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Abstract We introduce a novel hybrid conjugate gradient method for unconstrained optimization, combining the AlBayati-
AlAssady and Rivaie-Mustafa-Ismail-Leong approaches, where the convex combination parameter is determined to ensure
alignment between the conjugate gradient direction and the Newton direction. Through rigorous theoretical analysis, we
establish that the proposed method guarantees sufficient descent properties and achieves global convergence under the
strong Wolfe line search conditions. Numerical results confirm that, using the performance profile of Dolan and Moré,
our method, denoted as hnBARMIL, consistently outperforms classical conjugate gradient methods, particularly for large-
scale problems. Furthermore, we demonstrate the practical utility of our method through application to image restoration
problems, where hnBARMIL exhibits competitive or superior performance compared to the Fletcher-Reeves algorithm,
especially when processing images with higher noise levels.
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1. Introduction

Optimization problems in image restoration affected by impulse noise present significant challenges due to the
nonsmooth and complex nature of their objective functions. Traditional gradient-based methods often fail to address
these issues effectively. Thanks to recent progress in optimization, noise removal algorithms have become more
powerful and dependable. Performance assessments of gradient-based and conjugate gradient techniques for image
denoising and restoration are detailed in [11, 12].
The nonlinear conjugate gradient method (CGM) is widely used for large-scale unconstrained optimization due
to its simplicity, low memory requirements, and efficiency. CGM methods have thus become essential not only
in image restoration [8, 23, 24, 25, 27, 28, 30] but also in scientific and engineering fields such as signal
reconstruction, parameter estimation, portfolio optimization, and robotics [4, 22].
Consider the following unconstrained optimization problem:

min
u∈Rn

G(u). (1)

where G : Rn → R belongs to class C1.
To solve (1) using the CGM, we generate an iterative sequence of the form:

uk+1 = uk + λkdk, (2)
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where uk is the current iterate and λk is the step length determined by a line search along the direction dk, defined
as:

dk =

{
−qk, for k = 1,

−qk + βkdk−1, for k ≥ 2,
. (3)

where qk = ∇G(uk), and the scalar parameter βk is chosen to ensure that dk constitutes the kth conjugate
direction, assuming the objective function is quadratic and the line search is exact [6]. The performance of a
CGM critically depends on its update parameter βk, which determines the search direction by combining current
gradient information with the previous search direction.
The first nonlinear CG variant introduced was the FR CGM [19], it is an extension of the HS CGM [26] which was
proposed for the linear case. Many other CGMs have been proposed we cite PRP [35, 36], CD [18], LS [31], DY
[14] and WYL [43]. Their formulas for βk are given by :

βHS
k =

qTk+1yk

dTk yk
, βFR

k =
||qk+1||2

||qk||2
, βPRP

k =
qTk+1yk

∥qk∥2
, βCD

k =
−||qk+1||2

qTk dk
,

βLS
k =

−qTk+1yk

qTk dk
, βDY

k =
∥qk+1∥2

dTk yk
, βWYL

k =
qTk+1

(
qk+1 − |qk+1|

|qk| qk

)
|qk|2

.

(4)

where yk = qk+1 − qk represents the gradient difference.
In 1986, AlBayati- AlAssady [2] proposed a new variant :

βBA
k =

||yk||2

dTk yk
, AlBayati−AlAssady (5)

In 2010, AlBayati et al. [3], proposed a modification of the BA method. This approach produces a direction parallel
to the search direction given by the HS algorithm for quadratic functions.
After that, in 2012, Rivaie et al. [38] introduced a novel variant of CGM, designated as the RMIL method.
This approach is a modification of the PRP method, with the variant given by the following formula:

βRMIL
k =

qTk+1yk

∥ dk ∥2
. Rivaie−Mustafa− Ismail − Leong (6)

Note that, the RMIL variant is not necessarily negative.
In 2015 and 2016, M. Rivaie et al. [39] and Dai [13] proposed a modified version of the RMIL method, further
enhancing its robustness and global convergence. Other modification were proposed, including in 2018 [33, 41], in
2019 [47] and in 2024 [46].
Hybridization of the nonlinear CGM has emerged as a significant research direction in optimization science. Recent
studies have established strong theoretical foundations for these hybrid methods, demonstrating that they maintain
crucial properties such as sufficient descent conditions and convergence under appropriate line search criteria.
[1, 4, 5, 8, 16, 22, 24, 29, 32]
Various hybridization techniques that combine the RMIL method with other formulations have been extensively
documented in the optimization literature.
For instance, in 2021, Sulaiman et al. [40] introduced a good hybridation of the RMIL and HSM variant, where
βhSM
k =

