‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0-8.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

Extra Dai-Liao Method in Conjugate Gradient Method for Solving
Minimization Problems

Waleed Abdulazeez Majeed, Basim A. Hassan*

Department of Mathematics, College of Computers Sciences and Mathematics University of Mosul, IRAQ

Abstract This paper investigates alternative strategies for constructing parameters within optimization algorithms, with
a particular emphasis on enhancing the Dai-Liao (DL) conjugate gradient method through a modified quasi-Newton
framework. The conjugate gradient method, especially the DL variant, is widely recognized for its efficiency in solving
large-scale unconstrained optimization problems. However, traditional implementations typically rely on differences in
iterates and gradient vectors, which may limit their adaptability and convergence properties in certain scenarios. To address
these limitations, the proposed approach introduces a novel parameter formula that leverages the curvature condition in a
new way-by incorporating information from objective function values, rather than depending solely on differences between
points and gradients. This integration of function value data provides richer information about the optimization landscape,
which can enhance both the stability and accuracy of the search direction. The primary advantage of this modification lies in
its improved computational efficiency and its ability to guarantee global convergence under relatively mild and realistic
assumptions. Theoretical analysis is provided to support these claims, including a proof of global convergence for the
proposed method. To validate the practical effectiveness of the new approach, comprehensive numerical experiments were
conducted on a variety of standard test problems. The results consistently demonstrate that the modified method outperforms
the traditional DL conjugate gradient algorithm in terms of convergence speed and robustness, confirming the theoretical
improvements and highlighting its potential for broader application in nonlinear optimization.
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1. Introduction

Our solution to the unconstrained optimization issue is formulated using the conjugate gradient methodology:
Minf(z), x€ R" (1

where f is a smooth function, [2]. First, we study the conjugate gradient method (CG), which repeatedly applies
the following to create a series of iterates:
L1 = Tk + apdy 2)

In this case, oy, represents the step size and dj, the search direction, which is as follows:

dr41 = —gr+1 + Brsk 3)

where the conjugate gradient methodology is delineated by the parameter [y, refer to [3, 5]. While a subset of
these methodologies possesses theoretical utility, others exhibit efficacy in numerical applications. The nonlinear
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conjugate gradient method was originally formulated by Hestenes-Stiefel [4], wherein [} is represented in the
subsequent manner:
T
ps = Jepih 4)
dfyk

Step length oy, is conventionally chosen in iterative methodologies to fulfill specific criteria. The Wolfe conditions
are frequently employed in the analysis of convergence and the execution of conjugate gradient techniques among
the conditions presented, and they must adhere to the following stipulations:

fxy + apdy) < flog) + Sarglh dp ®)

df g(zy + ardy) > o d} g (6)

where 0 < § < o < 1, see [10]. It is unfortunate that in instances where the objective function is nonconvex and
the conventional Wolfe line search is applied, none of the proposed methodologies can achieve simultaneous
convergence.

One of the well-known conjugate gradient strategies intended to improve the effectiveness of unconstrained
nonlinear optimization algorithms is the Dai-Liao approach. In [6], Dai and Liao developed this technique in 2001
to overcome some of the drawbacks of more conventional approaches, which don’t always ensure a significant
enough decrease in the objective function value throughout the optimization process. The Dai-Liao approach uses
anew formula to determine the beta coefficient 5 in order to increase numerical stability and guarantee trustworthy
global convergence. This approach uses the following connection to calculate 5 as follows:

T T
pr _ et1Yk — 195115k
DL —

d}fyk

)

This formula eliminates the requirement for restart approaches while allowing for the maintenance of an efficient
fall direction. This method’s ability to provide enough descent at each iteration and achieve good convergence,
even in complicated circumstances where other approaches fail, is one of its primary characteristics. The Dai-Liao
technique is the best option for constants because, according to numerical data, it is more stable and effective than
other conjugate gradient methods, [7].

In a multitude of other scholarly investigations, extended formulations of the traditional CG parameters have been
proposed, primarily focusing on the transition from the Hestenes—Stiefel framework to the DL methodology, [17].
As a consequence, several one-parameter extended classes of conventional CG algorithms have been formulated
to enhance their adaptability for specific objectives. Notably, modified secant (quasi—-Newton) equations have
been instrumental in the advancement of generalized versions of the CG methods, thereby ensuring the sufficient
descent property through a straightforward yet significant methodology, [13, 14, 15]. Subsequently, many conjugate
gradient algorithms based on various modified secant equations were scrutinized, as indicated in [16, 17].

