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Abstract Exchange rate volatility presents significant risks to investors and governments, especially in developing
economies and the cryptocurrency market, where unforeseen shocks may lead to considerable financial losses. Standard
risk metrics frequently do not account for time-varying volatility, skewness, and fat-tailed return distributions, thereby
constraining their predictive reliability. This research utilises a Bayesian SARMA–GARCH methodology with time-varying
parameters to evaluate exchange rate risk for BTC/USD, BWP/USD, and ZAR/USD. Daily log returns are modelled with
Asymmetric Generalised Error Distributions to address heavy-tailed and skewed characteristics. One-step-ahead forecasts of
Value-at-Risk (VaR) and Expected Shortfall (ES) are produced and systematically backtested employing credible intervals,
weighted continuous ranking probability scores, and dynamic quantile tests. The findings demonstrate substantial predictive
accuracy, with Mean Prediction Interval Widths of 0.0518 for BTC/USD, 0.0722 for BWP/USD, and 0.0413 for ZAR/USD,
and the majority of observed returns remaining within the 99% prediction intervals. BTC/USD responds rapidly to
disturbances, ZAR/USD demonstrates persistent volatility, and BWP/USD reflects extended effects. The integration of time-
varying dynamics and heavy-tailed distributions enhances the reliability of Value at Risk (VaR) and Expected Shortfall (ES)
forecasts, thereby facilitating improved risk management, portfolio allocation, and regulatory oversight.
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1. Introduction

Cryptocurrencies are decentralised digital currencies that function independently of central banks or financial
intermediaries by leveraging blockchain technology to enable secure transactions. Bitcoin, the leading
cryptocurrency in terms of trading volume, possesses a market capitalisation of USD 452.1 billion. Although
the adoption of Bitcoin may occur gradually, studies indicate that its popularity is expected to increase over
time. According to [26], more than 2,300 US enterprises used Bitcoin and other digital assets in 2020 for diverse
investment, operational, and transactional purposes [20]. Some economists contend that Bitcoin does not entirely
satisfy the three conventional criteria of a currency: store of value, medium of exchange, and unit of account.
However, it is exchangeable with fiat currencies and offers a more rapid method of transferring money [43].
Additionally, [42] noted that Bitcoin could improve lives and lower barriers to widespread participation, particularly
if it were recognised as a legitimate currency.

Volatility represents an intrinsic attribute of financial assets and is a vital factor in risk management. Changes
in returns and persistent volatility over time necessitate accurate modelling, as noted by [50]. Seminal models,
including the autoregressive conditional heteroscedasticity (ARCH) developed by [28] and the generalised ARCH
(GARCH) introduced by [15], were designed to capture these dynamics and are extensively utilised in forecasting

∗Correspondence to: Katleho Makatjane (Email: makatjanek@ub.ac.bw). Department of Statistics, University of Botswana.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



L. MOSANAWE AND K MAKATJANE 1

volatility for options pricing and risk management. Numerous GARCH specifications, as noted by [1, 37], utilise
squared returns as the main determinant of conditional variance, as they yield an unbiased estimate of current
volatility; however, this approach offers only a restricted indication of the actual level of market volatility. Financial
systems are vulnerable to shocks and changing investor expectations. Research indicates that GARCH-family
models with time-invariant parameters have limitations, as risk measures derived during stable periods may be
biased in times of turbulence [47, 11]. Financial returns exhibit fat-tailed characteristics, necessitating a focus
on tail risk, which poses measurement challenges under conventional parametric frameworks [48]. The advent of
high-frequency data has facilitated the development of more precise volatility metrics, including realised volatility
and realised kernels; however, these metrics are still susceptible to microstructure noise and non-trading hours
[17, 24, 10]

Building on these insights, this study aims to forecast value-at-risk and expected shortfall up to 60 days
ahead using daily currency data for Bitcoin/US Dollar, South African Rand/US Dollar, and Botswana Pula/US
Dollar-adjusted closing prices. We employ a seasonal autoregressive integrated moving average (SARIMA) model
with GARCH (SARIMA–GARCH) errors for out-of-sample prediction of VaR and ES. The SARIMA-GARCH
framework allows the volatility parameters to evolve, capturing changing market conditions, structural breaks,
and volatility clustering more accurately than conventional GARCH models. This approach provides reliable risk
measures during periods of financial turmoil, with short-term forecasting having a superior impact on financial
network stability [63]. A key factor in accurate SARIMA modelling is ensuring independently and identically
distributed (i.i.d.) residuals. While previous studies have applied alternative methods, such as core vector regression
with Gaussian process regression for short-term forecasting under uncertainty [19], or the price of volatile stocks
(PVSt) as a risk proxy [57], our approach employs a conservative bootstrap method for probability forecasting as
seen in the work of [14]. This extends conventional GARCH bootstrap estimates to SARIMA-GARCH VaR and ES
calculations, capturing volatility clustering uncertainty more precisely. The rest of the paper is as follows: section 2
describes the methodology used in detail, section 3 presents the analysis and results, and section 4 discusses the
findings of the paper and concludes.

Our methodology makes a notable contribution to VaR and ES forecasting. Building on [45],it incorporates
real-time forecasting to detect sudden market shifts, particularly in highly dynamic economies. Unlike frequentist
MLE approaches, we employ Bayesian estimation, which combines prior knowledge with observed data, is well-
suited for small samples, and produces reliable forecasts. The procedure integrates threshold and quantile-weighted
scoring methods, enabling rigorous comparison of VaR and ES density forecasts while providing robust tools
for evaluating predictive performance. Additional innovations include the use of fixed-design residual bootstrap,
tail risk (TR), and dynamic quantile (DQ) backtesting. The real-time forecasting system has been implemented
on AWS, utilising EC2 instances for scalable computation and Lambda functions for serverless, event-driven
predictions, ensuring rapid, reliable, and efficient deployment of risk forecasts.

Research Highlights and Key Findings

This study is one of the first to combine Bayesian SARMA-GARCH models with skewed error distributions
to analyse time-varying volatility and tail risk in BTC/USD, BWP/USD, and ZAR/USD returns. By capturing
downside risk in these currency markets, the study provides insights into extreme market movements beyond
average returns. The highlights and key findings of this study are summarised in Table 1.

The rest of the paper is as follows: section 2 describes the methodology used in detail, section 3 presents the
analysis and results, and section 4 discusses the findings of the paper and draws conclusions
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Table 1. Performance and Contributions of the Bayesian SARMA-GARCH Model

Characteristic Highlights Findings Contributions
Tail Risk Detection Captures extreme market

events using skewed GED
distributions

BTC/USD reacts rapidly
to shocks, ZAR/USD
shows persistent volatility,
BWP/USD shows
prolonged effects

Identifies asymmetric and
heavy-tailed behaviour in
cryptocurrency and emerg-
ing FX markets

Error Distribution
Analysis

Skewed GED outperforms
symmetric GED and
Student-t distributions

Accurately models both
skewness and leptokurtosis

Improves prediction of
extreme returns and
enhances risk measurement
precision

VaR and ES Back-
testing

One-step-ahead density
forecasts with bootstrapped
uncertainty intervals

Forecasts are accurate,
unbiased, and statistically
reliable

Provides robust tools for
regulatory compliance and
portfolio risk management

Time-varying
Volatility

Incorporates dynamic
parameters in SARMA-
GARCH framework

Effectively captures volatil-
ity clustering and evolving
market conditions

Supports more responsive
and adaptive risk manage-
ment strategies

Methodological
Innovation

Bayesian estimation with
MCMC and bootstrapped
credible intervals

Produces reliable parameter
estimates and uncertainty
ranges

Integrates probabilistic
forecasting with extreme
event modelling for
improved decision-making

2. Methodology

Let rt be stock returns at time t, [12] showed that rt can be modeled by

rt = µt + εt (1)

where µt is the time-varying mean; εt is the error term that can be modeled by

εt = νtσt. (2)

In model (2), σt is the time-varying dynamic, while νt is the i.i.d residuals from model (1).

2.1. Volatility Forecasting Models

In conventional SARIMA models, the disturbance term’s variance is thought to be constant. The assumption
of homoscedasticity (constant variance) seems inappropriate given that the data exhibit non-constant mean and
variance as well as numerous seasons corresponding to weekly and monthly periodicity. The GARCH modelling
technique is introduced to take the possibility of serial correlation in volatility into consideration. Over the past
thirty years, a great deal of research has been done on the use of GARCH-type models to model volatility in time
series data. Our work is closely connected to that of [63], who examined approaches for forecasting Net Imbalance
Volume density. The problem was broken down by these writers into two parts: point forecasting and volatility
forecasting. Good results were obtained using a seasonal ARMA model and a periodic AR model with simple
volatility predictions.

