‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0-13.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

Algorithms for Improving the Designs of Building Universal Kriging
Models

Shaymaa M. Younus, Younus Al-Taweel”, Zainab Abdulateef Rasheed

Department of Mathematics, College of Education for Pure Science, University of Mosul, Iraq

Abstract Kriging models (KMs) have been used popularly in the analysis of computer experiments (CEs). Fast-running
alternative models for computationally demanding computer codes (CC) are created through Kriging models. To predict the
CC response at untested observations using the values at observed points, the design points should be carefully selected.
Latin hypercube design (LHD) is a stratified design that has become popular for building KMs. However, in some cases,
additional points may need to be added to the LHD to improve its performance. Several algorithms have been proposed for
this purpose. In this paper, we investigate and examine the behavior of various LHDs algorithms for generating the design
points by constructing several KMs to minimize the prediction errors. The KMs that are based on various LHDs algorithms
are applied on real CCs and their predictions are compared using some proposed measures.
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1. Introduction

Computer experiments (CEs) have increasingly become popular as alternatives for complex real systems. The
fact that real experimentation can be expensive or even impossible in certain situations is a strong argument
for employing CEs. Numerical simulation of complicated systems is becoming a more appealing option than
conducting costly and time-consuming physical tests due to the widespread availability of extensive computing
facilities and recent advancements in software development [1, 2, 3, 4]. The study by [5] is considered the official
beginning of CEs, however [6] introduced model-based approaches, which were considered as a new step.

For many complicated systems, doing CEs can be highly expensive [7]. Developing a Kriging model (KM) is
an option for conducting these CEs directly [8]. KMs are frequently used in CEs when analyzing a single grid
throughout the entire input space is impractical. The original computer simulation is used to evaluate a limited
number of points instead. A KM is then applied to the results of these limited runs. The KMs can provide
predictions for new inputs and uncertainty quantification without requiring extensive computer simulation to be
rerun at the new points. The predicted value will be close to the true CC value if the KM works properly [9, 10].

Predicting the unobserved outputs depends on the observed design points, also known as training points.
Therefore, the training points must be carefully chosen. In CEs, choosing an experimental design is essential
to creating a useful and instructive KM. The points should be evenly distributed over the experimental area as a
good design concept. Latin Hypercube design (LHD) is a popular space-filling choice for CEs [11]. Several works
have been conducted to improve LHD performance. For example, [ 12] proposed the sliced Latin hypercube design
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(SLHD) which is a special LHD, that can be divided into slices of smaller LHDs, each of which attains maximum
homogeneity in all one-dimensional projections.

In order to improve upon the SLHD, [13] suggested the Maximin Sliced LHD (MSLHD), which divides the Latin
square into slices in order to preserve the statistical characteristics and features of the samples while achieving an
ideal distribution of elements within each slice. A traditional LHD is first created as a matrix, with one level for
each design factor in each row of the matrix. The matrix is then divided into a predetermined and set number of
slices. To guarantee an equitable distribution and balance across all variables, the points distribution inside every
slice is optimized using a random distribution. Lastly, by limiting overlap within slices and guaranteeing the ideal
distribution of points inside every slice, an optimal solution is obtained using one of the optimization algorithms or
numerical techniques.

[14] proposed the Maximum projection designs (MaxPro) to improve the LHD performance. The MaxPro
maximizes space-filling properties on projections to all subsets of factors. An optimal design criterion was proposed
by [15] that can be used with continuous, nominal, discrete, numeric and ordinal input factors. The suggested design
may attain good space-filling properties in the whole design space and in all potential low-dimensional projections,
and it is versatile in terms of run size and number of factors. The optimal maximin L,-distance LHDs was proposed
by [16] that is depend on a full factorial design using the rotation method. The optimal maximin Ly-distance LHDs
have two advantages which are the do not need a computer search and they are orthogonal. A sequential recursive
evolution LHD was suggested by [17], that uses a technique for permutation inheritance to optimize and update
the LHD. In this study, we present and investigate several algorithms for improving the LHD behavior through the
construction of several KMs. Then, KMs predictions are compared via some suggested measures.

The content of this paper is as follows. In Section 2, we present the methodology for constructing KMs for
obtaining CC predictions. In Section 3, we discuss the design and experiments for computer experiments, where
we present several LHD algorithms. Section 4 suggests some measures for validating KMs. In Section 5, we apply
KMs to a real CC represented by the Steel Column function. Then, the results are compared. The conclusion based
on the obtained results is given in Section 6.

