,
equilibrium strategies may adjust, with the small insurer retaining more risk or modifying reinsurance levels
to complement investment performance. The associated value functions become more complex, as wealth now
depends on stochastic investment returns, increasing both potential utility and variability. Overall, permitting
risky investments creates an integrated optimization problem that more accurately reflects real-world insurer
behavior, where investment and reinsurance decisions are interconnected and jointly determine optimal strategies
and expected outcomes.

In this context, the choice of utility function becomes particularly important. Exponential utility functions are
widely applied in reinsurance and investment games because they are mathematically tractable and lead to closed-
form solutions. A defining feature is that they imply constant absolute risk aversion (CARA), meaning that an
individual’s risk aversion does not depend on their wealth level. While this simplifies analysis, it also introduces
limitations. In practice, risk aversion often decreases as wealth increases [10], which is better captured by constant
relative risk aversion (CRRA) utility forms such as power or logarithmic utility. Exploring CRRA utilities in the
context of risky investments would therefore provide a more realistic assessment of optimal strategies for both
insurers.
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Appendices
A. Proof of Theorem 4.1

For the exponential utility function given in (26), we look for a candidate of the HJB (21) and (22) in the form

G(t, s, y) = − 1

γ
e−γ[er0(T−t)(y−m(t))+n(t,s)], (42)

with the boundary conditions given by n(T ) = 1,m(T ) = 0. Taking the partial derivatives of (42), we obtain

Gt = −γ
[
− r0γe

r0(T−t)(y −m(t))−mte
r0(T−t) + nt

]
G, Gy = −γer0(T−t)G,

Gs = −γnsG, Gss = (γ2n2
s − γnss)G, Gsy = γ2er0(T−t)nsG, Gyy = γ2e2r0(T−t)G.

(43)
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From (43), we observe that Gyy < 0, so the infimum in (22) is reached at q∗2(t) = 0 or q∗2(t) = 1. Suppose that

q̃2(t) =

(
−ϑ2a2b1 + ϑ1a1b2ρ12

b1b22(1− ρ212)

)
Gy

Gyy
. (44)

For a large company, the optimal investment and reinsurance strategies are given as follows:

π∗(t) = −

(
ϕ(α+ (1− λ1)δ − ln s)− r0

)
σ2

Gy

Gyy
− sGsy

Gyy
, (45)

and
q∗1(t) =

(ϑ1a1)

b21

Gy

Gyy
+

q∗2(t)b2ρ12
b1

. (46)

By substituting π∗(t), q∗1(t) and q∗2(t) into (21) and (22) we obtain the following:

Gt + r0yGy −
1

2

ϕ2(α+ (1− λ1)δ − ln s)2G2
y

σ2Gyy
+

r0[ϕ(α+ (1− λ1)δ − ln s)]G2
y

σ2Gyy
− s[ϕ(α+ (1− λ1)δ − ln s)]GyGsy

Gyy

− 1

2

r20G
2y

σ2Gyy
+

sr0GyGsy

Gyy
− (1− λ2)Gy + a1ν1Gy + a1ϑ1Gy−

a1ϑ1q
∗
1(t)Gy − a2ν2Gy − a2ϑ2Gy + a2ϑ2q

∗
2(t)Gy+

[ϕ(α+ (1− λ1)δ − ln s)]sGs +
1

2
σ2s2Gss −

s2σ2G2
sy

Gyy

+
1

2
q∗1(t)

2b21Gyy +
1

2
q∗2(t)

2b22Gyy − q∗1(t)b1q
∗
2(t)b2ρ12Gyy = 0.