qTk (qk−qk−1)

dT
k−1dk−1

+
2qTk qk−1

dT
k−1dk−1

. They established the global convergence under an inexact line searchand applied
it to the statistical regression model describing COVID-19.
In 2023, Wahyuningtias [42] proposed another hybrid method combining the RMIL and FR approaches,
demonstrating global convergence under Wolfe line search conditions.
On the other hand, there exist many of hybrid CGs based on convex combinations, for example, in 2020, Jardow
et al. introduced a notable hybridization of RMIL with MMWU [20], demonstrating promising results in solving
large-scale problems.
Recently, Hemici et al. [21] proposed a significant hybrid approach combining RMIL and HS methods, where the
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convex parameter θk is determined to ensure alignment between the CG direction and the Newton direction.
Similarly, numerous BA-based hybrid conjugate gradient methods using convex combinations approaches that
combines the BA and other CGMs, namely the BA–FR [15] hybrid CGM, proposed in 2020. Another notable
hybridization, combining the BA and HZ methods, was proposed by BenHanachi et al. in 2025 [9], demonstrating
promising results.
Furthermore, Mellal et al. [34] in 2025 developed a new hybrid conjugate gradient algorithm that combines the
WYL and BA methods, establishing its global convergence under strong Wolfe conditions and showing improved
efficiency on benchmark unconstrained optimization problems.
Some of these hybrid approaches employ the following parameter formulations:

βRMILhSM
k =

{
βRMIL
k si 0 ≤ βRMIL

k ≤ βhSM
k

βhSM
k ailleurs

[40] (7)

βRMILFR
k =

{
βRMIL
k si 0 ≤ βRMIL

k ≤ βFR
k

βFR
k ailleurs

[42] (8)

βJN
k = θkβ

MMWU
k + (1− θk)β

RMIL
k [20], (9)

βHKB
k = θkβ

HS
k + (1− θk)β

RMIL
k [21], (10)

βBAFR
k = θkβ

BA
k + (1− θk)β

FR
k [15], (11)

βBAHZ
k = θkβ

HZ
k + (1− θk)β

BA
k [9], (12)

βBAWY L
k = θkβ

BA
k + (1− θk)β

WYL
k [34], (13)

All these formulations preserve the descent property under the strong Wolfe conditions while demonstrating
superior numerical performance compared to traditional methods. They maintain sufficient descent properties and
guarantee global convergence under appropriate conditions.
To effectively combine the advantages of both BA and RMIL methods and to develop a more efficient and robust
algorithm, we introduce a novel hybrid CG method based on a convex combination of these two variants for solving
unconstrained optimization problems under suitable conditions.
The combination parameter is carefully chosen to ensure that the resulting search direction is aligned with the
Newton direction. The proposed scheme is shown, through rigorous theoretical analysis, to satisfy the sufficient
descent property and to achieve global convergence under the strong Wolfe conditions. Using the performance
profile of Dolan and Moré, we confirm that our method, denoted as hnBARMIL, consistently outperforms classical
(HS, FR, PRP and DY), particularly for large-scale problems.
Furthermore, we demonstrate the practical utility of our method through application to image restoration problems,
where hnBARMIL exhibits competitive or superior performance compared to the Fletcher-Reeves algorithm,
especially when processing images with higher noise levels. The remainder of this paper is organized as follows:
Section 2 presents the novel parameter formulations and outlines the corresponding algorithmic framework. We
then provide a comprehensive analysis of the descent properties of the derived search directions, followed by a
rigorous proof of their global convergence. Next we present extensive numerical experiments. The final section
concludes the paper with a summary of main findings.

2. New hybrid formula

In this part, a newly proposed CGM is introduced. The approach constructs a hybrid CG parameter, βhnBARMIL
k ,

as a convex combination of the Al-Bayati & Al-Assady (BA) (5) [2] and Rivaie-Mustafa-Ismail-Leong (RMIL) (6)
[38] parameters:

βhnBARMIL
k = θkβ

BA
k + (1− θk)β

RMIL
k . (14)

Note that θk is a scalar parameter bounded by 0 ≤ θk ≤ 1.
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The search direction dhnBARMIL
k+1 is defined recursively as:

dhnBARMIL
k+1 =

{
−qk+1, for k = 0,

−qk+1 + βhnBARMIL
k dk, for k ≥ 1,

(15)

where qk = ∇G(xk) denotes the gradient.
The step size αk in the iteration xk+1 = xk + αkdk is determined using the strong Wolfe (SW) conditions [44, 45]:

G(xk + αkdk) ≤ G(xk) + ραkq
T
k dk,

|qTk+1dk| ≤ σ|qTk dk|,
(16)

with constants 0 < ρ < σ < 1.
It is evident that, if θk = 0 then βhnBARMIL

k = βRMIL
k and if θk = 1 then βhnBARMIL

k = βBA
k .