2. Universal Kriging Models

The CCs are considered to as unknown functions. It can be represented by a prior distribution, such as the Gaussian
process (GP). Therefore, the KM can be considered as a distribution to obtain CC predictions and quantify its
uncertainty [18]. Suppose x € x € RP is an input and y = f(X) is the output at x. The output y is considered to
have a GP, Y (x), such that

E(Y (x)) =f(x)"3 (1)

and
cov(Y(x),Y (x + h)) = c*R(h|0), )
where f(x) = (fo(X),..., fp(x))? known functions, 3 = (fBo,...,[,) are of unknown parameters, o2 is the
constant variance, and R(h|6) is the correlation function with unknown correlation parameters 6 = (61, .. .,0,)

[19, 20]. In this study, we used the Gaussian correlation function

R(h|B) = exp (—22 <Z>2> 3)

Now, suppose X = (X1,...,X,) is an input set and y = (y1,...,y,) are their outputs. When the regression,
correlation, and variance parameters of the KM are all known, the Kriging predictor will be known as Simple
Kriging. The predictive mean, Ys (x*), and the predictive variance 0% ;- (x*) at a new input x* are provided by

Yor(x*) =fo(x)" B+ "R (y — FB) 4)
odx(x*) =62 [1—r"R7'r] (5)
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where
R =R(x; — x;)

r={R(X",x1),..., R(x",x,)}"
F= (f(Xl)v R f(Xn))T

The parameters of the covariance function and the external regression, however, are unknown in practice. They are
typically estimated by the maximum likelihood estimation method. In this case, the KM predictor will be called as
Universal Kriging. Hence, the Kriging predictor and its predictive variance are adjusted to account for parameter
estimation [21, 22].

Yur(x*) = f(x) 73+ 'R (y — F3) (6)
oig(x) =62 [1-r"R7'r+ (f(x)T —r"R7'F) (FFR'F(f(x")" —r"R™'F)7)] @)
where
A= (F'R'F) F'R 'y ®)
. (-F3) R (s ¥3)
©))
n—p-—1
= arg min [Z g (2m62 + = log(det R))] (10)

3. Designs For Computer Experiments

The CEs have deterministic outputs and hence, replicas at specific input sets must be avoided since the points
in this case do not reveal any more details for the output. Space-filling designs are good for CEs as they make
it easier to create accurate KMs. Latin hypercube design (LHD) is a common Space-filling design in CEs [5].
Several algorithms have been suggested recently to improve the LHD performance. For example, [25] presented the
translational propagation algorithm for obtaining optimal LHDs without using formal optimization.This technique
uses patterns of point placements for optimal LHDs based on the change of the greatest distance requirement, and
it consumes very little computing power and provides results almost in real time. [26] suggested a novel algorithm
of maximin LHD using successive local enumeration for generating random m points in n—dimensional space.
[27] proposed the local search-based genetic algorithm for building an optimal LHD that can achieve good space-
filling quality of LHD. This algorithm uses adaptive selection operators, probabilistic mutation, and modified order
crossover to increase population diversity and accelerate convergence. To improve the search capability, a local
search method is also included in the approach. Several a algorithms have been proposed for improving the LHD
based on adding extra points to the existing LHDs. We review here the LHD and present several algorithms for
adding design points to an existing LHD for improving its performance.

3.1. Latin Hypercube Design (LHD)

The LHD is very common in CEs, where it was suggested by [5]. The LHD splits the variable interval into n
equally likely subintervals. Suppose Xx;, ..., X, where X; = x;1, ..., z;, need to be generated. Hence, LHD points
are obtained by
AN —Uj
X, =~ Ik (11)
n

where A is an n x p matrix, its columns are independent random permutations of {1,...,n}, Uj; is a sample in
(0,1) and it is independent of A. The LHD is simple to generate, which makes it very popular in CES literature.
The LHD projections are uniformly distributed throughout the values of every input variable. However, the entire

hypercube may not be well filled in these designs [28].
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3.2. Augmented Latin Hypercube Design (ALHD)

The ALHD is a method that improves an existing LHD sample by adding points to design with preserving the
design’s Latin characteristics. To keep the original design points precisely in the same place, the ALHD re-divides
the original design into n + m intervals. After that, the empty row-column sets are filled at random [28]. The
following algorithm can generate the ALHD points:

* Repartitioned the design into (n +m)? cells, and then create a new (n + m) by k matrix to house the

candidate points, where n is the number of sample points in the original LHD matrix.

