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Abstract Dental anomalies and diseases are among the most prevalent health concerns world-wide, and their early
and precise diagnosis is critical to ensuring effective treatment and improved patient outcomes. Traditional diagnostic
approaches, particularly conventional radiography, are often time-consuming and may not provide sufficient diagnostic
accuracy. To address these limitations, this study proposes a robust deep learning framework for the automated classification
of dental conditions from intraoral RGB images. Three publicly available datasets—Oral Diseases (six classes), Oral
Infection (six classes), and Teeth Dataset (five classes)—covering a broad spectrum of dental anomalies and exhibiting
notable class imbalance were utilized. Five state-of-the-art convolutional neural network (CNN) architectures, namely
Efficient-NetB3, EfficientNetB0, ResNet50, DenseNet121, and InceptionV3, were systematically evaluated using a unified
transfer learning pipeline. Techniques such as stratified 5-fold cross-validation, ensemble inference, focal loss, class
weighting, and label smoothing were employed to enhance generalization and mitigate class imbalance. EfficientNetB3
emerged as the optimal model, achieving accuracies of 95.4%, 89.9%, and 99.3% on the three datasets, with Kappa
values reaching 0.989. Grad-CAM visualizations confirmed clinically meaningful feature localization, strengthening
interpretability. The proposed framework demonstrates strong potential for integration into intelligent clinical decision-
support systems, offering an optimal balance between diagnostic accuracy, computational efficiency, and transparency to
assist dental practitioners in timely and reliable decision-making.
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1. Introduction

Oral health is a fundamental component of overall health and well-being; however, it continues to be deprioritized
globally, particularly in low- and middle-income countries. Oral and dental conditions such as dental caries,
gingivitis, hypodontia, tooth staining, and calculus deposition affect more than 3.5 billion individuals worldwide.
When left untreated, these conditions may lead to pain, infection, tooth loss, and even systemic complications,
thereby exerting a significant negative impact on quality of life [1, 2].

Conventional diagnostic methods are based on the manual examination or interpretation of radiographic reports
[3, 4]. However, these methods suffer from subjectivity, intra-observer variability, and potential diagnostic errors
[5, 6]. In contrast, RGB intraoral images can be obtained quickly and non-invasively without radiation exposure,
making them highly suitable for routine examinations, early disease screening, and telehealth applications. Their
ease of acquisition and cost-effectiveness further support their integration into clinical workflows and large-scale
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dental care programs [7]. The development of artificial intelligence in dental field, especially deep learning (DL),
has the potential to revolutionize dental diagnostics by means of automation, enhancement of accuracy, and
acceleration of clinical decision-making process [8].

Among the most effective subsets of DL models are convolutional neural networks (CNNs), which are
particularly valuable in medical image analysis due to their robust feature extraction capabilities. In dentistry,
CNNs have demonstrated notable success in applications such as tooth structure segmentation [9], detection of
caries and perio-dontal diseases [10], and interpretation of complex radiographs [11]. Despite these advances, the
performance of automated classification systems continues to face significant challenges, including imbalanced
class distributions, subtle inter-class visual differences, and variations in image quality [12].

In order to address these issues, researchers apply various methodologies such as transfer learning, data
augmentation and multi-modal feature fusion. Pretrained CNN models like ResNet, DenseNet, and EfficientNet
have achieved good predictive performances in dental imaging tasks without much labeled data [13, 14].
Furthermore, it was shown that the hybrid systems that embed the CNN-based feature extraction and the
conventional classifiers such as SVM or the ensemble techniques (e.g., weighted XGBoost) have achieved better
classification accuracy and robustness for dental radio-graph analysis [15, 16].

Beyond clinical and technical performance, deep learning methods hold significant potential for expanding
access to dental care, particularly in underserved and remote regions. When effectively integrated into clinical
protocols, Al-based systems can facilitate early disease detection, improve diagnostic consistency, and help reduce
disparities in the delivery of oral health services [17].

However, the majority of previous studies on dental image classification only focus on binary or small-scale
problems and they lack the same benchmark dataset, inter-pretability and practicality of the results. For example,
Ikhwani et al. (2024) [18] applied transfer learning models based on sub-regions of dental datasets, but did not
cover multi-class classification, model interpretability or ensemble prediction techniques.

In parallel with the advancement of predictive performance, the interpretability of artificial intelligence systems
has emerged as a critical factor for their adoption in clinical practice. Explainable Al (XAI) provides transparency
into the decision-making processes of complex deep learning models, allowing clinicians to understand the
rationale behind predictions and to build trust in automated diagnostic tools [19, 20]. In dental imaging,
XAI techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) enable the visualization
of discriminative regions in intraoral images, thereby aligning algorithmic outputs with clinically relevant
features. This interpretability reduces the risk of misdiagnosis and facilitates the integration of Al systems into
evidence-based dentistry [21].

In this paper, we introduce a fully end-to-end deep learning architecture for multi-class classification of dental
anomalies and diseases from intraoral RGB images. Our contributions include:

* A comprehensive benchmarking of five state-of-the-art deep learning models was conducted on three diverse
dental image datasets, leading to the identification of EfficientNetB3 as the optimal architecture;

* A comprehensive end-to-end pipeline was developed, integrating focal loss, mixed-precision training, and
stratified 5-fold cross-validation to ensure robust and reliable learning;

* Ensemble predictions were used to enhance result stability, and Grad-CAM visualizations were applied to
EfficientNetB3 to ensure clinical interpretability;

* EfficientNetB3 model achieved high classification accuracies: 95.4% (Oral Diseases), 89.9% (Oral Infection),
and 99.3% (Teeth Dataset);

* The proposed framework provides a scalable, interpretable, and clinically applicable Al-based dental
diagnostics system.