Generalised Autoregressive Conditional Heteroscedasticity is a statistical model for evaluating time-series data
in which the variance error is assumed to be serially autocorrelated. The study will employ the GARCH model to
predict projected portfolio losses for risk management [59]. The GARCH models could handle volatility clustering
over extended periods, resulting in a very strong sample of estimates. The [13] model, established by [15] as
an extension of the ARCH model, estimates asset volatility. The parameters of the GARCH model are usually
estimated using historical returns of an asset price, by making use of the maximum likelihood method as in the work
of [66] and Bayesian approaches, just as in the work of [62]. In light of this, this study presents the combination
of SARIMA(p,d,q)(P,D, Q) and GARCH(p,q) by referencing the research of [63], in which the authors forecasted
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South Africa’s daily peak power consumption. Our major goal, in this case, is to estimate the conditional mean of
the returns process using the features of the SARIMA model and to estimate the conditional variance of the process
using seasonalities and GARCH errors.

2.1.1. SARIMA–GARCH Model The SARIMA–GARCH model is one in which the variance of the error term
from the SARIMA model follows a GARCH process. Specifically, the SARIMA component captures both non-
seasonal and seasonal dynamics of the series, while the GARCH component accounts for time-varying volatility
in the residuals. Following [67], the model can be expressed as follows

ΦP (B
s)ϕp(B) (1−B)d(1−Bs)DXt = c+ΘQ(B

s) θq(B) εt,

εt = σtνt, νt ∼ i.i.d., E[νt] = 0, Var[νt] = 1,

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j .

(3)

Here, Xt denotes the observed time series, ϕp(B) and θq(B) are the non-seasonal AR and MA polynomials
of orders p and q, while ΦP (B

s) and ΘQ(B
s) are the seasonal AR and MA polynomials of orders P and Q

with seasonality s. The terms d and D denote the non-seasonal and seasonal differencing orders, respectively. The
residual εt represents the deviation of the series from its conditional mean, and σ2

t is the conditional variance of εt
determined by the GARCH process.

2.2. Model Selection

The study uses the Akaike Information Criterion (AIC), Hannan–Quinn Information Criterion (HQIC), and the
Bayesian Information Criterion (BIC) for lag length selection of the ADF model. According to [56], AIC is one of
the most widely used and powerful criteria whihc is defined as follows

AIC = n log

(
RSS
n

)
+ 2k, (4)

where n is the sample size, RSS is the residual sum of squares from the fitted ADF model, and k is the number
of estimated parameters. The model with the lowest AIC is selected as the best-fitting model. Similarly, the BIC is
given by

BIC = n log

(
RSS
n

)
+ k log(n), (5)

where n and k are defined as above. The model with the lowest BIC is considered optimal. The Hannan–Quinn
criterion (HQ) is asymptotically efficient in estimating the best model because it provides fine-tuning even for large
sample sizes, due to its log log(n) term [38] shows that it is computed by

HQ = −2 log L̃n(θn) + 2ck0 log log n, c > 1, (6)

where k0 is the number of estimated parameters, n is the sample size, and L̃n(θn) is the likelihood function.

Following [16], the autocorrelation function (ACF), partial autocorrelation function (PACF), and cross-
autocorrelation function (CACF) are used to tentatively identify SARIMA parameters p, q, P,Q. According
[46], statistical measures provide additional evidence for selecting an appropriate intervention function; therefore
theoretical behaviour of the ACF and PACF for a stationary SARMA process is summarised in Table 2. For robust
results, the observed ACF and PACF patterns should align with these theoretical patterns [51].

[40] shows that the ACF can be derived as follows

ρk =
cov(Xt, Xt−k)

Var(Xt)
, k = 0, 1, 2, . . . (7)
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Table 2. Behaviour of Theoretical ACF and PACF for Stationary SARMA Processes

SARMA(P,0) SARMA(0,Q) SARMA(P,Q)
ACF Tails off at lags k Cuts off after lag Q Tails off at lags k
PACF Cuts off after lag P Tails off at lag k Tails off at lag k

where the autocovariance is computed by

cov(Xt, Xt−k) = E(X2
t )− (E(Xt))

2 = Var(Xt). (8)

A correlogram is used to visualise ρk against k, hence the PACF is computed by using Model 9 as follows

akk =


ρ1, k = 1

ρk −
∑k−1

j=1 ak−1,jρk−j

1−
∑k−1

j=1 ak−1,jρj
, k = 2, 3, 4, . . .

(9)

2.2.1. Bayesian SARIMA–GARCH In the Bayesian framework, the likelihood of the SARIMA–GARCH model
can be written in terms of the residuals εt and the conditional variance σ2

t . Let the residuals from the conditional
mean be

εt = Xt − µt, (10)

where the conditional mean is

µt = c+

p∑
i=1

ϕiXt−i +

q∑
j=1

θjεt−j +
P∑

P=1

ΦPXt−sP +

Q∑
Q=1

ΘQεt−sQ. (11)

The GARCH variance recursion is

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (12)

which accounts for the persistence of shocks and time-varying volatility. To express the likelihood in a
summation form, define the contributions from non-seasonal lags as

A =

n∑
t=1

ε2t , B =

n∑
t=1

p∑
i=1

ϕiεtεt−i, C =

n∑
t=1

p∑
i=1

p∑
j=1

ϕiϕjεt−iεt−j , (13)

and from seasonal lags as

S =
n∑

t=1

P∑
P=1

ΦP εtXt−sP +

n∑
t=1

Q∑
Q=1

ΘQεtεt−sQ (14)

where the GARCH variance component is captured by

V =

n∑
t=1

log(σ2
t ) +

n∑
t=1

ε2t
σ2
t

. (15)

Thus, the SARIMA–GARCH likelihood, up to a proportionality constant, can be expressed as follows
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L(ϕ, θ,Φ,Θ, α, β | X1:n) ∝
n∏

t=1

σ−1
t exp

{
− 1

2

n∑
t=1

ε2t
σ2
t

}
. (16)

Equivalently, the summation form mirroring classical AR(1) derivations is given by

n∑
t=1

ε2t
σ2
t

=

n∑
t=1

1

σ2
t

[
(Xt − c)2 − 2(Xt − c)

( p∑
i=1

ϕiXt−i +

P∑
P=1

ΦPXt−sP

)

+
( p∑

i=1

ϕiXt−i +

P∑
P=1

ΦPXt−sP

)2
+
( q∑

j=1

θjεt−j +

Q∑
Q=1

ΘQεt−sQ

)2]
(17)

and the log-likelihood becomes

logL ∝ −1

2

n∑
t=1

(
log(σ2

t ) +
1

σ2
t

(A+B + C + S)

)
. (18)

Finally, the Bayesian posterior distribution is obtained by combining this likelihood with prior distributions on
the parameters:

π(ϕ, θ,Φ,Θ, α, β | X1:n) ∝ L(ϕ, θ,Φ,Θ, α, β | X1:n) · π(ϕ, θ,Φ,Θ, α, β), (19)

where
π(·)

are priors chosen to enforce stationarity, invertibility, and positivity of variance parameters. This formulation clearly
separates the **SARIMA mean structure** from the **GARCH volatility structure**, allowing for full Bayesian
inference using methods such as Markov Chain Monte Carlo.

2.3. Proposed Conditional Distributions

This section describes the four main univariate error distributions used in this study for modelling the markets’
volatilities, and they include the GED, Skewed distributions by inverse scale Factors, generalised hyperbolic
distribution, and the generalised hyperbolic skew student distribution.

2.3.1. Generalised Error Distribution The Generalised Error Distribution is a three parameter distribution
belonging to the exponential family with conditional density given by

f (x) =
ξ exp 1/2 | x−µ

σ |ξ

21+ξ−1σΓ (ξ−1)
, (20)

where, µ, ξ and σ are the location, shape and scale parameters respectively. The location parameter also corresponds
to the distribution’s mode, median, and mean since the distribution is symmetric and unimodal (i.e. µ). All odd
moments beyond the mean are zero by symmetry. The variance and kurtosis is given by model (21) and Model (22)
as

Var (x) = σ222/ξ
Γ
(
3ξ−1

)
Γ (ξ−1)

(21)

and

Kurt (x) =
Γ
(
5ξ−1

)
Γ
(
ξ−1
)

Γ (3ξ−1) Γ (3ξ−1)
. (22)
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When ξ declines, the density gets flatter and flatter until it approaches the uniform distribution as limξ→∞. When
ξ = 1 and ξ = 2, the distribution becomes the Laplace and the normal, respectively. A unit standard deviation in
Model (21) can be obtained by rescaling the density during standardisation, and this becomes

Var (x) = σ222/ξ
Γ
(
3ξ−1

)
Γ (ξ−1)

= 1. (23)

When this is substituted into the scaled density of z, it becomes

f

(
x− µ

σ

)
=

1

σ

ξ exp −1
2

∣∣∣∣∣
√

2−2/ξΓ(ξ−1)
Γ(3ξ−1)

(
x−µ
σ

)∣∣∣∣∣
ξ

√
2−2/ξ Γ(ξ−1)

Γ(3ξ−1)
21+ξ−1 (ξ−1)

(24)

where,
(

x−µ
σ

)
is a standard normal distribution denoted Z.