* Locate the missing cells by sweeping at random over each column of the repartitioned design.

* Find an empty row for each column at random, then create a random point that corresponds to that row and
enter it in the new matrix. Unless m = 2n, the case that the new matrix contains precisely m full rows, the
new matrix may include more than m points.

* Lastly, for the new matrix, retain just the first m rows. It is assured that the resulting matrix will have m
complete rows. Part of the removed rows are filled. The random search for empty cells results in the random
selection of the extra candidate points.

ALHD is a practical method of increasing the design space resolution without having to regenerate the whole
design. However, Augmentation is achieved randomly. The augmenting points themselves do not always form an
LHD. There can be more than one point in each row in the augmented design, or the original design and augmenting
points may form an LHD. A strictly uniform Latin hypercube is ensured if the number of augmenting points equals
the number of existing points [23].

3.3. Optimal Augmented Latin Hypercube Design (OALHD)

The OALHD enhances an already-existing LHD by adding points to the design with preserving its Latin
characteristics. It aims to add points optimally to the design in a technique that maximizes S-optimality. S-
optimality searches to distribute the design points as far as feasible by maximizing the mean distance between
each point and every other point.

Assume that we wish to increase an existing LHD by m points while maximizing S-optimality. Therefore, to
generate OALHD points, the following algorithm can be followed:

* After re-partitioning the design into (n + m)? cells, create a matrix B to store the candidate points, where n
is the number of sample points in the LHD matrix.

* Locate the missing cells by sweeping at random over each column of the repartitioned design.

« Examine every column (1 — k) in the repartitioned design at random to determine the locations of the missing
cells.

¢ Determine a random value that fits in an empty cell for each column, then enter the value in B.

* Construct a matrix P with random integers chosen from B cells and substitute the matching cells from B for
the cells from P.

* Calculate the distance between each point in P and the existing design and choose the one that maximizes it.

» Update B by removing the cells that correspond to each of its columns.

» Continue until all m points have been filled.

Adding points to an LHS requires careful consideration of how to maintain the desired design characteristics. In
the OALHD, the points are added by a technique that maximizes S-optimality. The S-optimal designs may lead to
more accurate KM predictions as the points will be spread as evenly as possible, and this minimizes the average
variance. However, this makes the OALHD computationally expensive and more complex than creating a new LHS
[28].

3.4. Optimum Seeded Latin Hypercube Design (OSLHD)

The OSLHD also enhances an existing LHD by adding points to the design with keeping the Latin characteristics
of the design. However, it then optimizes the design using the columnwise pairwise (CP) algorithm for optimizing
the design without necessarily holding the original design [24].
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To generate OSLHD points, the following algorithm can be followed:

* Create a random LHD by adding to the seed design.

* Within each of the matrix columns, exchange two numbers.

* Determine the change that minimizes the distances between each point by computing the inverse of the sum
of the distances between all of them.

» Continue going till you reach the halting requirement by going from column to column. The interchanges in a
particular row either do not benefit S-optimality, the maximum number of sweeps over the matrix is achieved,
or the drop in the inverse of the sum of the distances is minimal in comparison to the initial decrease brought
on by the interchange in the first column.

The CP algorithm is applied to all of the matrix columns. The CP algorithm is as follows:

* Select randomly an n x p design, X.

* Every repetition is divided into p stages. The deletion of x; occurs at the ith stage. Instead of x;, the vector x™+
that produces the highest S-criterion value among the first-order adjustment vectors of x; is selected. Each
stage’s best pairwise improvement is added to the design matrix.

* Repeat step 2 if the final design has the greatest S-criterion value. The iteration ends when the design can no
longer be improved.

The S-criterion aims to maximize the harmonic mean distance from each design point to all the other points in
the design.Steps 1 - 3 result in a good design that complements the specific initial concept. The ability of this
algorithm to find equally good designs for any initial design is not guaranteed; hence, stages 1 - 3 are typically
repeated multiple times. The optimal design is the best of the good designs that are produced.