The structure of the paper is organized as follows: Section 2 reviews recent advancements in deep learning
methodologies applied to dental diagnostics. Section 3 describes the proposed methodology in detail, including
datasets, image preprocessing procedures, CNN model architecture, and experimental protocols. Section 4 presents
experimental results, evaluating model performance across various dental conditions. Section 5 discusses the
obtained results in the context of existing literature. Finally, Section 7 concludes the study, highlighting the practical
implications and outlining future perspectives for Al integration in dental care.
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2. Related Works

Recent advancements in deep learning have made substantial contributions to the field of dental diagnostics,
especially in the context of image-based classification of diseases. A number of works have investigated the use of
CNNs and hybrid deep learning models to automate dental anomaly and diseases detection.

Zhu et al. (2023) [6] developed a convolutional neural network (CNN)-based model for the detection of multiple
dental diseases using panoramic radiographs. Their study demonstrated the feasibility of employing CNNs within
radiology-oriented dental workflows, where panoramic imaging is often used for initial screening. By processing
a wide range of oral conditions within a single framework, they showed that CNNs could support clinical
decision-making. However, the approach relied primarily on 2D panoramic images and lacked cross-validation
and interpretability mechanisms, which limits its reproducibility compared to our study that emphasizes robust
validation and model explainability.

Pang et al. (2025) [7] proposed a CNN-based grading system for assessing tooth wear severity using RGB
intraoral photographs. This method allowed the detection of subtle dental changes, such as early enamel wear,
that are often overlooked in routine visual inspections. Their work highlighted the complementary role of intraoral
RGB imaging in capturing surface-level deterioration alongside radiographic workflows and demonstrated that
CNN s can assist clinicians in tracking progressive tooth wear. Nonetheless, their model was designed for a single
anomaly type rather than a general multiclass disease classification framework, which is the focus of our research.

Li et al. (2021) [9] introduced an automatic gingivitis screening model that combined lesion localization with
CNN-based classification. This two-step approach first identified inflamed gingival areas and then classified their
condition, offering an in-terpretable framework for periodontal diagnosis. Clinically, this method is valuable
because it supports early detection of gum disease that could be missed without magnified inspection. While the
study confirmed the potential of deep learning for targeted periodontal detection, it did not explore comprehensive
anomaly classification across multiple dental conditions, which our framework addresses.

Bhat et al. (2024) [11] designed a task-specific CNN architecture to improve the detection of dental caries
and structural anomalies in panoramic radiographs. Their results showed that customized CNNs optimized for
a particular imaging modality can outperform generic pre-trained networks in certain diagnostic scenarios. By
focusing on dental caries and related structural irregularities, the study demonstrated the value of architecture
optimization and domain-specific training. However, it primarily addressed binary or limited-class tasks and did not
employ cross-dataset validation or ensemble techniques, whereas our work provides a multiclass, cross-validated,
and ensemble-enhanced approach.

Alsakar et al. (2024) [14] developed a multi-label dental disorder classification framework that integrated
MobileNetV?2 with a Swin Transformer in a bagging ensemble. By combining convolutional and transformer-based
feature extractors, their approach improved performance in handling complex, multi-label dental images. This work
demonstrated the potential of hybrid CNN-Transformer pipelines to enhance model generalization. However, the
complexity of such ensembles may limit their scalability in real clinical settings, while our framework remains
lightweight and clinically deployable.

Li (2024) [15] introduced DA-Net, a classification-guided CNN tailored for detecting subtle dental anomalies
in maxillofacial images. By guiding feature extraction with classification signals, DA-Net improved sensitivity to
early pathological changes that could otherwise go unnoticed. This study emphasized the importance of designing
network architectures specific to dental imaging to achieve higher diagnostic precision. Our work builds on this
principle but extends it to a comprehensive, multi-class classification framework validated across multiple intraoral
datasets.

Parkhi et al. (2025) [17] proposed a hybrid architecture using CNN, ResNet, Vision Transformers (ViT) with
confidence weighting. Their model had an accuracy of 87.6% and was designed for clinical use. Their results
confirm the potential of deep learning for dental workflows.

Ikhwani et al. (2024) [18] conducted a comparative study using the same three datasets employed in this work:
Oral Diseases, Oral Infection, and Teeth. Their research benchmarked ResNet50V?2 and EfficientNet, achieving
classification accuracies ranging from 81.6% to 82.5%. However, their approach did not incorporate ensemble
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learning, cross-validation, or interpretability techniques such as Grad-CAM, which are integral components of the
present study.

Hassanein et al. (2024) [22] utilized SMOTE to solve class imbalance in dental data and examined different
efficient net versions from B3 to B7. They found that EfficientB5 yielded best performance (F1-score: 0.87,
precision: 0.90). These results underscore the importance of model scaling and enhanced training methodologies,
a strategy consistent with ours that applies focal loss, label smoothing, and class weights to address such tasks.

Hsieh and Cheng (2024) [23] developed a multimodal feature fusion-based approach, using the deep models (i.e.,
EfficientNetB0O, MobileNetV2, ResNet50, InceptionV3 and ResNet101) for feature extraction and a conventional
SVM classifier was used for categorization. Their method reported 92.5% accuracy and 0.909 in Kappa index.
While their approach is distinct in that it decouples feature extraction from classification, it is in line with our
concentration on CNN-based robustness and generality.