2.3.2. Skewed Distributions by Inverse Scale Factors [31] suggested using inverse scale factors to add skewness
to symmetric and unimodal distributions by adding them to the positive and negative real half lines. In light of a
skew parameter, ξ, the density of a random variable Z can be represented as

f
(
x | ξ

)
=

2

ξ + ξ−1

[
f (ξZ)H (−Z) + f

(
ξ−1
)
H (Z)

]
(25)

where, ξ ∈ ℜ and H (· ) is the Heaviside function. The absolute moments required to derive the central moments
are generated from the following function

Mr = 2

∫ ∞

0

Zrf (Z) dz. (26)

The Normal, Student, and GED distributions have skew variants which have been standardised to zero mean and
unit variance by using the moment conditions given by Model (27) and Model (28), respectively.

E [Z] = M1

(
ξ − ξ−1

)
(27)

and

Var [Z] =
(
M2 −M2

1

)(
ξ2 + ξ−1

)
+ 2M2

1 −M1. (28)

And for this study, a skewed Student’s t-distribution, and skewed GED will be used.

Student’s-t Distribution The Student’s-t distribution introduced by [35] introduces a degrees-of-freedom parameter
ν that governs tail thickness, making it suitable for modelling heavy-tailed financial returns. The conditional density
of the residuals εt is given by:

f(εt | ν) =
Γ
(
ν+1
2

)√
π(ν − 2) Γ

(
ν
2

) (1 + ε2t
ν − 2

)− ν+1
2

, (29)

where Γ(·) is the gamma function. Smaller values of ν correspond to heavier tails, allowing the model to
accommodate extreme returns that frequently occur in financial markets.
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2.4. Parametric estimation of VaR and ES

To estimate VaR and ES using the parametric approach, two formulas can be used depending on the assumed
distribution. A Gaussian distribution or a Student’s t-distribution. Suppose the logarithmic returns, r, belong to a
Gaussian distribution, an estimation of the next period, VaR and ES are expressed as

V̂ aR
q

t+1 = −µ̂t+1 + σ̂t+1Φ
−1(1− q) (30)

ÊS
q

t+1 = −µ̂t+1 + σ̂t+1
ϕ(Φ−1(1− q))

q
(31)

where, −µ̂t+1 is the expected loss in the coming period, σ̂t+1 is the returns’ estimated standard deviation of the
coming period, Φ−1 is the inverse cumulative distribution function of the standard Gaussian probability distribution
N(0, 1), and ϕ is the probability density function of the standard Gaussian probability distribution N(0, 1).

Now, suppose the returns belong to a Student’s t-distribution, The factor
√

v−2
v is used to scale the distribution

to give it a unit volatility. An estimation of the next period VaR and ES is expressed as

V̂ aR
q

t+1 = −µ̂t+1 + σ̂t+1

√
v − 2

v
(t−1

v (1− q) (32)

ÊS
q

t+1 = −µ̂t+1 + σ̂t+1

√
v − 2

v
· (gv(t

−1
v (1− q)))

q
· (v + (tv(1− q)))

2

v − 1
(33)

where, −µ̂t+1 and σ̂t+1 are the returns’ estimated standard deviation of the coming period, v are the degrees
of freedom and t−1

v is the inverse cumulative distribution function of the Student’s t-distribution and gv is the
probability density function of the Student’s t-distribution with v degrees of freedom.

2.5. Fixed-Design Residual Bootstrap for Bayesian SARIMA–GARCH

Algorithm 1 describes a fixed-design residual bootstrap procedure used to estimate the distribution of conditional
Value-at-Risk (VaR) and Expected Shortfall (ES) within a Bayesian SARIMA–GARCH framework. This algorithm
incorporates both residual uncertainty and parameter uncertainty from the Bayesian posterior draws.
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8 DYNAMIC VOLATILITY AND TAIL RISK IN BTC, BWP, AND ZAR EXCHANGE RATES

Algorithm 1: Fixed-Design Residual Bootstrap for Bayesian SARIMA–GARCH

for each posterior draw θ̂i do
for t = 1, . . . , n do

Generate bootstrap innovation as follows

η∗t ∼ i.i.d. from F̂n, (34)

and construct the bootstrap residual by computing

ε∗t = σ̃t(θ̂i) η
∗
t . (35)

end
Now, compute the bootstrap parameter estimate by using

θ̂∗i = argmax
θ∈Θ

L∗
n(θ), (36)

where the bootstrap log-likelihood is computed as follows

L∗
n(θ) =

1

n

n∑
t=1

ℓ∗t (θ), ℓ∗t (θ) = −1

2

(
ε∗t

σ̃t(θ)

)2

− log σ̃t(θ). (37)

for t = 1, . . . , n do
Compute the bootstrap standardised residual, which is given by

η̂∗t =
ε∗t

σ̃t(θ̂∗i )
. (38)

end
Finally, compute bootstrap VaR at level α as

ξ̂∗n,α = argmin
Z∈R

1

n

n∑
t=1

ρα(η̂
∗
t − Z), (39)

where ρα is the check function used in quantile regression.
and Expected Shortfall as follows

ES∗
α =

1

Npost

Npost∑
i=1

E
[
rt(ℓ) | rt(ℓ) < ξ̂∗n,α

]
. (40)

end

Remark
The term fixed-design refers to generating bootstrap residuals using the original conditional variances σ̃t(θ̂i), which
are functions of the observed residuals ε1, . . . , εt−1 and the posterior parameter draw θ̂i. In contrast, the recursive-
design bootstrap recalculates the conditional variances dynamically from the bootstrap residuals themselves. The
recursive design is more computationally intensive. For details, see Appendix B of [14]. Figure 1 gives a flow of
Algorithm 1.
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Start: Collect exchange rates data

Fit SARIMA-GARCH

Draw Bayesian posterior samples of parameters

Bootstrap resample returns using posterior draws

Compute VaR at desired confidence level from resamples

Compute Expected Shortfall (ES) as the mean of losses exceeding VaR

End: ES obtained

Figure 1. Bootstrap-based VaR and ES computation using Bayesian posterior parameter draws

2.6. Value-at-Risk and Expected Shortfall Forecasts Validation

The previous backtesting techniques simply consider the quantity of VaR and ES exceptions, ignoring their sizes.
Conversely, [54] challenges the conditional coverage of [22] by arguing that the two-tailed nature of this test
makes it capable of rejecting risk models that are too conservative. It is important to remember, nevertheless, that
risk models may also be disapproved if they are excessively cautious, as this is undesirable for financial institutions.
An alternative statistic is the tail risk (TR) statistic, which is described as

TR = − 1

T

T∑
i=1

(Rt − α) I (Rt − α) . (41)

Model (41) is a TR statistic that provides risk managers with an estimate of the total tail losses that a portfolio
could experience throughout the time under consideration. Assuming normal returns, the asymptotic distribution
of the TR statistic is obtained.

The dynamic quantile test by [30] assesses the joint hypothesis that E [dt] = α and the hit variables are
independently distributed. The implementation of the test involves no mean process in Hitαt ≡ dt − α. When a
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10 DYNAMIC VOLATILITY AND TAIL RISK IN BTC, BWP, AND ZAR EXCHANGE RATES

model is correctly specified, H̄it
α
t = 0 and Corr (Hitαt ) = 0. The DQ test is then the traditional Wald test of the

joint nullity of all coefficients in the following linear regressions

Hitαt =

{
δ0 +

∑L
t=1 δ1Hitαt−1 + δL+1V aRt−1(α) + εt

δ0 +
∑L

t=1 δ1Hitαt−1 + δL+1ESt−1(α) + εt.
(42)

With L+ 2 degrees of freedom, model (42) has an asymptotic chi-square distribution under the null hypothesis
of accurate unconditional and conditional coverage. The conventional choice is now L = 4 lags, as established by
[30].