The OSLHD can be useful when we want to add more points to an existing LHD to maintain its properties.
It essentially provides a method for producing a sample that is evenly dispersed throughout the design space and
statistically representative. Although OALHD depends on the computationally expensive CP algorithm, it may
produce more accurate KM predictions [28].

4. Kriging Models Validation Measures

In this article, we present some measures for KMs validation to check their assumptions. The first measure that we
use here is the Nash-Sutcliffe model efficiency coefficient, which is given by

S Yok (x) = Y(x))?
S (Y(x) - LS Y ()

where m is the number of test points, Ysx (x*) is the predictive mean of the KM given by equation (6), and Y (x*)
is the CC output [29]. The KM predictions will be accurate as NSE approaches to 1.

The eigen errors are the second measure that we use to check the accuracy of the KMs. If K is a standard
deviation matrix of the predictive covariance matrix such that o7 . (x*) = KK’ and K is the eigen decomposition
matrix, then the eigen errors will be given by

NSE=1-

12)

E=K ' (Y(x") - Yok (x")) (13)

Every eigen error has a standard Student-t distribution under the GP assumption. However, we can consider the
eigen errors to be standard normally distributed since the number of training data is typically large enough. In this
work, We used 95% credible intervals, and the critical value for a 95% confidence level in the standard normal
distribution is approximately 1.96, which represents the point on the curve such that 95% of the data falls within
F1.96 (approximately F2 ) standard deviations of the mean. Thus, eigen errors are expected to be between -2 and
2 for valid KM. Therefore, eigen errors outside [—2,2] will be considered large and may indicate that the KM
predictions are not accurate.
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We can plot the eigen errors against the index where index indicates the order of eigen errors with the largest
predictive variance. In this plot, it is anticipated that the errors will range around 0 with no discernible patterns and
a constant variance. The variance is overestimated when there are too many minor errors and underestimated when
there are too many large errors. Additionally, these situations may indicate that the simulator is a nonstationary
[30]. Moreover, poor estimated variance or nonstationarity is indicated by either significant or very tiny errors at
the plot’s beginning. Large (or very tiny) errors at the plot’s end suggest that the correlation length parameters have
been overestimated or underestimated, or that the correlation structure that was selected is inappropriate.

5. Applications

In this section, two functions are considered as examples of a CC to see how well the presented KMs performed
based on different LHD algorithms. The first function is the Dette and Pepelyshev function which has 8 dimensions,
the second function is the Steel Column function which has 9 dimensions. For the design points, we used the Ihs in
R software, where we used the functions randomLHS, augmentLHS, optAugmentLHS, and optSeededLHS
for obtaining samples of the LHD, ALHD, OALHD, and OSLHD designs consequently [28]. We used the
DiceKriging package in R software for building the KMs where we used the km function for building the KMs
and the predict function for obtining predictions [31].

5.1. Dette and Pepelyshev Function

The Dette and Pepelyshev function is an eight-dimensional model and it is presented by [23]. The output is given
by the equation below, where the input is in the range [0, 1].

8 i
f(x) =4(x1 — 24 8z + 823) + (3 — 4x2)* + 16v/x3 + 1 + (323 — 1)* Y iln(1 + Z ;) (14)
i=4 1=3

where x is the input vector at which to evaluate and f(x) is function output evaluated at x.

Dette and Pepelyshev function with 40 design points

OSLHD -

OALHD -

ALHD -

Different LHD Algorithms

LHD -

07 0.8 09

Figure 1. Box plots of NSE values obtained by KMs of the Dette and Pepelyshev function for different LHD algorithms with
n = 40 training points.
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We built KMs based on different LHD algorithms using n = 5p = 40 training points where p = 8 is the
dimension of the Dette and Pepelyshev function. Thus, we have (x1, . . ., X49) and the Dette and Pepelyshev function
was evaluated at these inputs to obtain the Dette outputs y = (y1 = f(z1),...,v140 = f(240)). The KMs parameters
were estimated using the maximum likelihood estimation method (MLE). To validate KMs, we used m = 2p = 16
to obtain test points (z7,...,z%4). Then, we calculated NSE, equation (12), and E, equation (13). We replicated
these processes 1000 times for different training and test points.