Jian Liu et al. (2024) [24] presented YoCNET, a hybrid model combining YOLOVS for automatic tooth
segmentation and ConvNeXt for periapical lesion classification. Their model performance (AUC = 0.9757)
indicated the influence of architectural adjustment for the task-specific model design. Although they worked on
a binary diagnostic task in radiographic images, in this work we aim for a more general multiclass classification in
RGB intraoral images.

Hussain et al. (2023) [25] proposed an ensemble classification structure to identify oral diseases from RGB
images as a fusion of VGG16, MobileNet, and InceptionV3. Their system took advantage of the weighted ensemble
prediction and reached 97% diagnostic accuracy, indicating that lightweight convolutional models can be used for
accurate dental diagnosis. Instead, we compare more CNNs and focus on the interpretability of them and the
ensemble performance on the cross-validated level.

Razmjouei et al. (2025) [26] presented NFR-EDL, a fuzzy rank-based ensemble deep learning model
which combines VGG16, ResNet50, DenseNet169, and SqueezeNet, through non-linear fuzzy aggregation, for
identification of oral and dental diseases from RGB intraoral images. It attained state-of-the-art accuracy on
several public datasets (in the range 90.92%-97.08%), proving the power of ensemble models by uncertainty-aware
decision fusion. In contrast, our work achieves similar diagnosis performance with a single model, EfficientNetB3,
with an ensemble averaging scheme, stratified cross-validation, and Grad-CAM interpretability — representing an
easier, scalable and more clinically interpretable option.

Although there has been substantial progress in recent works, most approaches presented in literature are either
based on ensemble architectures which have a high computational cost or do not provide rigorous interpretability
mechanisms. In addition, cross-dataset evaluation and end-to-end reproducibility are overlooked. In this paper we
address these limitations by providing a unified framework that combine EfficientNetB3, robust cross-validation,
and lightweight ensemble prediction’s technique.

3. Materials and Methods

This section outlines the datasets, data preprocessing steps, model configuration, training strategies, evaluation
metrics, and inference process on which the proposed method is based. It has been designed to provide an end-to-
end, robust, stable, and reproducible feature extraction framework suitable for detecting dental abnormalities and
diseases across diverse intraoral RGB image datasets.

3.1. The Data

Three publicly available dental image datasets obtained from Kaggle: Oral Diseases, Oral Infection, and Teeth
Dataset, containing clinically obtained RGB intraoral images that portray various dental conditions were used in
this study. The data sets were selected to mimic a real-world diagnostic challenge, in order to assist the development
of an effective multi-class classification model.

* Oral Diseases Dataset: Comprising 11,653 annotated RGB images, this dataset includes six diagnostic
categories: calculus, caries, discoloration, gingivitis, hypodontia, and ulcers. It was obtained from Kaggle
https://www.kaggle.com/datasets/salmansajid05/oral-diseases [27].

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 AN INTERPRETABLE DEEP LEARNING FRAMEWORK...

* Oral Infection Dataset: Consisting of 5,563 RGB images across six conditions: caries,
gingivitis, ulcers, oral cancer, discoloration, and hypodontia. It was retrieved from Kaggle
https://www.kaggle.com/datasets/sizlingdhairyal/oral-infection [28].

* Teeth Dataset: Contains 5,048 RGB images categorized into five classes: caries, calculus, ulcers, discoloration,
and hypodontia. It was obtained from Kaggle https://www.kaggle.com/datasets/rajapriyanshu/teeth-dataset [29].

The visual characteristics of each class, including color, shape, severity, and lesion location, were distinct and
thus well-suited for CNN-based classification. Representative examples are shown in Figure 1. Unreadable or
corrupted images were excluded using the Python Imaging Library (PIL), and non-image files were removed.
Class labels were automatically extracted from the directory structure, converted to numeric form, and one-hot
encoded using Keras utilities.

(C) Discoloration

(A) Calculus (B) Caries

o

Figure 1. Representative RGB images from the Oral Diseases dataset: (A) Calculus, (B) Caries, (C) Discoloration, (D)
Gingivitis, (E) Hypodontia, (F) Mouth ulcers.

3.2. Flowchart of Research

The structured workflow for the classification of dental anomalies and diseases based on deep learning presented
in this study is shown in Figure 2. The pipeline was executed independently for each of the three dental image
datasets. The steps are summarized as follows:

Step 1: Dataset Selection

The loading of one of the three available image datasets (Oral Diseases — Oral Infection — Teeth Dataset) initiates
this procedure. These example color images are of practical clinical cases from different pathological categories
suitable for training and testing of deep learning models.

Step 2: Data Preprocessing Pipeline

Before they are fed into neural networks, all images are resized to the resolution of 256x256 pixels for input size
consistent. Pixel values are normalized to [0, 1] so as to regularize and speed up the training. This standardized
pre-processing allows all models and data set to be consistent.

Step 3: CNN Model Training

Five pretrained CNNs (EfficientNetB3, EfficientNetBO, ResNet50, DenseNetl121, and InceptionV3) are
individually fine-tuned on the dental datasets. The preprocessed images are used to train each model independently.

Step 4: Training Optimization Techniques

To enhance classification performance and mitigate data imbalance, several optimization techniques
were employed during training. These included Focal Loss, which assigns greater weight to misclassified
examples; Class Weights, which address underrepresented classes; and Label Smoothing, which reduces model
overconfidence and improves generalization.

Step 5: Cross-Validation and Evaluation
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Each model was evaluated using stratified 5-fold cross-validation, which provides a more reliable performance
assessment and reduces the risk of overfitting compared to standard k-fold cross-validation. For each fold,
performance metrics including Accuracy, F1-Score, Cohen’s Kappa, and ROC-AUC (class-wise, micro-average,
and macro-average) were computed. This rigorous evaluation ensures fair model comparison and robust
generalization.