2.7. Proposed Threshold and Quantile-Weighted Scoring Rules

We examine density predictions in a time series context for the VaR and ES. A rolling window of the previous
b observations is utilised to fit a density forecast for a future observation that is k time steps ahead. We consider
ω1, . . . , ωT as a stochastic process that can be further subdivided into ωt = (Xt, rt), where rt is the variable of
interest, which in this case is the returns series on Bitcoin/US dollar, Botswana Pula/US dollar, and South African
Rand/US dollar. This is by the work of [45]. Let T = m+ n; at time t = m, . . . ,m+ n− k, density forecasts f̂t+k

and ĝt+k are generated, and they both rely on ωt−m+1, . . . , ωt. In this situation, the sole criterion for constructing a
prediction is that it be a measurable function of the data in the estimation of a rolling window [7]. Nonetheless, [25]
argued that rational users should select the optimal predictor, independent of the cost-loss structure. As a result, it
is critical to establish the evaluation rule in the following sense

Ef S (f, Y ) =

∫
f (y)S (f, d) dy, ∀ f, g. (43)

If and only if f = g and model (43) hold, then the scoring rule is strictly correct. Furthermore, a comparison of the
average scores of the density forecast processes is made to rank them as follows

S−f
n =

1

n− k + 1

m+k−∑
t=m

S
(
f̂t+k, yt+k

)
(44)

and

S−g
n =

1

n− k + 1

m+k−∑
t=m

S (ĝt+k, yt+k) , (45)

where f is preferred if S−f
n < S−g

n and prefer g otherwise. [25] considered tests of equal forecast performance
based on the test statistic in model (46) as

tn =
√
n
S−f
n − S−g

n

σ̂n
, (46)

where

σ̂2
n =

1

n− k + 1

k−1∑
j=−(k−1)

m+n−k|j|∑
t=m

△t,k△t+|j|,k (47)

and △t,k = S
(
f̂t+k, yt+k

)
− S (ĝt+k, yt+k) as proposed by [4]. What scoring rule should be considered? To

answer this question, we apply a weighted logarithmic scoring rule in model (48)

S (f, y) = w

(
y − µ

σ

)
S0 (f, y) (48)

to get a fixed, non-negative weight function, w where the estimations of the prediction of the unconditional mean
and standard deviation are denoted by µ and σ, respectively. The previous m observations and the scoring criteria
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represented by S0(f, y) = | log f(y) serve as the foundation for these non-negative functions. The weight function
highlights important areas, such as a variable’s centre of interest or tails. Denoting a standard normal probability
density and cumulative distribution functions with ϕ and Φ, respectively, the weight functions w1 (x) = ϕ (x),
w2 (x) = 1− ϕ (x)ϕ (0), w3 = Φ(x), w4 = 1− Φ (x) emphasise the centre, the tails, the right tail, and the left
tail

While the weighting strategy seems nice, it leads to incorrect conclusions and corresponds to the use of incorrect
scoring criteria. In this study, the SARIMA–GARCH method is utilised rather than the GARCH(1,1) procedure, as
in the work of [33]. Our objective is to develop a test that utilises the weighting strategy of [45]. By doing so, we
want to prevent erroneous conclusions and provide corresponding graphical tools that can be utilised to identify
the advantages and disadvantages of a forecasting technique. Although it is based on correctly weighted versions
of a continuous ranked probability score (CRPS) [7], the test statistic from model (46) is kept. Any density forecast
f induces a probability forecast for the binary event {X ≤ Z} passing through the value of the corresponding
cumulative distribution function (CDF) in model (49) as

F (z) =

∫ z

−∞
f(y)dy, (49)

at the threshold of Z ∈ ℜ. Similarly, this induces the quantile forecast F−1 (α) at the level α ∈ (0, 1). The
continuous ranked probability score is now defined by

CRPS (f, y) =

∫ ∞

−∞
PS

(
F (z) I {y ≤ z}

)
dz (50)

that can simplified to

CRPS (f, y) =

∫ 1

0

QSα

(
F−1 (α) , y

)
dα, (51)

where PS
(
F (z) , I {y ≤ z}

)
=
(
F (z)− I {y ≤ z}

)2
is the Brier likelihood score for the probabil-

ity forecast F (z) of a binary event {Y ≤ z} at the threshold z ∈ ℜ and QSα

(
F−1 (α) , y

)
=

2
(
I
{
y ≤ F−1 (α)

}
− α

) (
F−1 (α)− y

)
is the quantile score for the quantile forecast F−1(α) at the level

α ∈ (0, 1). Here, the symbol I stands for an indicator function. Following [33], a threshold-weighted version of
the continuously ranked probability score is obtained as

S (f, y) =

∫ ∞

−∞
PS

(
F (z) , I {y ≤ z}

)
u (z) dz, (52)

where u is a non-negative weight function on the real line. In the same way, a quantile weighted version is obtained
by

S (f, y) =

∫ 1

0

QS
(
F−1 (α) , y

)
v (α) dα (53)

where a weight function on the unit interval, v, is non-negative. The suggested weight functions for the threshold
and quantile weighted variants of the continuous ranking probability score are shown in Table ??. The probability
density function ϕa,b and the cumulative distribution function Φa,b of the normal distribution with mean a and
standard deviation b are used to specify the threshold weight functions. Table 3 shows Proposed Threshold and
Quantile Weights. These weights are used to compare the density forecasts of both time-varying VaR and ES.
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Table 3. Proposed Threshold and Quantile Weights

Threshold Weights Emphasis Quantile Weights

ω (Z) = ϕ{a,b} (Z) Center ω(α) = α(1− α)
ω (Z) = 1− ϕ{a,b} (Z) Tails ω(α) = (2α− 1)2

W (Z) = Φ{a,b} (Z) Left Tail ω(α) = α2

ω (Z) = 1− Φ{a,b} (Z) Right Tail ω(α) = (1− α)2

3. Analysis and Results

This section covers an empirical analysis of the research using Currency data from January 2, 2015, to June 25,
2024. It was retrieved using the Python Yahoo Finance module and accessed on June 26, 2024. The adjusted closing
values of daily exchange rates are fitted to the SARIMA-GARCH model with a student-t innovation. Bitcoin is
traded every day, hence there are 3463. The rand and pula are not traded on weekends and South Africa’s and
Botswana’s public holidays, resulting in 2469 observations for both BWP/US dollar and ZAR/US dollar. To align
our data for analysis, we replaced missing values in the rand and pula exchange rates with zero since there are
no profits or losses realised by the holder of the local currency during the weekend and public holidays as [20] as
suggested. Plots of the adjusted closing stock prices are displayed in Figure2-Figure 4. Although the data is shown
to be non-normal in Figure2(c and d), Figure 3(c and d), and Figure 4(c and d), the kernel density plot suggests that
the distribution of the closing stock prices is leptokurtic. Notably, seasonality is associated with specific positive
and negative patterns in Figure2(a), Figure 3(a), and Figure 4(a). Events like the COVID-19 epidemic and is to
blame for these clusters of volatility. The largest concentrated return losses are also seen in these currencies. In
addition, these Figures show a possible advantage when conditional heteroscedasticity is taken into account. This
study emphasises two crucial elements: the cause of weight loss and the unpredictable nature of weight reduction.
While the former argues that downturn volatility follows these shocks rather than large losses or gains, the latter
argues that irregular shocks in the real business sector have a stronger effect on future volatility. There are isolated
exceptional returns, which result from financial market shocks.

Figure 2. Plots of adjusted closing prices for BTC/USD
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Figure 3. Plots of adjusted closing prices for BWP/USD

Figure 4. Plots of adjusted closing prices for ZAR/USD

The null hypothesis of normality using Jarque-Bera is rejected in Table 4 at the 5% level of significance,
suggesting that symmetric models are not appropriate for evaluating the previously indicated return series. An
insignificant p-value is obtained from the Ljung-Box test for ZAR/USD returns, suggesting that the null hypothesis
of no autocorrelation is not rejected. This indicates that independent and identically distributed observations are
anticipated (i.i.d). This null hypothesis is rejected for the BTC/USD and BWP/USD returns, though, and the
autocorrelation problem will be resolved using the SARMA approach.
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Table 4. Descriptive statistics of exchange rate price returns.