Figure 1 presents the box plots of the NSE values of the KMs using different LHD algorithms. We can see from
Figure 1 that the NSE values seem to be good for all KMs that are built for different LHD algorithms. However,
we can see that the NSE values for all the KMs are quite similar. Therefore, to investigate the best performance
of the different LHD algorithms, we calculated the mean of NSE values for each KM. Table 1 presents the mean
of NSE values for the KMs built using different LHD algorithms with the central processing unit (CPU) time of
each algorithm. We can notice that the OSLHD has the best NSE mean value. However, the higher efficiency of
the OSLHD goes with longer CPU time.

Table 1. The NSE mean value obtained by KMs using different LHD algorithms with n = 40 training points.

Design LHD ALHD OALHD OSLHD
NSE 0.8738 0.8411 0.8534 0.8830
CPU time (mins) 3.85 5.02 9.63 164
LHD with 40 points ALHD with 40 points
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Figure 2. The E plots for the KMs of the Dette and Pepelyshev function based on different LHD algorithms with 40 training
points.

We applied the second measure that not only depends on the KM predictions and outputs of the Dette and
Pepelyshev function, but also takes into account the prediction uncertainty of KMs. We calculated the eigen errors
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(E), equation (13). Then, we plotted eigen errors against the index to compare the KMs performance based on
different LHD algorithms.

Figure 2 reviews the E values against the index obtained by KMs using different LHD algorithms with 40
training points and 16 test points. In Figure 2, the top left panel presents the E values obtained by KM using LHD.
We see that most of the E' values are small with 25% of the eigen errors fell outside the error interval [-2, 2]. The
top right panel presents the F obtained by KM using ALHD. It can be shown that about 75% of the eigen errors
are seen outside the error interval.

The bottom left panel presents the E obtained by KM using OALHD. It can be seen that 50% of the eigen errors
are seen in outside the [-2, 2] interval. Therefore, the E plots of the KMs based on ALHD and OALHD indicate
a conflict between the KM prediction and the Dette and Pepelyshev outputs. This may indicate poor estimation of
predictive variance. The bottom right panel presents the E values for the KM that is built using OSLHD. It can be
shown that about 43% of the E values are seen outside the error interval.

We increased the training points to be n = 10p = 80 and the processes are repeated. In Figure 3, we show the
box plots of NSE values for KMs using different LHD algorithms with 80 training points and 16 test points. We
notice that NSE values seem to be improved for all KMs that are built using different LHD algorithms, as they are
now very close to 1. This indicates that the KMs predictions that are built for different LHD algorithms are good
approximations for the Dette and Pepelyshev outputs. We also calculated the mean of NSE values for each KM.

Dette and Pepelyshev function with 80 design points

O3LHD -

OALHD -

ALHD -

Different LHD Algorithms

LHD -

0.875 0.900 0.925 0.950 0.975
NSE

Figure 3. Box plots of NSE values for KMs of Dette and Pepelyshev function using different LHD algorithms with n = 80
training points.

Table 2 presents the mean of the 1000 NSE for the KMs that were built using different LHD algorithms with 80
training points and 16 test points. We can also notice that the algorithm of OSLHD produces the best NSE value
but takes the longest CPU time.
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Table 2. The NSE mean values of KMs of Dette and Pepelyshev function using different LHD algorithms with n = 80
training points.

LHD ALHD OALHD OSLHD
NSE 0.9668 0.9479 0.9701 0.9810
CPU time (mins) 6.32 9.86 16.08 540

We also calculated the eigen errors (E), equation (13) of KMs, using different LHD algorithms with 80 training
points and 18 test points. Figure 4 presents the F values against the index for KMs using different LHD algorithms
with 80 training points and 16 test points.

The top left panel presents the E values for the KM built using LHD. It can be seen that the values of ' have
been improved. However, about 18% of the F values are outside the error interval. The top right panel presents the
E for the KM built using ALHD. It can be shown that the E values have also been improved, but there are 25% of
the F values errors seen outside the error interval. The E plots of the KMs based on LHD and ALHD may indicate
a conflict between the KM prediction and the Dette and Pepelyshev outputs.

The bottom left panel presents the F values for the KM built using OALHD. We notice that about 12% of the
E values are outside the error interval. The bottom right panel of Figure 4 presents the E values for the KM built
using OSLHD. It can be shown that only about 6% of the E values are outside the error interval. Therefore, the
predictions of the KMs based on OSLHD are reasonable approximations for the Dette and Pepelyshev outputs.
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Figure 4. The plots of the E values for the KMs of the Dette and Pepelyshev function using different LHD algorithms with
n = 80 training points.