Step 6: Ensemble Prediction Generation

The predictions obtained from the five folds were aggregated by averaging the softmax probabilities. This
ensemble approach reduces variance and enhances generalization, leading to more stable and accurate final
predictions.

Step 7: Ensemble-Based Final Evaluation

Final performance curves and classification metrics were reported by aggregating results across all folds. The
ensemble of fold-specific predictions was retained for evaluation, ensuring stability and minimizing variance.

Step 8: Dataset-Wise Repetition

The complete process, from loading the data up to the selection of the best model, is iterated for each
dataset separately. This approach ensured dataset-specific tuning and testing, thereby enabling a fair and reliable
comparison of cross-dataset performance.

Load Dataset - RGB Images:
Oral Diseases / Oral Infection / Teeth Dataset)

. 4

Data Preprocessing:
- Resize to 256x256- Normalize to [0-11

2

Train Five CNN Models Separately:
EfficientNetB3, EfficientNetB0, ResNet50, DenseNet121, Inception V3

et

Apply Training Optimizations:
FocalLoss, Class Weights, Label Smoothing, Dropout, L2

5-Fold Stratified Cross-Validation
Model Evaluation (per fold)
Calculate metrics (Accuracy. FI, Kappa. AUC)

. 4

Ensemble Averaging across folds:

Softmax probability averaging

¥

Ensemble-Based Final Evaluation:

Aggregate results and performance reporting

¥

Interpretability & Visualization

Figure 2. Workflow for dataset-specific dental disease classification using multiple CNN architectures and ensemble
evaluation.

3.3. Image Preprocessing

Standard preprocessing reprocessing was performed for all data to keep consistency and achieve best-performance
through CNN models. The following pipeline was implemented:
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* Resizing: All images were resized to 256x256x3 pixels to keep the same image size for every dataset. ¢
Normalization: Images were standardized using the standard ImageNet mean and standard deviation ([0.485, 0.456,
0.406] and [0.229, 0.224, 0.225]).

» Data Augmentation with Albumentations: Real-time data handling and augmentation were implemented using
a custom generator based on tf keras.utils.Sequence, which managed image loading, resizing, and label encoding.
To enhance generalization and robustness, augmentations were applied using the Albumentations library. The
augmentation pipeline included random rotations (+10°), scaling (£5%), translations (+5%), and horizontal flipping
(50% probability). Additional adjustments included gamma correction for contrast enhancement, variations in
color, saturation, and brightness to simulate illumination changes, the addition of Gaussian noise to model imaging
noise, and Coarse Dropout, which randomly masked a rectangular patch of up to 32x32 pixels (30% probability)
to simulate partial occlusions.

These improvements have resulted in a better capability of dealing with variance and a lower overfitting risk.
Such augmentations are intended to mimic the natural intraclass variability (different position shifts, different
lighting conditions, image occlusions) and help to boost the performance and generalization of the model to real
clinical scenarios.

3.4. Transfer Learning of CNNs

Transfer learning was applied using five pretrained CNN architectures — Effi-cientNetB3, EfficientNetBO,
ResNet50, DenseNet121, and InceptionV3 — all initialized with ImageNet weights. The original classification
head of each model was replaced with a customized architecture comprising a Global Average Pooling (GAP)
layer, followed by two fully connected layers with 256 and 128 neurons, respectively, each activated by ReLLU and
regularized using an L2 penalty. Dropout layers with a rate of 0.5 were inserted after each dense layer to mitigate
overfitting. The final layer consisted of a softmax classifier, outputting multi-class probabilities corresponding to
the dental conditions.

Transfer learning is particularly useful in medical imaging applications where annotated data is scarce. It is based
on pretrained model to achieve faster convergence and better generalization on small datasets.

Focal Loss was employed to cope with class imbalance and further emphasize hard-to-classify samples. a hybrid
loss function was employed, combining Focal Loss with smoothed Categorical Cross-Entropy with a weighting
parameter v = 2.0 and balancing factor v = 0.25. The loss is defined as:

FL(p;) = a¢(1 — pt)" log(py) ()

where p; denotes the model’s estimated probability for the true class.
Label smoothing (¢ = 0.1) was also employed to mitigate overconfidence and further enhance generalization.
The final loss was computed as a weighted sum of 70% focal loss and 30% smoothed cross-entropy as follows:

Lossiotal = 0.7 x FocalLoss + 0.3 x SmoothedCrossEntropy )

This weighted formulation balances the emphasis on hard-to-classify samples with the regularization benefits
of label smoothing, thereby improving model robustness and stability. To further mitigate the effects of class
imbalance, class weights were computed using the compute_class_weight function from scikit-learn, according to
the following formula:

N
_kX’I'LZ‘

w; 3)
where w; denotes the weight for class 4, IV represents the total number of samples, & is the number of classes,
and n; indicates the number of samples in class 1.
The efficiency of such a combined strategy has been proved in previous researches. For example, class-weighted
focal loss was applied to enhance detection results in rare categories, while class-dependent weights in CNN
training have shown to improve F1-scores on highly imbalanced datasets [30, 31, 32].
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Training was performed using the Adam optimizer with a learning rate of 1 x 10~*, a batch size of 16, and 40
epochs. To enhance training efficiency, several callback functions were employed: ModelCheckpoint to save
the best-performing model, ReduceLROnPlateau to lower the learning rate upon performance stagnation, and
EarlyStopping to terminate training after five consecutive epochs without improvement.