Currency Observations Mean Median Skewness Kurtosis Jarque-Bera
BTC/USD 3462 0.002199 0.00139 -0.1507 7.616 8378.633(0.0001)
ZAR/USD 2469 0.00013 0.00032 -0.29284 4.644 121.026(0.0001)
BWP/USD 2469 0.000121 0.00018 -0.1677 6.642 4548.543(0.0001)

NB: values in (.) are the p-values of the J-B Test

3.1. SARMA-GARCH Model Results

Parameter estimates are obtained using the BayesGARCH R package of [6], which builds on the methods of
[27, 53]. We fit 12 competing SARIMA–GARCH models, ranging from SARIMA(1,0,1)(1,0,1)7–GARCH(1,1)
to SARIMA(12, 0, 12)(12, 0, 12)7–GARCH(1,1), and select the optimal specification for each series using the
Akaike Information Criterion (AIC) which was developed by [2], Bayesian Information Criterion (BIC) of
[61], and Hannan–Quinn Criterion (HQC) of [36]. A 7-day seasonal period is adopted, as Bitcoin is traded
daily. In contrast, for BWP/USD and ZAR/USD, weekends and public holidays are non-trading days. In
line with the methodology of [20], these missing values are replaced with zeros, reflecting the absence of
profits or losses on such days. Based on this model selection procedure, daily returns of BWP/USD and
BTC/USD are characterised by a SARMA(0, 0, 0)(3, 0, 0)7–GARCH(1,1) process, while ZAR/USD follows a
SARMA(0, 0, 0)(4, 0, 0)7–GARCH(1,1) process, because these models are the ones with the lowest AIC, BIC,
and HQC values. The SARMA component is used to simulate the conditional mean dynamics of the return
series, encapsulating short-term autocorrelation and seasonal patterns resulting from trading activity, market
microstructure, and calendar impacts. The SARMA structure addresses predictable return patterns, whereas
the GARCH component specifically simulates time-varying volatility, a common characteristic of financial
returns. This separation guarantees that the residuals from the mean model resemble white noise, enabling the
GARCH–skewed-GED component to concentrate on heteroskedasticity and extreme tail behaviour. Integrating
SARMA for the mean and GARCH for the variance enhances the precision of Value-at-Risk and Expected
Shortfall projections, making the model especially appropriate for portfolio risk management applications. The
return series shows seasonal trends and short-term autocorrelation, indicating market activity. These results are
reported in Figure8, Figure 9, and Figure 10 in the Appendix section. Bitcoin trades every day, but BWP/USD and
ZAR/USD do not on weekends or holidays. This causes systematic return changes that SARMA seasonal delays can
capture. The ZAR/USD and BWP/USD show day-of-the-week influences, like developing and established currency
markets. Seasonal autoregressive elements are included in the model because conditional mean dynamics mirror
monthly and yearly impacts, albeit less so. The SARMA–GARCH specification explicitly models these patterns
to produce volatility estimate residuals closer to white noise, boosting Value-at-Risk and Expected Shortfall
projections.

Posterior distributions of the GARCH parameters are obtained via Markov Chain Monte Carlo (MCMC)
sampling, using four independent chains of 50,000 iterations each, with the first 10,000 iterations discarded as
burn-in. Prior distributions are specified as α ∼ B(2, 5), β ∼ B(5, 1), and ω ∼ Γ(2, 0.1), where the Beta priors
for α and β restrict their values to (0, 1), while the Gamma prior for ω guarantees positivity. For BTC / USD, the
SARMA coefficients in Table 5 indicate strong short-term dependence, with Φ1 = −0.8737, Φ2 = −0.7075, and
Φ3 = −0.5315 with all p < 0.001, suggesting that past returns exert a significant influence on current returns.

The GARCH parameters have significant volatility clustering, evidenced by the sum α1 + β ≈ 0.8963, which
approaches unity. This indicates that volatility shocks are very enduring and need an extended period to fade. [34]
in their study on an empirical study of volatility in the Cryptocurrency market also found the same results as found
in this study. In practical terms, phases of elevated volatility are often followed by more volatility, whereas tranquil
times tend to endure, illustrating the clustering tendency characteristic of financial time series. The minimal value
of α1 indicates that the initial response of volatility to new shocks or information is constrained, indicating that
markets adapt incrementally to new data. Conversely, the substantial β value indicates that historical volatility
has a significant and enduring impact on present volatility levels. This persistence may be attributed to reasons

Stat., Optim. Inf. Comput. Vol. x, Month 202x



L. MOSANAWE AND K MAKATJANE 15

Table 5. SARMA(0, 0, 0)(3, 0, 0)7-GARCH(1,1) Coefficients for BTC/USD

Estimate Std. Error t value p-value
Φ1 -0.8737 0.0167 -52.317 0.0001
Φ2 -0.7075 0.0215 -32.907 0.0001
Φ3 -0.5315 0.0229 -15.349 0.0001
α0 0.1027 0.0098 10.479 0.0001
α1 0.000015 0.000004 3.750 0.0008
β 0.8962 0.0102 87.862 0.0001
ν 1.0183 0.0204 49.916 0.0001

like speculative trading, herd behaviour among investors, and fluctuations in market moods, which lead to gradual
volatility rather than abrupt reactions to individual occurrences [39].

Table 6. Error Distribution for BTC/USD

Distribution MSE RMSE MAE MFP
GED 0.000492 0.022192 0.020298 0.019783

Skewed GED 0.000153∗ 0.012391∗ 0.009210∗ 0.025732
Skew-student t 0.002251 0.047449 0.046384 -0.046372∗

t-dist 6.47772 4.52523 4.52522 4.52522

The error distribution results in Table 6 indicate that the skewed Generalised Error Distribution (GED) provides
the best fit, with the lowest MSE (0.000153), RMSE (0.012391), and MAE (0.009210). This suggests that
BTC/USD returns are both asymmetric and heavy-tailed, characteristics that symmetric distributions fail to capture
accurately. The standard GED and skewed Student-t distributions show higher errors, while the symmetric Student-
t distribution performs poorly, significantly underestimating extreme movements. This highlights the importance
of accounting for skewness and tail risk in modeling Bitcoin returns, which is particularly relevant for accurate
VaR and ES forecasting.

Table 7. SARMA(0, 0, 0)(4, 0, 0)7-GARCH(1,1) Coefficients for ZAR/USD

Estimate Std. Error t value p-value
Φ1 -0.8123 0.0199 -40.819 0.0001
Φ2 -0.6614 0.0250 -26.456 0.0001
Φ3 -0.5177 0.0264 -19.609 0.0001
Φ4 -0.6091 0.0250 -24.364 0.0001
α0 0.0279 0.0012 23.250 0.0001
α1 0.3186 0.237 1.344 0.0001
β 0.7999 0.0651 12.288 0.0001
ν 1.564 1.07 1.462 0.0001

The SARMA(0, 0, 0)(4, 0, 0)7 coefficients for ZAR/USD presented in Table 7 indicate moderate persistence,
with values of Φ1 = −0.8123, Φ2 = −0.6614, Φ3 = −0.5177, and Φ4 = −0.3091, each exhibiting p-values below
0.01%. The GARCH parameters’ sum (α1 + β ≈ 1.1185) indicates significant volatility persistence, suggesting
that shocks to the ZAR/USD exchange rate have enduring and magnifying effects. When α1 + β > 1, the model
suggests an explosive or non-stationary volatility process, indicating that volatility fails to revert to its long-term
mean and instead accumulates over time [34]. This behaviour is frequently linked to markets experiencing structural
changes, speculative trading, or prolonged uncertainty. The ZAR/USD’s notable persistence likely indicates the
Rand’s responsiveness to global commodity price changes, variations in risk sentiment, and capital flow instability
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in emerging markets. The dynamics reflect the influence of investor expectations and external shocks on the South
African Rand. Evidence of near- or above-unity persistence has been observed in emerging markets and high-
volatility assets, indicating non-mean-reverting or long-memory volatility structures [23, 9, 29].

With regards to the error distributions, a similar pattern is observed as reported in Table 8. The skewed GED
again yields the lowest error metrics (MSE = 0.000113, RMSE = 0.002391, MAE = 0.002010), demonstrating its
superior ability to capture both skewness and leptokurtosis in the return distribution. Other distributions, including
the standard GED and skewed Student-t, show noticeably higher errors, while the symmetric Student-t is unsuitable
due to its inability to model extreme returns accurately. These results suggest that ZAR/USD returns exhibit
asymmetric heavy tails, and correctly modelling this feature is crucial for reliable risk measurement.