5.2. Steel Column Function

The Steel Column (SC) function simulates the trade-off between cost and reliability. The steel column cost is:
Cost = bt + 5h, where t (mm) represents mean flange thickness (mm), b represents the mean flange breadth, and
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h represents the mean profile height (mm). The column length L is 7500 mm. The values b = 300,d = 20 and
h = 300 are used by [32]. The SC function is given by

1 RE
i 0B (15)

J&) =F =P\ 5nE+ DBH(E, - P)

where P = P, + P, + P; and W. The input variables, x = (Fs, P1, P>, P3, B, D, H, Fy, E), of the SC
are: F; € [330,470] is yield stress (MPa), P, € [400000, 600000] is dead weight load (N), P, € [420000, 780000] is
variable load (N), P5 € [420000, 780000] is variable load (N), B € [200,400] is flange breadth (mm), D € [10, 30]
is flange thickness (mm), H € [100,500] is profile height (mm), Fy € [10,50] is initial deflection (mm), and
E € [12600, 29400] is Young’s modulus (MPa) [32].

We built KMs based on different LHD algorithms using n = 5p = 45 training points where p=9 is the dimension
of the SC function. Thus, we have (z1,...,z45) and the SC function was evaluated at these inputs to obtain the
SC outputs y = (y1 = f(x1),...,y45 = f(x45)). Before fitting KMs, we transformed each input variable for the
SC function to be in the interval [-1,1]. The KMs parameters were estimated using the MLE. To validate KMs, we
used m = 2p = 18 to obtain test points (z7,...,z}s). Then, we calculated NSE, equation (12), and E, equation
(13). We replicated these processes 1000 times for different training and test points. Figure 5 presents the box plots
of the NSE values of the KMs using different LHD algorithms. We can see from Figure 5 that the NSE values seem
to be good for all KMs that are built for different LHD algorithms, as they are very close to 1. This indicates that
the KMs predictions that are built for different LHD algorithms are good approximations for the outputs of the SC
function. However, we can see that the NSE values for all the KMs are quite similar. Therefore, to investigate the
best performance of the different LHD algorithms, we calculated the mean of NSE values for each KM.

Steel Column function with 45 design points

0OSLHD - I

OALHD -

ALHD - —_—

Different LHD Algorithms

LHD -

0.990 0.995 1.000
NSE

Figure 5. Box plots of the NSE values obtained by KMs of the SC function for different LHD algorithms with n = 45 training
points.

Table 3 presents the mean of NSE values for KMs built using different LHD algorithms. We can notice that the
OSLHD has the best NSE mean value but takes the longest CPU time.
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Table 3. The NSE mean value obtained by KMs of the SC function using different LHD algorithms with n = 45 training
points.

LHD ALHD OALHD OSLHD
NSE 0.9668 0.9479 0.9701 0.9810
CPU time (mins) 2.4 3.55 7.61 153

We applied the second measure that not only depends on the KM predictions and outputs of the SC function, but
also takes into account the prediction uncertainty of KMs. We calculated the eigen errors (E), equation (14). Then,
we plotted eigen errors against the index to compare the KMs performance based on different LHD algorithms.
Figure 6 reviews the E values against the index obtained by KMs using different LHD algorithms with 45 training
points and 18 test points. In Figure 6, the top left panel presents the £ values obtained by KM using LHD. We see
that most of the E values are small, with about 28% of the errors are seen outside the error interval, [-2, 2]. The
top right panel presents the E obtained by KM using ALHD. It can be shown that about 39% large E values are
seen in the plot. Therefore, the E plots of the KMs based on LHD and ALHD indicate a conflict between the KM
prediction and the SC outputs.

The bottom left panel presents the E obtained by KM using OALHD. It can be seen that only abou 5% error is
seen outside the error interval, and the rest 95% of E values are inside the error interval. The bottom right panel
presents the F values for the KM that is built using OSLHD. It can be shown that all of the E values are seen inside
the error interval. This indicates that the predictions of the KMs based on OALHD and OSLHD are reasonable
approximations for the SC outputs.