This carefully designed training pipeline, which integrated transfer learning, Focal Loss, label smoothing, class
weighting, and advanced data augmentation, was intended to ensure robustness, mitigate class imbalance, and
enhance the generalization of the model across diverse dental conditions.

3.5. Validation of Performance

Model evaluation was conducted using both quantitative metrics and interpretability tools to ensure a
comprehensive assessment of performance.

Quantitative Metrics:

* Accuracy: Proportion of correctly classified samples relative to the total number of samples.

* Precision, Recall, and F1-Score: Evaluated per class to measure detection quality.

* Cohen’s Kappa: A statistical measure of agreement between predicted and true labels, adjusted for chance.

* Receiver Operating Characteristic (ROC) Curves and Area Under the Curve (AUC): Class-wise ROC analysis
was conducted to evaluate discrimination, with micro-average providing a global measure across classes and
macro-average reflecting balanced performance. Corresponding AUC values were reported for comprehensive
assessment.

Interpretability and Visual Analysis:

* Confusion Matrix: Used to identify patterns of misclassification across classes.

* Grad-CAM: Applied to highlight the regions of each image most influential in the model’s decision-making
process.

* Training Curves: Depicted the learning dynamics across epochs, providing insights into model convergence
and potential overfitting.

Cross validation was used to identify the best performing model, which was subsequently evaluated on the
entire dataset. Final models were saved in Keras format, and all results were logged to ensure reproducibility.
Model development was carried out using TensorFlow and Keras, with Albumentations and OpenCV applied for
preprocessing and augmentation, while metric computations were performed using scikit-learn.

4. Results

The primary objective of this study was to evaluate the performance of CNNs in classifying dental diseases using
three RGB image datasets: Oral Diseases, Oral Infection, and Teeth. The models assessed included ResNet50,
DenseNet121, InceptionV3, EfficientNetB3, and EfficientNetBO.

All models were trained in a single pipeline, using transfer learning from ImageNet weights. The training was
fine-tuned using the Adam optimizer and evaluated with stratified 5-fold cross-validation to ensure robustness and
prevent overfitting. To enhance prediction stability, ensemble predictions were generated by averaging the softmax
outputs across the 5-fold-specific models. Performance was evaluated using both global and per-class metrics,
including Accuracy, Precision, Recall, F1-Score, AUC, and Cohen’s Kappa. We present the results for each dataset
separately in the next subsections.

4.1. Evaluation on the Oral Diseases Dataset

Tablel summarizes the overall performance of the evaluated CNN models on the Oral Diseases dataset. All five
architectures - EfficientNetB3, EfficientNetB0, InceptionV3, ResNet50, and DenseNet121 - delivered consistent
and near-identical outcomes, achieving an overall accuracy of 95.4%, Cohen’s Kappa values above 0.94, and
macro-F1 scores of approximately 0.945. AUC values exceeded 0.996, confirming excellent discriminative
capability across all classes. Among them, EfficientNetB3 and DenseNet121 achieved the highest Kappa values
(0.943), reflecting stronger agreement with the ground truth.
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Detailed per-class results in Table2 show that all models performed nearly perfectly in detecting caries,
discoloration, hypodontia, and mouth ulcers, with Fl-scores approaching or reaching 0.99-1.00. In particular,
caries and mouth ulcers were classified with the highest consistency, achieving almost flawless detection across
all models. However, calculus and gingivitis remained more challenging, with F1-scores ranging between 0.79 and
0.88. For these classes, DenseNet121 exhibited slightly better balance between precision and recall compared with
the other models.

4.2. Evaluation on the Oral Infection Dataset

Table3 presents the overall results for the CNN models on the Oral Infection dataset. All models achieved
comparable accuracy of approximately 89.7-89.9%, with Cohen’s Kappa values ranging from 0.838 to 0.849 and
macro-F1 scores between 0.930 and 0.939. The AUC values were uniformly high (> 0.987), indicating strong
discrimi-natory power. Among the evaluated architectures, EfficientNetB3 reported the highest macro-F1 (0.939),
while DenseNet121 achieved the highest Kappa (0.849) and the best AUC (0.9875), highlighting them as the most
reliable performers for this dataset.

Detailed class-wise performance metrics are shown in Table4. Consistent with findings from the Oral Diseases
dataset, caries, discoloration, hypodontia, and mouth ulcers were classified with excellent precision and recall,
yielding F1-scores close to or exceeding 0.95. Mouth ulcers in particular were detected flawlessly across all
models (F1 =1.000). In contrast, calculus and gingivitis remained more challenging classes. Calculus exhibited
the lowest F1-scores (0.771-0.803), reflecting the greatest difficulty in achieving both high precision and recall,
while gingivitis produced moderate F1-scores (0.882-0.886).

4.3. Evaluation on the Teeth Dataset

TableS presents the overall results for the CNN models on the Teeth dataset. All five models demonstrated
outstanding performance, with overall accuracies exceeding 99.2% and Cohen’s Kappa values above 0.986,
reflecting near-perfect agreement with the ground truth. The macro-F1 scores ranged from 0.976 to 0.987, while
micro-F1 values were consistently high, between 0.986 and 0.991, underscoring strong balance between precision
and recall across classes. AUC values approached perfection (> 0.998), confirming excellent discriminatory
capacity. Among the tested models, EfficientNetB3 achieved the highest macro-F1 (0.987) and micro-F1 (0.991),
while ResNet50 and DenseNet121 also performed exceptionally well with macro-F1 values above 0.985.