(47)

By inserting the derivatives in (43) into (47), we obtain

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2

+
r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

+m(t)r0e
r0(T−t)−

mte
r0(T−t) − (1− λ2)e

r0(T−t) + a1ν1e
r0(T−t) + a1ϑ1e

r0(T−t)

− a1ϑ1q
∗
1(t)e

r0(T−t) − a2ν2e
r0(T−t) − a2ϑ2e

r0(T−t) + a2ϑ2q
∗
2(t)e

r0(T−t)−
1

2
q∗1(t)

2b21γe
r0(T−t) − 1

2
q∗2(t)

2b22γe
r0(T−t) + q∗1(t)b1q

∗
2(t)b2γρ12e

r0(T−t) = 0.

(48)

We solve (21) and (22) in the following cases.

A.1. Case 1
ϑ2a2b1 − ϑ1a1b2ρ12

b1b22(1− ρ212)
≥ −γ

2
. (49)

If
ϑ2a2b1 − ϑ1a1b2ρ12

b1b22(1− ρ212)
≥ −γ

2
,

then
q̃2(t) <

1

2
.
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The optimal equilibrium reinsurance strategies of a large company and a small company are given as follows:

q∗2(t) = 1,

and
q̃1(t) =

ϑ1a1
b21

Gy

Gyy
+

b2ρ12
b1

. (50)

Equation (48) shows that q̃1(t) ∈ [0,∞) is equivalent to

t ≥ t1 = T − 1

r0
ln

(
ϑ1a1

γb1b2ρ12

)
. (51)

A.1.1. Conditions of Case 1 Condition 1.
If ρ12 > 0 and er0T < ϑ1a1

γb1b2ρ12
or when ρ12 < 0

and ϑ1a1

γb1b2.ρ12
≥ 1, then the optimal reinsurance strategies of a large company and a small company are given by

(q∗1(t), q
∗
2(t)) =

(
0, 1

)
. (52)

By substituting equation (27) into (48), we obtain

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

+ er0(T−t)

{
m(t)r0 −mt − (1− λ2) + a1ν1+

a1ϑ1 − a2ν2 − a2ϑ2 + a2ϑ2 −
1

2
b22γ

}
= 0.

(53)

Equation (53) can be decomposed into two equations by separating variables:

mt −m(t)r0 + (1− λ2)− a1ν1 − a1ϑ1 − a2ν2 +
1

2
b22γ = 0. (54)

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

= 0.

(55)

Taking into account the boundary condition m(T ) = 0, the solution to equation (72) is

m(t) = − 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 + a2ν2

]
[1− e−r0(T−t)]+

1

2r0
b22γ[1− e−r0(T−t)].

(56)

For equation (55), we are going to have the following power transformation.
If we let n(t, s) = N(t, w) where w = s−2 then we have the following derivatives.

nt = Nt ns = −2s−3Nw, nss = 6s−4Nw + 4s−6Nww. (57)

with the boundary condition N(T,w) = 0. By substituting equation (57) into (55) we have the following equation:

Nt − (2r0 − 3σ2)wNw + 2σ2γw2N2
w + 2σ2w2Nww +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

= 0.

(58)
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We conjecture a solution to (58) as follows

N(t, w) = J(t) +K(t)w, (59)

where J(T ) = K(T ) = 0, with the following derivatives

Nt = Jt +Ktw, Nw = K(t), Nww = 0. (60)

By substituting the equation (60) into (58) we obtain

Jt +Ktw − (2r0 − 3σ2)wK(t) + 2σ2γw2K2(t) +
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

= 0.

(61)

We are going to have the following splitting equations from

Jt +
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

= 0. (62)

Kt − (2r0 − 3σ2
1)K(t) = 0. (63)

2σ2γK2(t) = 0. (64)

We obtain the solutions to (62), (63) and (64) by taking the following boundary conditions:
J(T ) = K(T ) = 0.

J(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

]
(T − t). (65)

K(t) = 0. (66)

Taking the boundary condition into account, we obtain

G(t, s, y) = − 1

γ
e−γ[er0(T−t)(y−m1(t))+J1(t)+K(t)s−2]. (67)

where

m1(t) = − 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 + a2ν2

]
[1− e−r0(T−t)]

+
1

2r0
b22γ[1− e−r0(T−t)].