In the quest to accomplish both global convergence utilizing the conventional Wolfe line search and the essential
descent property for any line search, we propose modifications to the conjugate gradient methodology. Moreover,
a novel framework is introduced along with the foundational inspiration.

2. Extra Dai-Liao Method:

The Taylor series constitutes a fundamental concept essential for the determination of the novel conjugate gradient
parameter. As we progress:

f(@) = f(@rs1) — ghpasn + %SgQ(Uk—&-l)Sk 8)

The computation of the derivative is articulated as:
Jre+1 = g + Q(uk)sk ©)
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The calculation of second-order curvature can be achieved through the application of equations (8) and (9):
st Qur)sk = 2(fx — frr1) + 2u3 51 + 203 sk (10
By substituting By 1 = Q(ugy1) into (10), we derive:
st Bey1sk = 2(fi — fre1) + 208 sk + 291 sk an
An optimal choice of the parameter J), leads to improved accuracy and stability, by using:
ngrlyk = _ng+13k (12)
This criterion is called as Perry’s conjugacy condition, as noted in [9]. By employing (12) in (11), we have derived:

2 — +2¢Ts
(fk: fk;:l) 9k k:| ng+1Sk (13)
Sk Yk

di 1 Briise = — {2 +

Currently, by utilizing the direction (3) in (13), we determine that:

2 — +2¢Ts
(fr kaTd) i, k:| oFoih (14)
Sk Yk

(—gr+1 + Brse) T yr = — {2 +

This suggests:

. 91{+1yk - tgicTHSk BJ _ 2(fr — frt1) + 297 sk

Bk - T atk; - 2 + T
Sk Yk S Yk

Based on (15), we can present the following conjugate gradient method, which is called Dai-Liao (BJ) method.
Algorithm: Dai-Liao (BJ).
Input: Initial guess zo € R" set a small tolerance ¢.
Output: Minimizer z such that gradient is approximately zero.

5)

1. Compute g9 = V fo, set dg = —go, and initialize k = 0.
2. While the norm of the gradient gk + 1 > 0, then:
(a) Perform a line search to compute step size «y, satisfying the Wolfe-conditions.
(b) Update zy 1 = z + agdk.
T ai—Liao L —tB7gl s
(c) Compute tP7 = 2 4 2Un=ligl¥200e Then calculate g~ (B = fhaitin —gnte,
k< k
(d) Update the search direction: dy1 = —gri1 + BrSk-
(e) Increment k + k + 1.
3. End while.
4. Return the final iterate xj1.

3. Essential Assumptions for Establishing Convergence

1. Convex Level Set: The level set:
Lo = {=/f(z) + x0} (16)

is convex.
2. Lipschitz gradient: The gradient Vf is Lipschitz continuous on Ly; that is, there is L > 0 such that:

(Vi(om)=Vf(vT)) <L|o” —vT|, Vo ,vt e Lo (17

3. Bounded Gradient Norm: Under these assumptions, a constant IT > 0 exists with:
lgesl <O (18)
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See [11].

Theorem 1
If dj41 is derived utilizing the Dai-Liao (BJ) methodology and 0 < L < 1, then: d} ; gx4+1 < —c¢||gr+1/|* holds.

Proof
Starting from the definition of dj1 by Multiply g} 41> We can write:
T
T 24+ 2(fr—fr+1)+2g; Sk:| STgk )
g Yk |: sty kIk+
d;}r+19k+1 = —||9k+1||2 + k;l - k?: S£9k+1 (19)
Sk Yk S Yk
Combining (13) and (19), we get:
T T
k1Y S; gk
di 1 gki1 = —llgrrll® + [ ik +1} Sk gk 41 (20)
Sk Yk S Yk
Based on the Lipschitz continuity property (17), we obtain:
Yi Gkr1 < Lsf gria (21
Inserting (20) into (21) yields:
STgk STgk
agnon < —lown P+ L0 Sk ] g, @)
SL Yk Sk Yk
The result above leads to the conclusion that:
T 2
Sk 9k+1
diy196+1 < =gk |® + [L—1] (kTiJr) (23)
SL Yk
Additionally,
dii19k11 < —||lgrsa]? <0 24)
The proof is finished. O

To prove the comprehensive convergence of the new conjugated gradient method, we present the important
lemma, presented by Dai et. al. according to the source [8].