The per-class results in Table6 further demonstrate this robustness. Discoloration, hypodontia, and mouth
ulcers were detected with near-perfect precision and recall, yielding F1-scores of 0.993-1.000 across all models.
Similarly, calculus was identified with very high precision and recall, with F1-scores consistently around 0.986.
Although caries was comparatively more challenging, performance remained strong, with F1-scores between 0.960
and 0.987, and DenseNet121 producing the highest class-specific F1 for caries (0.987).

Overall, these results confirm that CNN architectures are highly reliable for Teeth dataset classification, with
EfficientNetB3, ResNet50, and DenseNetl121 emerging as the most effective models, offering superior precision,
recall, and balanced F1-scores.

Table 1. Summary Performance Metrics of CNN Models on the Oral Diseases Dataset.

CNN Model Accuracy Kappa MacroF1 AUC
Efficient-NetB3 0.954 0.943 0.945 0.9964
Efficient-NetBO 0.954 0.942 0.945 0.9965

InceptionV3 0.954 0.942 0.945 0.9965
ResNet50 0.954 0.942 0.945 0.9962
DenseNet121 0.954 0.943 0.945 0.9965
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Table 2. Detailed Class-wise Precision, Recall, and F1-Score of CNN Models on the Oral Diseases Dataset.

Class Metric Efficient-NetB3 Efficient-NetB0 InceptionV3 ResNet50 DenseNetl121
Precision 0.753 0.740 0.746 0.757 0.766
Calculus Recall 0.863 0.883 0.869 0.846 0.833
F1 score 0.804 0.805 0.803 0.799 0.798
Precision 1.000 1.000 1.000 1.000 1.000
Caries Recall 0.995 0.995 0.995 0.995 0.995
F1 score 0.997 0.997 0.997 0.997 0.997
Precision 1.000 1.000 1.000 1.000 1.000
Discoloration  Recall 0.998 0.998 0.998 0.998 0.998
F1 score 0.999 0.999 0.999 0.999 0.999
Precision 0.915 0.927 0.920 0.908 0.902
Gingivitis Recall 0.851 0.839 0.846 0.861 0.868
F1 score 0.882 0.882 0.882 0.884 0.884
Precision 0.992 0.992 0.992 0.994 0.992
Hypodontia Recall 0.986 0.986 0.986 0.984 0.986
F1 score 0.989 0.989 0.989 0.989 0.989
Precision 1.000 1.000 1.000 1.000 1.000
Mouth Ulcers Recall 1.000 1.000 1.000 1.000 1.000
F1 score 1.000 1.000 1.000 1.000 1.000

Table 3. Summary Performance Metrics of CNN Models on the Oral Infection Dataset.

CNN Model Accuracy Kappa MacroF1 AUC
Efficient-NetB3 0.899 0.848 0.939 0.9871
Efficient-NetBO 0.897 0.847 0.930 0.9893

InceptionV3 0.897 0.842 0.932 0.9872
ResNet50 0.897 0.838 0.934 0.9874
DenseNet121 0.897 0.849 0.931 0.9875

4.4. Explainable Al: Grad-CAM Visualization for Model Interpretability

To enhance interpretability and visualize the regions that influenced the CNN’s predictions, Gradient weighted
Class Activation Mapping (Grad CAM) was applied to the EfficientNetB3 model. Grad CAM was generated for a
subset of samples from all three datasets: Oral Diseases, Oral Infection, and Teeth. This technique has been widely
adopted in medical imaging to highlight class discriminative regions [33, 34].

The resulting heatmaps revealed that the model primarily focused on diagnostic regions such as decayed
teeth, swollen gums, and sore mucosa. In correctly classified cases, activations were highly localized, suggesting
strong model confidence. Conversely, misclassified examples exhibited more diffuse and ambiguous activations,
particularly in visually similar categories such as calculus and gingivitis.

Although Grad CAM was applied only to the EfficientNetB3 model and limited to selected illustrative cases,
the visualizations provide valuable insights into the model’s decision making process and support its potential
clinical applicability. Figures 3-5 present representative Grad-CAM visualizations from the datasets, highlighting
the model’s focus on clinically relevant regions for both correctly and incorrectly classified cases. Green labels
denote correct predictions, whereas red labels indicate misclassifications.
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True: Data caries True: Mouth Ulcer True: Tooth Discoloration
Pred: Data carles Pred: Mouth Ulcer Pred: Tooth Discaloration

True: hypodontia True: Gingivitis True: Calculus
Pred: hypodontia Pred: Gingivitis Pred: Gingivitis

Figure 3. Grad-CAM visualization on the Oral Diseases dataset.

True: hypodontia True: tooth_discoloration True: ulcer
Pred: hypodontia Pred: ulcer Pred: ulcer

True: gingivitis True: data_caries True: calculus
Pred: gingivitis Pred: data_caries Pred: calculus

Figure 4. Grad-CAM visualization on the Oral Infection dataset.
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Table 4. Detailed Class-wise Precision, Recall, and F1-Score of CNN Models on the Oral Infection Dataset.