On the other hand, if k ≥ 1, then

dhnBARMIL
k+1 := −qk+1 + βhnBARMIL

k dk = θkβ
BA
k dk +−qk+1 + (1− θk)β

RMIL
k dk

= −qk+1 + θk
||yk||2

dTk yk
dk + (1− θk)

qTk+1yk

∥dk∥2
.

In this approach, θk is chosen so that the direction dhnBARMIL
k+1 from (15) coincides with the Newton direction, i.e.,

−qk+1 +

[
θk

||yk||2

dTk yk
+ (1− θk)

qTk+1yk

∥ dk ∥2

]
dk = −∇2G(xk+1)

−1qk+1 (17)

Multiplying both sides of equation (18) by sTk∇2G(uk+1), where sk = uk+1 − uk, we obtain

−sTk∇2G(uk+1)qk+1 +

[
θk

||yk||2

dTk yk
+ (1− θk)

qTk+1yk

∥ dk ∥2

]
sTk∇2G(uk+1)dk = −sTk∇2G(uk+1)∇2G(xk+1)

−1qk+1

(18)
Using the standard secant equation sTk∇2G(uk+1) = yk, we obtain:

−qTk+1yk +

[
θk

||yk||2

dTk yk
+ (1− θk)

qTk+1yk

∥ dk ∥2

]
yTk dk = −sTk qk+1

We have

θk

[
||yk||2

dTk yk
−

qTk+1yk

∥ dk ∥2

]
yTk dk = −sTk qk+1 + qTk+1yk −

qTk+1yk

∥ dk ∥2
yTk dk

which simplifies to:

θhnk =
qTk+1yk − sTk qk+1 − βRMIL

k (dTk yk)

(βBA
k − βRMIL

k )(dTk yk)

To ensure numerical stability, we regularize θhnBARMIL
k as:

θhnBARMIL
k =


θhnk , if 0 < θhnk < 1,

0, if θhnk ≤ 0,

1, if θhnk ≥ 1.

(19)

Note that, the regularization in equation (19) is essential because when θhnk /∈ [0, 1], the convex combination
property βhnBARMIL

k = θkβ
BA
k + (1− θk)β

RMIL
k breaks down. For θhnk < 0, we get negative weight for βBA

k

and over weighting of βRMIL
k with (1− θk) > 1. For θhnk > 1, we obtain negative contribution from βRMIL

k with
(1− θk) < 0.
Both cases destroy the theoretical foundation ensuring descent properties and convergence guarantees.
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3. hnBARMIL ALGORITHM

In this part, we present the hnBARMIL algorithm.

Algorithm 1: hnBARMIL CG Algorithm
Step 1.
Data: Initial point u0 ∈ Rn, tolerance ϵ > 0 and 0 < ρ < σ < 0.5.
Calculate G(u0) and set q0 = ∇G(u0). Define d0 = −q0, put k = 0 and go to step 2.
Step 2.
If ∥qk(uk)∥∞ ≤ ϵ (Stop creteria), then stop. Result: Approximate solution u∗ = uk.
Otherwise, go to step 3.
Step 3.
Using SWC (16), calculate the stepsize λk, then compute the new iteration uk+1 = uk + λkdk. Calculate
G(uk+1) and put qk+1 = ∇G(uk+1)

Step 4. Calculate θk = θhnBARMIL
k using (19).

Step 5. Calculate βhnBARMIL
k = θkβ

BA
k + (1− θk)β

RMIL
k .

Step 6: : Restart criterion of Powell [37] : If |qTk+1qk| ≥ 0.2∥qk+1∥2 then set
dhnBARMIL
k+1 = −qk+1 and λk+1 = 1, else calculate dhnBARMIL

k+1 = −qk+1 + βhnBARMIL
k dk.

Step 7: Put k = k + 1 and go to Step 2.

4. Convergence Analysis

Global convergence is established by first presenting the following theorem, which proves the sufficient descent of
the hnBARMIL direction. In this section, we assume that:

Assumption 1
1) Let

Γ = {u ∈ Rn | G(u) ≤ G(u1) }
be bounded.