LHD with 45 points ALHD with 45 points
. o [ 1] e b S PR .
- -
EE ....................... MR ED-. -------- .--. ---------------- .---.---
(=] O - . .
t . t ----------------------------------
L 4 LU
%D_... ..... ........... ................... %_4- -
= . * . = *
L L] L
L e e e e T R R R R R o ...;. 8-
. -
5 10 15 5 10 15
Index Index
OALHD with 45 points OSLHD with 45 points
- P T L L R B S SRR SR S
-
2 .................................. - L]
i L] o 1_ - L]
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_o TS P o e i e o SO LI i e i e e
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Index Index

Figure 6. The E plots for the KMs of the SC function based on different LHD algorithms with with n = 45 training points.

We increased the training points to be n = 10p = 90 and the processes are repeated. In Figure 7, we show the box
plots of NSE values for KMs using different LHD algorithms with 90 training points and 18 test points. We notice
from Figure 7 that NSE values seem to be improved for all KMs that are built using different LHD algorithms, as
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they are now very close to 1. This confirms that the KMs predictions that are built for different LHD algorithms
are good approximations for the SC outputs. However, NSE values of the KM that is built using OSLHD are the
best. We also calculated the mean of NSE values for each KM.

Steel Column function with 90 design points

03LHD - —

ALHD -

ALHD - S ——

Different LHD Algorithms

LHD -

0.994 0.996 0.998 1.000
NSE

Figure 7. Box plots of NSE values for KMs of SC function using different LHD algorithms with n = 90 training points.

Table 4 presents the mean of the 1000 NSE for the KMs that were built using different LHD algorithms with 90
training points and 18 test points. We can also notice that the OSLHD also has the best NSE mean value but with
the longest CPU time.

Table 4. The NSE mean values of KMs of the SC function using different LHD algorithms with n = 90 training points.

LHD ALHD OALHD OSLHD
NSE 0.9988 0.9983 0.99861 0.9992
CPU time (mins) 5.54 6.18 12.78 496

We also calculated the eigen errors (£), equation (13) of KMs, using different LHD algorithms with 90 training
points and 18 test points. Figure 8 presents the E values against the index for KMs using different LHD algorithms
with 90 training points and 18 test points. The top left panel presents the E values for the KM built using LHD. It
can be seen that the values of E have been improved, and all of them are now small. The top right panel presents
the F for the KM built using ALHD. It can be shown that the E values have also been improved, with only about
11% of the F errors seen outside the error interval.

The bottom left panel presents the £ values for the KM built using OALHD. We notice that all of the E values
are inside the error interval, and only about 5% of the errors are seen outside the error interval. The bottom right
panel of Figure 8 presents the F values for the KM built using OSLHD. It can be shown that all of the E values are
seen inside the error interval. Therefore, the E plots of the KMs based on ALHD and OALHD indicate a conflict
between the KM prediction and the SC outputs. In contrast, the predictions of the KMs based on OSLHD are
reasonable approximations for the SC outputs.
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Figure 8. The plots of the E values for the KMs of the SC function using different LHD algorithms with n = 90 training
points.

Based on the result of the suggested measures, the NSE and the eigen errors, we can conclude that the OSLHD
has the best performance among all the other designs, as it has the smallest eigen errors and the best NSE values
among all the other LHD algorithms.

6. Conclusion

In this work, the behavior of Latin hypercube design (LHD) and three improvement algorithms of LHD were
investigated. This investigation was achieved by comparing the KMs predictions that are built using these different
LHD algorithms. This comparison is conducted by several proposed measures, the NSE and the eigen errors, that
examine the KM behavior. The results of the NSE measure that applied to KMs for the two computer codes show
that the performances of the different LHD algorithms are quite similar. The results of the eigen errors and the
NSE indicate that the Optimum Seeded Latin Hypercube Design performs the best. For the NSE value, we have
observed that the KM based on the Optimum Seeded Latin Hypercube Design has the closest value to one among
all KMs based on other LHD algorithms. Moreover, results of the eigen errors also confirm the superiority of the
Optimum Seeded Latin Hypercube Design, where almost all eigen errors were in the interval [-2, 2] in contrast
to KMs based on the rest of the LHD algorithms, where we have observed that several eigen errors were outside
the interval [-2, 2]. A stationary covariance function has been used in building Universal Kriging Models, which
is suitable for our examples. However, functions with irregular landscapes require advanced Kriging Models with
maybe non-stationary covariance function, which deserves further investigation.
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