Class Metric Efficient-NetB3 Efficient-NetB0 InceptionV3 ResNet50 DenseNetl121
Precision 0.753 0.734 0.746 0.757 0.752
Calculus Recall 0.860 0.812 0.811 0.846 0.859
F1 score 0.803 0.771 0.777 0.799 0.802
Precision 0.981 0.908 0.942 0.937 0.868
Caries Recall 0.954 0.986 0.968 0.945 0.991
F1 score 0.967 0.945 0.955 0.941 0.925
Precision 1.000 1.000 1.000 1.000 1.000
Discoloration  Recall 0.978 0.978 0.978 0.978 0.978
F1 score 0.989 0.989 0.989 0.989 0.989
Precision 0914 0.894 0.892 0.881 0.916
Gingivitis Recall 0.854 0.874 0.880 0.888 0.850
F1 score 0.883 0.884 0.886 0.884 0.882
Precision 0.998 0.998 0.990 0.998 0.992
Hypodontia Recall 0.980 0.981 0.979 0.980 0.986
F1 score 0.989 0.989 0.984 0.989 0.989
Precision 1.000 1.000 1.000 1.000 1.000
Mouth Ulcers Recall 1.000 1.000 1.000 1.000 1.000
F1 score 1.000 1.000 1.000 1.000 1.000
Table 5. Summary Performance Metrics of CNN Models on the Teeth Dataset.
CNN Model Accuracy Kappa Macro-F1 Micro-F1 AUC
Efficient-NetB3 0.993 0.990 0.987 0.991 0.998
Efficient-NetBO 0.992 0.986 0.976 0.986 0.999
InceptionV3 0.992 0.986 0.978 0.987 0.999
ResNet50 0.993 0.989 0.981 0.989 0.999
DenseNet121 0.993 0.988 0.985 0.990 0.998
Table 6. Detailed Class-wise Precision, Recall, and F1-Score of CNN Models on the Teeth Dataset.
Class Metric Efficient-NetB3 Efficient-NetB0 InceptionV3 ResNet50 DenseNet121
Precision 0.978 0.982 0.976 0.979 0.981
Calculus Recall 0.995 0.987 0.995 0.994 0.991
F1 score 0.986 0.984 0.985 0.986 0.986
Precision 0.968 0.928 0.968 0.964 0.984
Caries Recall 0.973 0.995 0.959 0.977 0.991
F1 score 0.970 0.960 0.963 0.970 0.987
Precision 1.000 1.000 1.000 1.000 1.000
Discoloration  Recall 0.998 0.998 0.998 0.998 0.998
F1 score 0.999 0.999 0.999 0.999 0.999
Precision 1.000 1.000 1.000 1.000 1.000
Hypodontia Recall 0.986 0.986 0.986 0.986 0.986
F1 score 0.993 0.993 0.993 0.993 0.993
Precision 1.000 1.000 1.000 1.000 1.000
Mouth Ulcers Recall 1.000 1.000 1.000 1.000 1.000
F1 score 1.000 1.000 1.000 1.000 1.000
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True: Mouth Ulcer True: caries True: Tooth Discolaration
Pred: Mouth Ulcer Pred: caries Pred: Tooth Discoloration

True: hypodontia True: Calculus
Pred: hypodontia Pred: Calculus

Figure 5. Grad-CAM visualization on the Teeth dataset.

4.5. Learning Curve Analysis

To further analyze the training behavior and generalization ability for the EfficientNetB3 model, learning curves
were depicted for the three datasets (Oral Diseases, Oral Infection, and Teeth). Plotting these, we can see the
model’s average training loss and accuracy over several epochs and cross-validation folds.

As shown in Figure 6, the learning curves of the Oral Diseases dataset show steady convergence. The validation
accuracy surpasses 90% and no severe overfitting is observed. It helped the model sustain a smooth and continuous
loss decrease which confirms its stability in learning complex multi-class classification tasks.

For the Oral Infection dataset (Figure 7), the learning curves suggest some variance in the validation accuracy,
especially after epoch 30. This indicates the existence of class skewed or visually overlapping features that are
difficult to generalize. However, the trend overall shows progressive learning and decreasing loss.

Lastly, Figure 8, show learning curves for the Teeth dataset - EfficientNetB3 has an almost perfect training and
validation accuracy and very low values on the end loss function. It demonstrates the stability of the model, which
makes the model suitable for the simpler dental classification problem. These findings prove that the model had
consistently high performance and generalization ability across datasets, which can attest to the effectiveness of
our design in training pipeline, regularization, balancing, and ensemble evaluation.

4.6. Confusion Matrix Analysis

An even deeper analysis of the classification process, has been carried out by providing confusion matrices for
each dataset, trained with the EfficientNetB3 model. These matrices uncovered some misclassification patterns
particularly between visually similar classes. For example, it was noticed that there were confusing samples
between calculus and gingivitis over several folds, which might be explained by their common textural and
locational properties. There was also some overlap between caries and tooth color.
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K-Fold Models Evaluated on Full Dataset
Avg Accuracy Avg Loss
— a— 64 —— Val Loss
0.9 1 - =~ Train Loss
5
0.8
> 4
8 0.7 P
2 g 31
< 0.6 1
) 5]
i
054+
—— Val Acc 11
0.4 —== Train Acc ol
0 5 10 15 20 25 30 10 15 20 25 30
Epoch Epoch
Figure 6. Learning curves (accuracy and loss) for EfficientNetB3 on the Oral Diseases dataset.
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Figure 7. Learning curves (accuracy and loss) for EfficientNetB3 on the Oral Infection dataset.
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Figure 8. Learning curves (accuracy and loss) for EfficientNetB3 on the Teeth dataset.

Confusion matrices are more informative than just accuracy and can be used to diagnose where systematic
misclassifications are being made by the model. They are further able to supplement quantitative measures by
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exposing visually which classes are more easily confused. The confusion matrices for the Oral Diseases, Oral
Infection, and Teeth datasets are presented in Figures 9, 10, and 11, respectively.
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Figure 9. Confusion Matrix of the EfficientNetB3 Ensemble Model on the Oral Diseases Dataset.
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Figure 10. Confusion Matrix of the EfficientNetB3 Ensemble Model on the Oral Infection Dataset.
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Figure 11. Confusion Matrix of the EfficientNetB3 Ensemble Model on the Teeth Dataset.