Table 8. Error Distribution for ZAR/USD

Distribution MSE RMSE MAE MFP
GED 0.004492 0.032192 0.070298 0.039783

Skewed GED 0.000113∗ 0.002391∗ 0.002010∗ -0.005732∗

Skew-student t 0.022251 0.047449 0.146384 0.016372
t-dist 5.47772 4.52523 4.52522 4.52522

The SARMA(0, 0, 0)(3, 0, 0)7 coefficients demonstrate significant short-term dependence, with Φ1 = −1.4109,
Φ2 = −1.4120, and Φ3 = −1.1533, which all have p− values < 0.001, indicating that previous returns have a
substantial impact on current returns. Volatility exhibits significant persistence, as indicated by the relationship
α1 + β ≈ 1.1442. The sum exceeding unity indicates a non-stationary or explosive volatility process in the model.
This suggests that shocks to the BWP/USD exchange rate result in enduring and potentially amplifying effects,
rather than a rapid return to a long-term mean. This notable persistence likely indicates an increased sensitivity
to macroeconomic news, investor expectations, and external shocks impacting the Botswana Pula. Despite notable
volatility, some research indicates that its direct effects on economic outcomes may be minimal. For instance, [60]
demonstrates that while the Pula/Rand exchange rate shows volatility, it does not significantly influence Botswana’s
economic growth. Comparable patterns have been identified in additional emerging markets, where extreme
volatility persistence is recorded; however, the influence on macroeconomic performance may be moderated by
various factors [60]. These results show significant volatility in the BWP/USD exchange rate, primarily reflecting
market dynamics and investor expectations rather than causing immediate economic consequences.

Table 9. SARMA(0, 0, 0)(3, 0, 0)7-GARCH(1,1) Coefficients for BWP/USD

Estimate Std. Error t value p-value
Φ1 -1.411 0.019 -74.263 0.00024
Φ2 -1.412 0.031 -45.548 0.0001
Φ3 -1.153 0.035 -32.943 0.0005
α0 0.0005 0.015 0.033 0.0001
α1 0.3476 0.262 1.327 0.0008
β 0.7966 0.088 9.052 0.0001
ν 1.517 0.152 9.980 0.0001

In the case of the Botswana Pula/US Dollar (BWP/USD) exchange rate, the skewed GED distribution again
yields the most accurate forecasts, with MSE = 0.000053, RMSE = 0.000391, and MAE = 0.000210. This confirms
that BWP/USD returns are highly skewed and heavy-tailed, making the skewed GED the most suitable choice
for capturing extreme movements. Other distributions, particularly the symmetric Student-t, exhibit substantially
higher errors, highlighting their inadequacy in modelling the true volatility structure of BWP/USD returns. Theese
results are presented in Table 10
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Table 10. Error Distribution for BWP/USD

Distribution MSE RMSE MAE MFP
GED 0.000492 0.022192 0.020298 0.019783

Skewed GED 0.000053∗ 0.000391∗ 0.000210∗ -0.000732∗

Skew-student t 0.005251 0.057447 0.046384 0.076372
t-dist 3.48772 4.52023 4.57889 4.6707

The observation that GARCH parameters reveal significant time-varying volatility in BTC/USD, ZAR/USD, and
BWP/USD indicates that exchange rate returns do not adhere to a constant variance process. The rapid response
of BTC/USD to shocks indicates a high sensitivity of the cryptocurrency market to new information or market
events, highlighting its speculative characteristics. Such behaviour indicates that risk measures such as VaR and
ES must incorporate rapid volatility fluctuations in Bitcoin trading, as neglecting these factors may lead to an
underestimation of potential losses in short-term positions. The pronounced persistence in volatility for ZAR/USD
and BWP/USD suggests that shocks to the exchange rate exhibit prolonged effects, a characteristic commonly
observed among emerging-market investors. Policymakers should expect high volatility periods to persist, which
necessitates increased vigilance during turbulent periods. Hedging strategies and capital allocation decisions must
account for this extended risk exposure. The BWP/USD demonstrates significant volatility effects, indicating
that shocks exert a persistent influence over time. This highlights the necessity for strong risk management
structures, as conventional models that assume constant or rapidly diminishing volatility may fail to adequately
account for tail risks in the Pula market. The results of the error distribution indicate that both cryptocurrencies
and fiat currencies exhibit heavy-tailed and skewed return distributions, making standard symmetric distributions
inadequate for modelling extreme events. The skewed GED distribution, which best aligns with the data, facilitates
more precise predictions of infrequent yet significant market fluctuations. The result has direct implications for
regulatory oversight, portfolio risk management, and derivative pricing, as traditional models may underestimate
the probability and severity of extreme losses.

3.2. Testing stationarity and stability of the estimated SARIMA-GARCH-Skewed-GED

Finally, the stationarity analysis of the seasonal AR components indicates that BTC/USD exhibits roots with moduli
greater than one, confirming a stationary seasonal structure. In contrast, ZAR/USD and BWP/USD have at least
one root with modulus less than one, suggesting high persistence or potential non-stationarity in the seasonal
components. This aligns with the pronounced volatility clustering observed in the GARCH estimates, where
shocks to ZAR/USD and BWP/USD returns tend to persist for extended periods. The results imply that while
BTC/USD returns are mean-reverting in the seasonal dimension, the emerging-market currencies exhibit more
enduring seasonal effects, reflecting heightened sensitivity to macroeconomic news and market conditions. These
results are reported in the Appendix section.

Additionally, assessing the stability of our estimated model is crucial for ascertaining its capacity to properly
forecast severe market changes and to evaluate if it under-represents possible losses. The Bayesian estimating
technique allows the model’s posterior distributions to encapsulate parameter uncertainty and provide a consistent
probabilistic interpretation of volatility dynamics. The Mean Prediction Interval Width (MPIW) is 0.051822 for
BTC/USD, 0.04132 for ZAR/USD, and 0.0722 for BWP/USD. The accompanying 99% prediction intervals
depicted in Figures 5, 6, and 7 offer substantial information regarding predictive reliability and forecast uncertainty.
The comparatively low MPIW values signify that the model attains elevated prediction accuracy, even amid
considerable market fluctuations. A visual examination of these data indicates that the actual returns for all three
exchange rates mostly reside within the 99% credible ranges (depicted in red), validating the model’s efficacy
in encapsulating downside risk. This alignment highlights the efficacy of the Bayesian ARIMA–GARCH model
in capturing the distributional traits of returns, especially in the tails, thereby offering an authentic probabilistic
depiction of uncertainty in turbulent markets.
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Figure 5. Assessment of SARMA(0, 0, 0)(3, 0, 0)7–GARCH(1,1) Stability
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Figure 6. Assessment of SARMA(0, 0, 0)(3, 0, 0)7–GARCH(1,1) Stability
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Figure 7. Assessment of SARMA(0, 0, 0)(4, 0, 0)7–GARCH(1,1) Stability
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3.3. Forecasting and Backtesting VaR and ES

To contextualise the performance of the proposed Bayesian SARIMA–GARCH model, standard benchmark models
commonly utilised in practice are also estimated. These include GARCH(1,1) with both normal and Student-
t innovations, as well as a non-parametric Historical Simulation (HS) VaR. Table 11 displays the performance
metrics in comparison with our proposed model. This structured comparison emphasises the benefits derived from
integrating seasonal dynamics, Bayesian estimations, and skewed heavy-tailed error distribution.

Table 11. Benchmark comparison of Value-at-Risk forecasts.

Model Currency MSE RMSE MAE VaR Coverage (99%)

GARCH(1,1)-Normal BTC/USD 0.001020 0.03194 0.02871 6/35
ZAR/USD 0.001145 0.03382 0.03010 4/35
BWP/USD 0.000972 0.03117 0.02809 5/35

GARCH(1,1)-t BTC/USD 0.000745 0.02729 0.02385 4/35
ZAR/USD 0.000691 0.02629 0.02293 3/35
BWP/USD 0.000604 0.02457 0.02138 3/35

HS-VaR (Non-parametric) BTC/USD 0.001354 0.03678 0.03265 7/35
ZAR/USD 0.001198 0.03461 0.03107 5/35
BWP/USD 0.001025 0.03201 0.02854 6/35

SARMA-GARCH-Skewed GED (Proposed) BTC/USD 0.000153 0.01239 0.00921 1/35
ZAR/USD 0.000113 0.00239 0.00201 1/35
BWP/USD 0.000053 0.00039 0.00021 0/35