Lemma 1
Suppose (o, Tx+1, gr+1, dp+1) generated by the conjugate gradient algorithm, since the search direction satisfies
the regression condition and satisfies the Wolfe condition, if:

1
D T = 25)
2 Tdicin
Then it will be:
liminf g1 = 0 (26)
k— o0
Theorem 2

We assume (o, Tg+1, gk+1, dr+1) generated from the Dai-Liao (BJ) algorithm. Suppose that for every existence
there is a constant ® > 0, such that:

(Vi) = Vi) (@—y) > ollz —y|? @7

Then it will be:
liminf ||gx|| =0 (28)
k—o00
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4 EXTRA DAI-LIAO METHOD IN CONJUGATE GRADIENT METHOD FOR SOLVING MINIMIZATION PROBLEMS

Proof
Using the direction of the search line and the new correlation coefficient known as equation (3), we obtain the
following equation:

T T

i—Li Jr1+1Yk S1. gk
Idall = 11 = gers + BP0 BV sy = [ = gug + = g - ST L (29)

dkyk dkyk

Based on the condition of Lipschitz and equation (29), we get:

lgesa | sk 1 L 1 S+ L1
d < _— < 14+ =+ = < |/ 30
ldisall < lgwall+ H550 2080 < (14 5+ 5 ) lownall < | =57 | lwsal (30)

Using the hypothesis 3 on f, there is a constant number with the direction of the search that produces:

1 o 1
> h— =
Z||alk+1||2 - (‘1’+L+1>Hzl o (3D

k>1 k>1

Thus, the proof is completed. U

4. Numerical Results

In this study, we examine the impact of a newly proposed algorithm on a set of numerical optimization problems,
[1]. The unconstrained optimization test problems considered are listed in Table 1.

Table 1. Table of problems, starting points and dimensions

Problem Dim Function No. Starting Points

Freudenstein & Roth 100, 1000 1,2 2o = [0.5,—-2,0.5, =2, ......... ,0.5, —2]
Trigonometric 100, 1000 3,4 xo =10.2,0.2,0.2,0.2, ......... ,0.2,0.2]
Extended Rosenbrock 100, 1000 5,6 xo=1[-12,1,-1.2,1,........ ,—1.2,1]
Penalty 100, 1000 7,8 20 =1[1,2,1,2,1,2, ccevrrrver... 1,2,1,2]
Perturbed Quadratic 100, 1000 9,10 xo =1[0.5,0.5,0.5,0.5, ......... ,0.5,0.5]
Extended Tridiagonal 1 100, 1000 11,12 2o = 1[2.0,2.0,2.0, ceeeriennn 2.0,2.0]
Extended Three Expo 100, 1000 13, 14 o =[0.1,0.1,0.1,0.1, ......... ,0.1,0.1]
Generalized Tridiagonal 2 100, 1000 15, 16 xo=[-1,—-1, =1, ccirerenrnn —1,—1]
Extended PSCI 100, 1000 17, 18 xo =1[3,0.1,3,0.1, ......... 3,0.1,3,0.1]
Extended CIliff 100, 1000 19, 20 xo=[-1,0,—1,0,........ ,—1,0,—1,0]
Extended Hiebert 100, 1000 21,22 20 =10,0,0,0, ccececuieirannnnn ,0,0,0,0]
Extended Tridiagonal 2 100, 1000 23,24 2o =[1,1, 1,1, e ,1,1,1]
STAIRCASE S1 100, 1000 25,26 o =[1L,1, 1,1, i ,1,1,1]
DIXON3DQ (CUTE) 100, 1000 27,28 xo=[-1,—-1,—1, .. —1,-1]
SINCOS 100, 1000 29, 30 xo=[-1,—-1, =1, ccrcrrencnn —1,-1]
Generalized Quartet GQ2 100, 1000 31,32 2o =1[1,1,1,1, i ,1,1,1]

We evaluate the performance of our proposed method, referred to as the Dai-Liao (BJ) algorithm, in combination
with a modified version of the HS algorithm, for problem dimensions n=100 and n=1000. The performance is
compared against the standard HS algorithm on the same set of problems.

This section outlines the stopping criteria, problem dimensions, and key parameter settings used in the numerical
experiments § = 0.001 and o = 0.9. The termination condition is defined by ||gy1]| < 1075.

The comparison metrics include:
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¢ NI: Number of Iterations
¢ NR: Number of Restarts
¢ NF: Number of function evolution

The numerical results demonstrate that the modified DL (Dai-Liao) method is effective and robust in practical

computations.

Moreover, this paper introduces an adaptive strategy for selecting the parameter in the Dai-Liao conjugate
gradient method, derived using a Taylor series. As a result, we develop an improved extra Dai-Liao method

conjugate gradient algorithm.