2) In some neighborhood N of Γ, G ∈ C1 and q is Lipschitz continuous, i.e.,

∃L > 0 such that ∥q(u1)− q(u2)∥ ≤ L∥u1 − u2∥, ∀u1, u2 ∈ Γ.

Under Assumption 1, we obtain :

∃B, M > 0 : ∥u∥ ≤ B, and ||q (u) || ≤ M, ∀u ∈ Γ (20)

Theorem 1
Under Assumption 1, the direction generated by the hnBARMIL CG algorithm satisfies the sufficient descent
condition:

qTk d
hnBARMIL
k ≤ −c||qk||2, ∀k ≥ 0. (21)

Proof
We prove this result by mathematical induction.
If k = 0, then qT0 d

hnBARMIL
0 = −∥q0∥2, so (21) holds.

On the other hand, for k > 0, we have :

dhnBARMIL
k+1 := −qk+1 + βhnBARMIL

k dk

= −qk+1 +
(
(1− θk)β

RMIL
k + θkβ

BA
k

)
dk

= (1− θk)(−qk+1 + βRMIL
k dk) + θk(−qk+1 + βBA

k dk).
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It follows that:
dhnBARMIL
k+1 = (1− θk)d

RMIL
k + θkd

BA
k .

Multiplying by qTk+1 from the left, we get

qTk+1d
hnBARMIL
k+1 = θkq

T
k+1d

BA
k+1 + (1− θk) q

T
k+1d

RMIL
k+1 . (22)

When θk = 0, the direction dhnBARMIL
k becomes identical to the descent direction of RMIL, yielding:

Firstly, if θk = 0 we have :
dhnBARMIL
k+1 = dRMIL

k+1 = −qk+1 + βRMIL
k dk,

where they proved in [38] that

qTk+1d
RMIL
k+1 = −qTk+1qk+1 + βRMIL

k qTk+1dk

= −∥qk+1∥2 +
qTk+1yk

∥ dk ∥2
qTk+1dk

≤ −c1 ∥qk+1∥2 , for all k. (23)

Secondly, if θk = 1, we have :
dhnBARMIL
k+1 = dBA

k+1 = −qk+1 + βBA
k dk.

where they proved in [15] that

qTk+1d
BA
k+1 = −qTk+1qk+1 + βBA

k qTk+1dk

= −∥qk+1∥2 +
||yk||2

dTk yk
qTk+1dk

≤ −c2 ∥qk+1∥2 for all k. (24)

Finally, if 0 < θk < 1, then :
∃ η1, η2 ∈ R : 0 < η1 ≤ θk ≤ η2 < 1, (25)

From formulas (22) and (25), we conclude

qTk+1d
hnBARMIL
k+1 ≤ η1q

T
k+1d

BA
k+1 + (1− η2) q

T
k+1d

RMIL
k+1 ,

Let c = η1c2 + (1− η2) c1, then from (23) and (24) we finally get

qTk+1d
hnBARMIL
k+1 ≤ −c ∥qk+1∥2 .

Lemma 1
Under Assumption1, consider any CGM defined by (2) and (3), with step length λk determined through the SWL
(16). If ∑

k≥0

1

∥dk∥2
< ∞,

Then
lim
k→∞

inf ∥qk∥ = 0.

Proof
For the proof, refer to [6] .
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Lemma 2
Assuming that Assumption 1 is satisfied, if dk is a descent direction and λk satisfies

qTk+1dk ≥ σqTk dk, : where : 0 < σ < 1,

then

λk ≥ (1− σ)qTk dk
L|dk|2

. (26)

Proof
For the proof of Lemma 2, refer to [30].

The following theorem establishes the global convergence properties of our proposed method.

Theorem 2
Consider the hnBARMIL CG algorithm and suppose that assumption 1 holds. Then either qk = 0, for some k, or

lim inf
k→∞

∥qk∥ = 0. (27)

Proof
Consider the hnBARMIL conjugate gradient method and assume that Assumption 1 (1) hold. Suppose that qk ̸= 0,
for all k. We prove (27) by contradiction. Assume that (27) does not hold, then

∃ t > 0 : ∥qk∥ ≥ t, ∀ k, (28)

according to the relation (16) and (21), we obtain:

qTk dk > c(1− σ)∥qk∥2 > c(1− σ)t2. (29)

By using the Lipschitz condition, we get:

∥yk∥ = ∥qk+1 − qk∥ ≤ LB, (30)

where B = max{∥u− v∥, u, v ∈ Γ} is the diameter of Γ.
We have

dhnBARMIL
k+1 = −qk+1 + θkβ

BA
k dk + (1− θk)β

RMIL
k dk,

since, 0 < θk < 1, we obtain:

∥dhnBARMIL
k+1 ∥ ≤ ∥qk+1∥+ (|βBA

k |+ |βhnBARMIL
k |)∥dk∥.