5. Discussion

This study investigated the application of transfer learning-based CNNs for multi-class dental disease classification
using three RGB intraoral image datasets. The methodology was designed to provide practical insights for
large-scale development of Al-based dental diagnostics. Among the evaluated backbones, EfficientNetB3
consistently achieved the highest ensemble accuracy, F1-Score, and Cohen’s Kappa, either surpassing or matching
alternative architectures. Its superior performance was further supported by test-retest reliability, as evidenced
by consistent results across cross-validation folds and a reduced misclassification rate, particularly under visually
complex or imbalanced class settings.

Despite these advantages, confusion matrix analysis revealed recurring misclassifications between visually
similar conditions such as calculus and gingivitis, or caries and discoloration. These errors are largely attributable
to overlapping visual features (e.g., shape, location, and shade) and the inherently subjective nature of image
annotation. Moreover, underrepresented classes such as hypodontia showed reduced recall and precision, indicating
that, although focal loss, class weighting, and label smoothing strategies alleviated imbalance to some extent, they
did not entirely overcome the limitations imposed by insufficient sample representation.

The integration of stratified 5-fold cross-validation, focal loss, and ensemble inference contributed to robust
and generalizable outputs, demonstrating the feasibility of applying deep learning models in dental diagnostics.
These findings underscore both the promise of CNN-based frameworks for clinical application and the ongoing
challenges of addressing subtle inter-class variability and sample imbalance.

5.1. Comparative Evaluation with Related Methods

Compared to Ikhwani et al., who focused primarily on binary classification and limited model diversity, this study
employed a broader and more unified evaluation framework. EfficientNetB3 achieved ensemble accuracies of 0.955
on the Oral Diseases dataset, 0.899 on the Oral Infection dataset, and 0.993 on the Teeth dataset—surpassing prior
benchmarks in both performance and reliability. The consistent use of cross-validation and focal loss contributed
to improved generalization and reduced overfitting, particularly for imbalanced and visually similar classes such
as calculus and gingivitis.
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5.2. Importance of Interpretability

For transparency and clinical interpretability, Grad-CAM was applied to visualize the regions of attention during
classification across the three dental datasets. Grad-CAM is a widely studied post-hoc method for generating
class-specific activation maps in medical imaging. Consistent with findings from related studies [34], it provided
an accessible means of understanding the model’s decision-making, thereby bridging the gap between “black-box”
predictions and clinical reasoning. In this study, the Grad-CAM heatmaps highlighted clinically relevant anatomical
features such as inflamed gingiva, enamel caries, and missing teeth. Correctly classified cases demonstrated strong,
localized activations over lesions, while misclassified cases exhibited diffuse or ambiguous attention, particularly
in overlapping categories. These visual insights not only enhance interpretability and foster clinical trust but also
support error analysis and diagnostic refinement.

5.3. Misclassification Insights

Although global metrics were strong, misclassifications persisted in categories such as calculus and gingivitis,
where overlapping features in color, shape, and location contributed to ambiguity—especially near the gingival
margin. Underrepresented classes, particularly hypodontia, also showed lower recall. These findings reaffirm the
importance of class weighting, label smoothing, and focal loss in improving per-class performance, though they
also highlight the need for additional strategies to address rare conditions.

5.4. Clinical Relevance and Practical Deployment

The use of intraoral RGB images, as opposed to radiographs, enhances the framework’s feasibility for routine
dental practice and telehealth applications. Unlike more complex hybrid approaches, the EfficientNetB3-based
pipeline imposes minimal computational demands, making it particularly suitable for deployment in low-resource
clinical environments. The consistent performance across diverse datasets underscores its potential integration into
intelligent decision support systems for early diagnosis, patient triage, and screening programs.

5.5. Future Research Directions

Although attention modules such as the Convolutional Block Attention Module (CBAM) [35] and the Squeeze-and-
Excitation (SE) block [36] were tested and did not improve accuracy in this study, future architectural refinements
or integration strategies may enhance their effectiveness in different imaging contexts.

6. Conclusions

This study evaluated the performance of deep convolutional neural networks (CNNs) for the automated
classification of dental anomalies and diseases using RGB intraoral images. A unified transfer learning approach
was applied across three open dental datasets—Oral Diseases, Oral Infection, and Teeth—demonstrating that
Effi-cientNetB3 substantially outperformed other CNN architectures, achieving up to 99.3% accuracy alongside
superior F1-Score and Cohen’s Kappa values. Key optimization strategies, including focal loss, label smoothing,
class weighting, ensemble averaging, and stratified 5-fold cross-validation, collectively contributed to reliable and
generalizable performance, even under conditions of significant class imbalance. Furthermore, Grad-CAM-based
visualizations enhanced interpretability, providing critical insights into model decision-making and reinforcing
clinical trust in Al-driven diagnostic systems.

Despite these promising results, certain limitations remain. Misclassifications were observed in visually similar
conditions, such as gingivitis and calculus, underscoring the need for further optimization to improve the
discrimination of overlapping pathologies. Additionally, while intraoral RGB images enhance accessibility and
ease of acquisition, they lack the capacity to capture deeper structural details available in radiographic imaging.

For future research, it is proposed to explore attention-based modules such as the Convolutional Block Attention
Module (CBAM) and Squeeze-and-Excitation (SE) blocks, as well as to extend the framework to include panoramic
and radiographic datasets. Incorporating semi-supervised learning strategies and integrating patient metadata could
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further strengthen the model’s diagnostic capabilities. Most importantly, transitioning from experimental evaluation
to real-world clinical validation remains essential to establish practical utility.
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