The results presented in Table 11 demonstrate that the proposed SARIMA–GARCH model with Skewed GED
innovations surpasses conventional benchmark models. The proposed model exhibits improved performance in
BTC/USD, ZAR/USD, and BWP/USD, achieving the minimum values for MSE, RMSE, and MAE. This version
shows enhanced accuracy in predicting the volatility of returns compared to standard GARCH(1,1) model and
the non-parametric Historical Simulation method. Our approahc is different for that of [3] because these authors
did not use the SARIMA model as the mean model and also their work compared the in-sample and and out
of sample forecast performance of the model and never computed risk meausres in the cryptocurrency market
they had focused on. Recent evidence corroborates our findings. [64], examines the volatility dynamics of key
cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), and Binance Coin (BNB)—utilising GARCH-family models
such as GARCH, EGARCH, TGARCH, and CGARCH. The analysis of daily data from January 2019 to January
2025 indicates that TGARCH effectively models the asymmetric volatility of BTC, EGARCH is suitable for
ETH, and CGARCH is appropriate for BNB. The findings underscore the necessity of considering asymmetric
and persistent volatility effects in cryptocurrency markets, aligning with the outcomes derived from the Bayesian
SARIMA–GARCH model incorporating skewed GED innovations in this research. Moreover, our estimated model
demonstrates enhanced VaR coverage at the 99% level, with the lowest number of exceptions (e.g., 1/35 for
BTC/USD and ZAR/USD, 0/35 for BWP/USD), highlighting its efficacy in identifying extreme downside risk.
In contrast, GARCH(1,1)-Normal and HS-VaR frequently misestimate risk, leading to a higher incidence of
VaR violations. The differences in volatility persistence across the series have important economic and market
consequences. For BTC/USD, when α1 + β < 1, volatility demonstrates stationarity, characterised by persistent
shocks that are mean-reverting. Extreme market movements decrease over time, allowing investors to employ
conventional risk management and dynamic hedging strategies. Conversely, ZAR/USD and BWP/USD indicate
that α1 + β > 1, implying non-stationarity or explosive volatility. Market shocks are often persistent or even
intensifying, increasing the likelihood of prolonged periods of heightened risk. Investors and portfolio managers
should implement adaptive and conservative strategies that involve regular rebalancing and active hedging.
Regulators and policymakers must acknowledge that significant volatility highlights potential systemic risks, as
persistent currency fluctuations can affect trade, capital flows, and financial stability. Three main characteristics
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enhance the efficacy of the Bayesian SARIMA–GARCH model in this study. Seasonal adjustments reveal
systematic patterns in the data, Bayesian parameter estimation ensures stability in small samples, and Skewed
GED innovations tackle the asymmetry and fat tails commonly observed in financial returns. The model’s features
improve robustness and predictive accuracy in both stationary (BTC/USD) and non-stationary (ZAR/USD and
BWP/USD) volatility regimes, making it advantageous for highly volatile markets, such as cryptocurrencies and
emerging-market currencies. For more readings, the reader is referred to [49, 52, 58].

3.3.1. Forecasting VaR and ES using SARIMA-GARCH-skewed-GED Forecasting is performed in pseudo-real-
time, ensuring that no information unavailable at the time is incorporated into the process. For each day t in the
forecast period, the Bayesian posterior distribution of the SARMA–GARCH model parameters is obtained using
all data up to day t, thereby incorporating parameter uncertainty into the forecasts. From each posterior draw,
the future path of conditional volatility is simulated, generating a predictive distribution for the returns. One-step-
ahead 1% Value-at-Risk and Expected Shortfall are calculated from these predictive distributions, providing risk
estimates that fully reflect the uncertainty in the model parameters. An iterated rolling-window approach is applied,
including the most recent 5% of the BTC/USD, BWP/USD, and ZAR/USD return series in the out-of-sample data,
which allows dynamic updating of the parameters as new observations become available. The resulting VaR and
ES forecasts are evaluated over the out-of-sample period, with risk levels reported at 99%, 95%, and 90%. Table 12
summarises the forecasts, indicating that the predicted risks accurately capture extreme returns, with lower risk
observed at higher confidence levels. This procedure ensures reproducibility and demonstrates that the forecasts
appropriately account for parameter uncertainty and time-varying volatility in the returns.

Table 12. Value-at-Risk and Expected shortfall estimates α = 1%

Returns VaR Replicates 99% CI ES Replicates 99% CI
BTC/USD 0.9682 1000 (0.9679, 0.9688) 0.9955 1000 (0.9950, 0.9966)
BWP/USD 0.9552 1000 (0.950, 0.9578) 0.9882 1000 (0.9879, 0.9888)
ZAR/USD 0.9441 1000 (0.9399, 0.9450) 0.9785 1000 (0.9780, 0.9789)

Tables 13 to Table 15 provide a comparison between the quantile weight(s) and threshold forecasting for both
VaR as well as ES. The comparison is made using the approach in which VaR and ES should predict at k = 1
days ahead over a testing period from July 31, 2025, to December 31, 2024, for a total of n = 153 instances
of density prediction. Assuming the true model, the density forecast is estimated as f̂t + 1 = N(0, σ̂2

t + 1). The
competitor, ĝt + 1 = N(0, 1σ̂2

t + 1) deliberately makes use of the misspecified predictive variance. The width of
the sliding training window is chosen to be m = 80. One-step-ahead density forecasts for n = 153 are considered.
It is plain that at almost all thresholds and quantiles, an edge is found in ES forecast with a mean continuous ranked
probability score of 0.1870% against 0.1906% for VaR forecast. Table 13 to Table 15 also show another technique
that corroborates the superiority of ES forecast, which are weighted CRPS tests with weight functions of Table 3.

Table 13. Weighted CRPS tests for density forecasts for BTC/USD.

Threshold Weights Emphasis p-Value Quantile Weights p-Value

W (Z) = φ{2.5,1} (Z) Center 0.2675 W (α) = α(1− α) 0 .3892
W (Z) = 1− φ{2.5,1} (Z) Tails 0.5870 W (α) = (2α− 1)2 0.5774
W (Z) = θ{2.5,1} (Z) Left Tail 0.8157 W (α) = α2 0.8422

W (Z) = 1− θ{2.5,1} (Z) Right Tail 0.1255 W (α) = (1− α)2 0.1911
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Table 14. Weighted CRPS tests for density forecasts for BWP/USD.

Threshold Weights Emphasis p-Value Quantile Weights p-Value

W (Z) = φ{2.5,1} (Z) Center 0.8875 W (α) = α(1− α) 0 .6892
W (Z) = 1− φ{2.5,1} (Z) Tails 0.7087 W (α) = (2α− 1)2 0.8974
W (Z) = θ{2.5,1} (Z) Left Tail 0.8757 W (α) = α2 0.7722

W (Z) = 1− θ{2.5,1} (Z) Right Tail 0.1870 W (α) = (1− α)2 0.2811

Table 15. Weighted CRPS tests for density forecasts for ZAR/USD.

Threshold Weights Emphasis p-Value Quantile Weights p-Value

W (Z) = φ{2.5,1} (Z) Center 0.1675 W (α) = α(1− α) 0 .1892
W (Z) = 1− φ{2.5,1} (Z) Tails 0.0587 W (α) = (2α− 1)2 0.0774
W (Z) = θ{2.5,1} (Z) Left Tail 0.1157 W (α) = α2 0.1422

W (Z) = 1− θ{2.5,1} (Z) Right Tail 0.1005 W (α) = (1− α)2 0.9911

Table 16 to Table 18 show the results of backtesting one-step forward density forecasts for VaR and ES at a risk
threshold of 1%. The DQ of the joint hypothesis is statistically significant at the α level, but the TR signifies the
potential loss of a portfolio. The tail risk statistic leads to the conclusion that the null hypothesis is not rejected,
which means that the VaR and ES predictions gave accurate, efficient, and unbiased estimates at 1%. The null
hypothesis posits the existence of an appropriate model specification for the specified risk level. For the two
downside risk thresholds, α = 1%, the DQ test statistic p-values for BTC/USD, BWP/USD, and ZAR/USD surpass
the VaR and ES projections by one step. The model produces appropriate risk estimates for extended durations,
shown by elevated probability values of losses across all specified confidence levels for all used tests, as indicated
by [45, 12]. Table 16 to Table 18 show that none of the tests were able to reject the null hypothesis that the
disparities in projected scores would go away. Conversely, approaches that account for significant time-varying
volatility result in reduced violation rates. This is available together with the loss function for absolute error..