(68)

J1(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

]
(T − t). (69)

and
K(t) = 0. (70)

Condition 2.
If ρ12 > 0 and ϑ1a1

γb1b2ρ12
≥ 1 or when ρ12 < 0 and er0T < ϑ1a1

γb1b2ρ12
≥ 1, then the optimal reinsurance strategies of a

large company and a small company are given by

(q∗1(t), q
∗
2(t)) =

(
(ϑ1a1)

b21
e−r0(T−t) +

b2ρ12
b1

, 1

)
. (71)
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By substituting equation (71) into (48), we obtain the following :

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2

+
r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21
+

er0(T−t)

{
m(t)r0 −mt − (1− λ2) + a1ν1 + a1ϑ1 − a2ν2 −

a1ϑ1b2ρ12
b1

−

1

2

a21ϑ
2
1γe

−2r0(T−t)

b21
+

1

2
b22γ(ρ

2
12 − 1)

}
= 0.

(72)

Equation (72) can be decomposed in the following equations

mt −m(t)r0 − (1− λ2)− a1ν1 − a1ϑ1 + a2ν2 +
a1ϑ1b2ρ12

b1
+

1

2

a21ϑ
2
1γe

−2r0(T−t)

b21
− 1

2
b22γ(ρ

2
12 − 1) = 0.

(73)

and

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21
= 0.

(74)

Taking the boundary condition m(T ) = 0 into account, the solution to equation (73) is as follows;

m(t) = − 1

r0

[
(1− λ2) + a1ν1 + a1ϑ1 − a2ν2 +

a1ϑ1b2ρ12
b1

+

1

2
b22γ(ρ

2
12 − 1)

]
[1− e−r0(T−t)] +

1

2

a21ϑ
2
1γ

r0b21
[e2r0(T−t) − er0(T−t)].

(75)

Equation (74) can be solved also by power transformation method and we obtain the following by taking the
following boundary conditions:
J(T ) = K(T ) = 0.

J(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2

+
1

2

r20
γσ2

− a21ϑ
2
1

b21

]
(T − t).

(76)

K(t) = 0. (77)

Taking the boundary condition into account, we obtain

G(t, s, y) = − 1

γ
e−γ[er0(T−t)(y−m2(t))+J2(t)+K(t)s−2], (78)

where

m2(t) =− 1

r0

[
(1− λ2) + a1ν1 + a1ϑ1 − a2ν2 +

a1ϑ1b2ρ12
b1

+
1

2
b22γ(ρ

2
12 − 1)

]
[1− e−r0(T−t)] +

1

2

a21ϑ
2
1γ

r0b21
[e2r0(T−t) − er0(T−t)].

(79)
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and

J2(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21

]
(T − t).

(80)

and
K(t) = 0. (81)

Condition 3.
If ρ12 < 0 and 1 < ϑ1a1

γb1b2ρ12
and ϑ1a1

γb1b2ρ12
≤ er0T , then the optimal reinsurance strategies of a large company and a

small company are given as follows:

(q∗1(t), q
∗
2(t)) =

 (0, 1) if 0 ≤ t ≤ t1,(
ϑ1a1

γb21
e−r0(T−t) + b2ρ12

b1
, 1

)
if t1 ≤ t ≤ T.

(82)

Since G(t, y, s) is continuous at t = t1 and taking the Boundary conditions into account, we obtain the following
value condition

G(t, s, y) =

{
− 1

γ e
−γ[er0(T−t)(y−m3(t))+J3(t)+K(t)s−2], 0 ≤ t ≤ t1,

− 1
γ e

−γ[er0(T−t)(y−m2(t))+J2(t)+K(t)s−2], t1 ≤ t ≤ T,
(83)

where

m3(t) =− 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 + a2ν2

]
[1− e−r0(t1−t)]

+
1

2r0
b22γ[e

−r0(t1−t) − e−r0(T−t)].