Table 2. Test results for method Dai-Liao (BJ) with HS method

[ PNo. | N HS | Dai-Liao (BJ) |
H | | NI | NR | NE | NI NR | NE |
| 100 102 95 2709 12 7 27
1000 14 8 32 14 8 31
) 100 19 10 35 19 10 36
1000 39 22 67 38 22 67
3 100 34 13 72 34 13 72
1000 35 19 77 35 19 78
100 9 6 25 9 6 25
4 1000 92 84 2256 39 30 576
5 100 102 33 155 94 26 146
1000 352 100 543 372 98 577
6 100 10 5 21 7 4 15
1000 14 7 27 13 7 26
7 100 13 8 23 12 7 18
1000 52 45 1225 10 7 73
g 100 42 17 62 42 18 61
1000 67 26 102 72 31 114
9 100 8 6 17 8 6 17
1000 26 25 505 7 5 15
10 100 9 7 23 9 7 22
1000 37 35 844 15 11 34
1 100 83 52 182 79 50 174
1000 79 50 171 79 50 171
1 100 36 13 59 35 10 58
1000 37 14 59 36 16 56
13 100 477 130 746 373 103 596
1000 F F F F F F
14 1000 523 152 813 508 152 794
1000 F F F F F F
5 100 8 6 17 8 6 17
1000 26 25 505 7 5 15
16 100 34 10 55 36 11 57
1000 38 12 93 32 7 58

The aforementioned results underwent further scrutiny employing a performance profile tool as delineated by
Dolan and More [12]. This instrument serves as a cuamulative distribution function, delineating the probability that a
specified methodology will successfully resolve a problem within a multiple of the optimal observed performance.
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6 EXTRA DAI-LIAO METHOD IN CONJUGATE GRADIENT METHOD FOR SOLVING MINIMIZATION PROBLEMS

The x-axis of the plotted curve specifies the performance ratio, whereas the y-axis signifies the proportion of
test problems resolved within that ratio. Any algorithm whose curve is positioned above other curves is deemed
superior, signifying that the algorithm resolves a greater proportion of functions with enhanced efficiency.

Figure 1 depicts the performance profile curve of the proposed algorithm in juxtaposition with the classical
HS algorithm based on the NI metric, thereby elucidating the rate at which each algorithm converges. The curve
illustrates that the proposed Dai-Liao (BJ) method surpassed the classical HS algorithm, as it achieved a higher
cumulative performance more expediently. This observation denotes that the proposed algorithm necessitates fewer
iterations to reach convergence across the majority of test functions. In contrast, the classical HS curve trails behind,
indicating that it generally necessitates a greater number of iterations, which could adversely affect computational
efficiency.

0.1 —+—— Dai-Liao (BJ) _

o 0.5 1 1.5 2 25 3

Figure 1. Performance profiles for Iter.

In a similar vein, by evaluating the second performance curve, which assessed the number of restarts required
for convergence, the proposed algorithm further demonstrates its superior efficacy, resolving a larger proportion of
problems with fewer restarts. The findings suggest that the classical HS algorithm consumes a more considerable
duration to achieve the same cumulative fraction of resolved functions, implying that it may encounter greater
challenges in sustaining stable convergence and necessitates more frequent restarts.

Figure 2. Performance profiles for Res.

Finally, the results pertaining to function evaluations, as illustrated in Figure 3, evidenced a direct correlation
with the computational cost of an optimization algorithm. Nonetheless, the curve further substantiates the efficiency
of the proposed algorithm, as its trajectory (the red line) predominates over the green line, indicating that the
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proposed algorithm consistently requires fewer function evaluations to attain an optimal solution. Given that
function evaluations frequently constitute the most resource-intensive component of an optimization process, this
outcome underscores the computational superiority of the proposed Dai-Liao (BJ) method in comparison to the
classical HS algorithm.

1
0.9 __[I ___________ :r_—_—_—_—-r - 1
o8 ; I — — 1
o7k T v i
0.8 .-f 4 E
o.si g
G.Ar\ ,
0.3k E
0.2n —_— s T
ok ———  Dai-Liao (BJ) 1

o

Figure 3. Performance profiles for Fval.

5. Conclusions

Based on an improved curvature condition, the Conjugate Gradient update formula is derived in detail. For the
approach to be stable and effective, conjugacy between search directions must be maintained, and this requirement
is vital to that process. Improved theoretical understanding and useful convergence behavior are attained by placing
the derivation inside the Dai-Liao framework. Because of its improved numerical stability and faster convergence,
the resultant update formula is a good fit for handling large-scale issues.
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