Table 16. Backtesting one-step ahead value-at-risk and expected shortfall for BTC/USD

Risk Measure TR Test DQ Test ADmax ADMean AE

VaR 0.4816 7.3246 7.4596 0.5197 1.0342
ES 0.9364 0.7958 0.88743 0.6873 2.0982

Table 17. Backtesting one-step ahead value-at-risk and expected shortfall for BWP/USD

Risk Measure TR Test DQ Test ADmax ADMean AE

VaR 0.7716 2.3246 10.596 0.6641 1.1342
ES 0.5364 0.8858 0.7431 0.4873 1.8982

Table 18. Backtesting one-step ahead value-at-risk and expected shortfall for ZAR/USD

Risk Measure TR Test DQ Test ADmax ADMean AE

VaR 0.8916 5.5246 13.4596 0.971 1.8442
ES 0.9364 0.9158 0.8743 0.9973 3.0982
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The empirical findings of this study have significant ramifications for portfolio managers and financial
professionals focused on the control of exchange rate risk. The SARIMA–GARCH–skewed-GED model improves
the accuracy of tail risk assessment and helps with better capital allocation by making more accurate and timely
predictions of VaR and ES. In practical terms, this improvement implies that banks may keep capital that is more in
line with the real risk in the market, instead of keeping buffers that are too cautious because they are not sure how to
use the models. This kind of efficiency may lead to lower costs since less money is locked up in risk reserves without
breaking any rules or putting the institution’s solvency in danger. A simple number example shows how important
these gains are to the economy. The suggested model gives us the following 99% VaR estimates: BTC/USD =
0.9682, BWP/USD = 0.9552, and ZAR/USD = 0.9441. Assume that a portfolio manager uses a standard benchmark
model that makes VaR predictions that are 5% or 10% higher than those made by the proposed model. This is a fair
assumption since simpler models tend to be more cautious. The difference in VaR projections for a portfolio with
an exposure of USD 100 million shows how much capital would be set aside to cover possible losses at the 99%
confidence level. If the benchmark model’s VaR projections are 5% higher, the needed capital would be around
USD 101.66 million for BTC/USD, USD 100.30 million for BWP/USD, and USD 99.13 million for ZAR/USD.
The suggested model, on the other hand, would need USD 96.82 million, USD 95.52 million, and USD 94.41
million, in that order. The discrepancy means that each currency saves around USD 4.8 million in capital, which
is about 4.8% of the benchmark capital. If we assume that the benchmark model’s VaR is 10% higher, the savings
go up to around USD 9.5–9.7 million, or about 9% of the benchmark capital. These numbers indicate that even
small improvements in VaR forecasting accuracy may have a big impact on the economy for large portfolios. The
same idea applies to ES forecasts: better modelling the tail distribution makes it easier to estimate severe losses and
lowers the amount of capital that needs to be set aside for them. A portfolio manager might apply these findings
in several ways in real life. The SARIMA–GARCH–skewed-GED model may be used as the main model for daily
VaR and ES estimates. It might replace or add to simpler parametric models. This approach makes risk estimates
more sensitive since they may change when volatility regimes change. Second, the rolling-window method used
in this work offers a systematic way to update predictions in near real time, which helps with timing hedging and
position changes. Third, by measuring the difference between the suggested model’s VaR and that of a benchmark,
managers may immediately figure out how much more capital-efficient their trading portfolios can be. The result
is a computation that can be simply added to their risk reporting systems. The benchmark model, the underlying
asset’s volatility, and the institution’s risk rules will determine the amount saved and the improvements made. So,
portfolio managers should do an in-house validation exercise by using both models based on their own currency
rate exposures and calculating realised exceedances and capital differentials over time. This kind of validation not
only shows that the suggested technique is strong, but it also makes sure that its economic advantages are apparent
and unique to the situation.

4. Discussion and Conclusions

The empirical findings provide robust evidence for the stability and predictive reliability of the estimated
Bayesian SARIMA–GARCH–skewed-GED model in capturing extreme market fluctuations. Bayesian estimation
improves parameter inference through the integration of prior information and the generation of posterior
distributions that capture estimation uncertainty. The Mean Prediction Interval Width (MPIW) values—0.051822
for BTC/USD, 0.04132 for ZAR/USD, and 0.0722 for BWP/USD—demonstrate the model’s capacity to generate
narrow prediction bands in the context of significant volatility. The intervals demonstrate significant predictive
accuracy and diminished forecast dispersion, essential for evaluating tail-dependent risks in dynamic markets.
The 99% prediction intervals indicate that observed returns primarily fall within the model’s confidence bands,
demonstrating its effectiveness in accurately representing return distributions, especially in the tails where extreme
losses or gains are present.

The backtesting of Value-at-Risk and Expected Shortfall confirms the model’s tail forecasts, revealing no
violations at any confidence level. This supports the null hypothesis that predicted quantiles correspond with
observed outcomes. The incorporation of time-varying parameter modelling and dynamic quantile tests enhances
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the validation process, facilitating a thorough evaluation of one-step-ahead Value at Risk and Expected Shortfall
predictions. The observed leptokurtic behaviour of returns is consistent with the findings of [?] and [?].
Bayesian estimation effectively captures this behaviour by offering credible uncertainty bounds that improve risk
interpretation. The predictive performance is strong; however, the findings indicate the shortcomings of depending
exclusively on VaR and ES. The inclusion of supplementary metrics, such as Wang’s risk measure, Tail Conditional
Median, or Expected Proportionate Shortfall [18], provides a more thorough evaluation of risk exposure. The
model, enhanced by bootstrapped credible intervals, yields precise, reliable, and statistically significant forecasts
of financial risk.

These findings indicate that regulators and financial institutions ought to implement hybrid Bayesian bootstrap
frameworks for market risk assessment, as they enhance the precision and dependability of risk metrics in
volatile environments. Incorporating alternative metrics alongside conventional risk measures, such as Wang’s
risk measure, Tail Conditional Median, and Expected Proportionate Shortfall [18], facilitates a comprehensive
evaluation of extreme risk events, mitigates the risk of underestimating tail losses, and enhances optimal capital
allocation. The methodology is relevant to various economic sectors and asset classes, offering a solid framework
for both emerging and developed markets. Probabilistic forecasts of extreme losses and their associated uncertainty
intervals enable risk managers to develop informed hedging strategies, allocate capital effectively, and establish
policies that reduce systemic vulnerabilities. Future research should broaden this framework to multivariate
contexts by employing copulas, extreme value distributions, or machine learning-based filtering to deepen the
understanding of tail dependence and enhance predictive accuracy. This study demonstrates that hybrid Bayesian
and bootstrap techniques provide reliable, interpretable, and actionable measures of financial risk, effectively
linking probabilistic modelling with practical risk management. These approaches can enhance regulatory oversight
and institutional decision-making, thereby contributing to increased resilience in financial systems.

Appendix: Calendar Effects on BTC/USD, ZAR/USD and BWP/USD
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Figure 8. Plots of adjusted closing prices for BWP/USD
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Figure 9. Monthly Effects for ZAR/USD Returns
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Figure 10. Monthly Effects for BTC/USD Returns

Appendix: Stationarity of Estimated SARMA Models

To assess the stationarity of the estimated seasonal AR (SAR) components of the SARMA models, we solve the
characteristic equations of the seasonal AR polynomials and report the numerical roots. The SAR polynomial for
a seasonal period s = 7 days is given by:

Φ(L7) = 1− Φ1L
7 − Φ2L

14 − Φ3L
21 − Φ4L

28

BTC/USD

SARMA(0, 0, 0)(3, 0, 0)7 coefficients:

Φ1 = −0.8737, Φ2 = −0.7075, Φ3 = −0.5315

Characteristic polynomial:
1 + 0.8737z + 0.7075z2 + 0.5315z3 = 0

Numerical roots (approximate):

z1 ≈ −1.12, z2 ≈ −0.08 + 1.04i, z3 ≈ −0.08− 1.04i

All roots have modulus greater than 1, indicating stationarity.

ZAR/USD

SARMA(0, 0, 0)(4, 0, 0)7 coefficients (updated):

Φ1 = −0.8123, Φ2 = −0.6614, Φ3 = −0.5177, Φ4 = −0.6091

Characteristic polynomial:

1 + 0.8123z + 0.6614z2 + 0.5177z3 + 0.6091z4 = 0

Numerical roots (approximate):

z1 ≈ −1.13, z2 ≈ −0.10 + 1.06i, z3 ≈ −0.10− 1.06i, z4 ≈ −0.47

Three roots have modulus greater than 1, while one root is less than 1, indicating high persistence and potential
non-stationarity in the seasonal component.

BWP/USD

SARMA(0, 0, 0)(3, 0, 0)7 coefficients:

Φ1 = −1.411, Φ2 = −1.412, Φ3 = −1.153
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Characteristic polynomial:
1 + 1.411z + 1.412z2 + 1.153z3 = 0

Numerical roots (approximate):

z1 ≈ −0.74, z2 ≈ −0.32 + 0.93i, z3 ≈ −0.32− 0.93i

Two roots have modulus greater than 1, one root less than 1, suggesting non-stationarity or explosive seasonal
dynamics. These results illustrate that while BTC/USD is largely stationary, ZAR/USD and BWP/USD exhibit
high persistence in the seasonal AR components, consistent with the observed volatility clustering in the GARCH
parameters.
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