(84)

and

J3(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2

+
1

2

r20
γσ2

]
(T − t1).

(85)

and K(t) = 0, m2(t) and J2(t) are given by equations (79) and (80)

A.2. Case 2

If
ϑ2a2b1 − ϑ1a1b2ρ12

b1b22(1− ρ12)
< −γ

2
,

and
er0T < −2(ϑ2a2b1 − ϑ1a1b2ρ12)

γb1b22(1− ρ12)
,

then
q̃2(t) <

1

2
.
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The optimal equilibrium reinsurance strategies of a large company and a small company are given as follows:

(q∗1(t), q
∗
2(t)) =

(
ϑ1a1
γb21

e−r0(T−t), 0

)
if 0 ≤ t ≤ T. (86)

Equation (48) can be simplified as follows:

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss+

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2

+
1

2

r20
γσ2

− a21ϑ
2
1

b21
+ er0(T−t)

{
m(t)r0 −mt − (1− λ2) + a1ν1+

a1ϑ1 − a2ν2 − a2ϑ2 −
1

2

a21ϑ
2
1γe

−2r0(T−t)

b21

}
= 0.

(87)

Equation (87) can be decomposed in the following equations

mt −m(t)r0 + (1− λ2)− a1ν1 − a1ϑ1 + a2ν2 + a2ϑ2 +
1

2

a21ϑ
2
1γe

−2r0(T−t)

b21
= 0. (88)

and

nt + r0sns +
1

2
s2σ2γn2

s +
1

2
σ2s2nss +

1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21
= 0.

(89)

Taking the boundary condition m(T ) = 0 into account, the solution to equation (88) is as follows;

m(t) =− 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 − a2ν2 − a2ϑ2

]
[1− e−r0(T−t)]

+
1

2

a21ϑ
2
1γ

r0b21
[e2r0(T−t) − er0(T−t)].

(90)

Equation (89) can be solved also by power transformation method and we obtain the following by taking the
following boundary conditions: J(T ) = K(T ) = 0.

J(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21

]
(T − t).

(91)

K(t) = 0. (92)

Taking the boundary condition into account, we obtain

G(t, s, y) = − 1

γ
e−γ[er0(T−t)(y−m4(t))+J4(t)+K(t)s−2], (93)
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where

m4(t) =− 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 − a2ν2 − a2ϑ2

]
[1− e−r0(T−t)]

+
1

2

a21ϑ
2
1γ

r0b21
[e2r0(T−t) − er0(T−t)].

(94)

J4(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21

]
(T − t).

(95)

and
K(t) = 0. (96)

A.3. Case 3

If
ϑ2a2b1 − ϑ1a1b2ρ12

b1b22(1− ρ12)
< −γ

2
,

and

er0T ≥ −2(ϑ2a2b1 − ϑ1a1b2ρ12)

γb1b22(1− ρ12)
,

Then the equilibrium optimal reinsurance strategies of a small company are given as follows:

q∗2(t)) =

{
1, for 0 ≤ t ≤ t2.

0 for t2 ≤ t ≤ T,

where

t2 = T − 1

r0
ln

(
2(ϑ2a2b1 − ϑ1a1b2ρ12)

γb1b22(1− ρ12)

)
.

Let t3 = min(t1, t2).

A.3.1. Conditions of Case 3 Condition 1.
If ρ12 > 0 when 0 < t ≤ t2, Then the optimal reinsurance strategies of a large company and a small company are
expressed as those in equation (71) and when t2 < t ≤ T , q∗1(t) and q∗2(t) are the same as those in (86)

(q∗1(t), q
∗
2(t)) =


(

(ϑ1a1)
b21

e−r0(T−t) + b2ρ12

b1
, 1

)
0 ≤ t ≤ t2,(

ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(97)

Similarly, the expression of the value function is given as follows:

G(t, s, y) =

{
− 1

γ e
−γ[er0(T−t)(y−m5(t))+J5(t)+K(t)s−2], 0 ≤ t ≤ t1,

− 1
γ e

−γ[er0(T−t)(y−m4(t))+J4(t)+K(t)s−2], t1 ≤ t ≤ T,
(98)
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where

m5(t) = − 1

r0

[
(1− λ2) + a1ν1 + a1ϑ1

]
[1− e−r0(T−t)]−(

a1ϑ1b2ρ12 + a2ν2b1
r0b1

+
1

2
b22γ(ρ

2
12 − 1)

)
[1− e−r0(t2−t)]+

1

2

a21ϑ
2
1γ

r0b21
[e2r0(T−t) − er0(T+t−2t2)].

(99)

J5(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

− a21ϑ
2
1

b21

]
(T − t).

(100)

K(t) = 0 while m4(t) and J4(t) are given by equations (94) and (95)

Condition 2.
If ρ12 < 0 and − ϑ1a1

γb1b2ρ12
≤ 1, when 0 ≤ t ≤ t2, the optimal reinsurance strategies of the large and small companies

are expressed as those in equation (52) and when t2 ≤ t ≤ T , then the optimal reinsurance strategies are the same
as those in equation (86):

(q∗1(t), q
∗
2(t)) =

 (0, 1), if 0 ≤ t ≤ t2,(
ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(101)

where the value function is given by

G(t, s, y) =

{
− 1

γ e
−γ[er0(T−t)(y−m6(t))+J6(t)+K(t)s−2], 0 ≤ t ≤ t2,

− 1
γ e

−γ[er0(T−t)(y−m4(t))+J4(t)+K(t)s−2], t2 ≤ t ≤ T.
(102)

where

m6(t) =− 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 + a2ν2

]
[1− e−r0(T−t)]

+
1

2r0
b22γ[1− e−r0(t2−t)].

(103)

J6(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

]
(T − t2).

(104)

also K(t) = 0, m4(t) and J4(t) are given by equations (94) and (95).

Condition 3.
If ρ12 < 0 and − ϑ1a1

γb1b2ρ12
> 1 and er0T ≥ − ϑ1a1

γb1b2ρ12
> 1, when 0 ≤ t ≤ t3, then the optimal reinsurance strategies

of a large company and a small company are the same as those in equation (52), when t3 ≤ t ≤ t2 the optimal
reinsurance strategies are expressed as those in equation (71) and when t2 ≤ t ≤ T , the optimal reinsurance
strategies are shown in equation (86) as follows;
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(q∗1(t), q
∗
2(t)) =



(
0, 1

)
if 0 ≤ t ≤ t3,(

(ϑ1a1)
b21

e−r0(T−t) + b2ρ12

b1
, 1

)
if t3 ≤ t ≤ t2,(

ϑ1a1

γb21
e−r0(T−t), 0

)
if t2 ≤ t ≤ T.

(105)

The value function is given as follows:

G(t, s, y) =


− 1

γ e
−γ[er0(T−t)(y−m7(t))+J7(t)+K(t)s−2] 0 ≤ t ≤ t3,

− 1
γ e

−γ[er0(T−t)(y−m5(t))+J5(t)+K(t)s−2] t3 ≤ t ≤ t2,

− 1
γ e

−γ[er0(T−t)(y−m4(t))+J4(t)+K(t)s−2] t2 ≤ t ≤ T.

(106)

where

m7(t) =− 1

r0

[
− (1− λ2) + a1ν1 + a1ϑ1 + a2ν2

]
[1− e−r0(T−t)]+

1

2r0
b22γ[1− e−r0(t2−t)].

(107)

J7(t) =

[
1

2

ϕ2(α+ (1− λ1)δ − ln s)2

γσ2
+

r0[ϕ(α+ (1− λ1)δ − ln s)]

γσ2
+

1

2

r20
γσ2

]
(T − t3).

(108)

where K(t) = 0, m4(t), J4(t), m5(t) and J5(t) are given by equations (94), (95), (99) and (100).
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