We have : ∣∣βBA
k

∣∣ = ||yk||2∣∣dTk yk∣∣ ≤ L2∥s∥2

(1− σ)ct2
≤ L2B2

(1− σ)ct2
. (31)

Otherwise ∣∣βRMIL
k

∣∣ = gTk+1yk

∥dk∥2
≤ ∥gk+1∥∥yk∥

∥dk∥2
≤ ML∥s∥2

αk
≤ MLB2

λ
(32)

Using the above relations (31) and (32), we obtain:

∥dhnBARMIL
k+1 ∥ ≤ ∥gk+1∥+ (|βBA

k |+ |βRMIL
k |)∥dk∥ ≤ M + (

L2B2

(1− σ)ct2
+

MLB2

λ
)
∥sk∥
λ

≤ M + (
L2B2

(1− σ)ct2
+

MLB2

λ
)
B

λ

≤ ζ, for all k
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where

ζ =
M(1− σ)ct2λ2 + LB2(Lλ2 +MB(1− σ)ct2)

(1− σ)ct2λ2
(33)

Thus, we conclude: ∑
k≥0

1

∥dhnBARMIL
k+1 ∥2

= +∞. (34)

By applying Lemma 1, we conclude that:
lim inf

k→∞
∥gk∥ = 0. (35)

This contradicts (28) , and thus we have proved (27) .

5. Experimental results

In this part, we report the performance of our hnBARMIL algorithm through two distinct experimental phases.

5.1. Numerical Performance Analysis

The first phase addresses unconstrained optimization problems of the form presented in equation (1).
To assess the effectiveness and convergence characteristics of our hnBARMIL algorithm, we conducted
comprehensive numerical experiments on a benchmark suite of 30 well-established test problems drawn from
[7, 10] given in table 1 . The evaluation encompasses problems of varying complexity across low, medium, and
high dimensions, with problem sizes ranging from n = 2 to n = 10000.
We compare the performance of our hnBARMIL method against two classes of conjugate gradient algorithms:
classical conjugate gradient methods (HS, FR, PRP, and DY) [26, 19, 35, 36, 14] and hybrid conjugate gradient
methods (BADY and BAFR) [15], all implemented under the strong Wolfe conditions (16).
The codes are written in Python 3.13 and run on a Lenovo Thinkpad PC with AMD Ryzen 7 PRO 5850U Processor
with Radeon Graphics 1.90 GHz and 16.0 GB RAM and Windows 10 Professional 64 bits operating system.
We stop the program when ∥qk∥∞ < 10−6 holds or the number of iterations atteind 5000.
We restart by taking the direction of the steepest descent if either the denominator of β is zero.
We used the parameters values of ρ = 10−4 and σ = 0.9 for the SWC.
we adopt the performance profiles of Dolan and Moré [17] as our primary evaluation metric. This approach provides
a comprehensive and statistically robust means of comparing the relative efficiency and reliability of a set of solvers
over a collection of benchmark problems. Let S denote the set of solvers, P the set of test problems, ns the number
of solvers, and np the number of problems. For each problem p ∈ P and each solver s ∈ S, let ap,s represent the
numerical performance measure of interest, such as the number of iterations or CPU time required to solve problem
p with solver s. The performance ratio rp,s for solver s on problem p is defined as:

rp,s =
ap,s

min{ap,s : s ∈ S}
.

By definition, rp,s ≥ 1 for all p and s, and a value of 1 indicates that solver s achieved the best performance for
that particular problem.

The performance profile for solver s is the cumulative distribution function:

σs(λ) =
1

np
|{p ∈ P : rp,s ≤ λ}| ,

where λ ≥ 1 is a scaling factor and σs(λ) represents, for each λ, the fraction of problems where the performance
ratio of solver s does not exceed λ. When plotted, these profiles visually convey the comparative strengths of the
solvers: a curve higher and to the left indicates that the solver was able to solve a larger proportion of problems
closer to the best possible performance. Numerical results are compared based on the number of iterations NOI,
time CPU and the number of evaluation of the function NFEV and they are given in figures 1

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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Table 1. List of Test Problems with Initial Points Employed in the Computational Framework

No. Test Functions Dimensions Initial Points

1 Rosenbrock 2, 5, 10 (−1.2,−1.2) for n = 2, (1.2,...,1.2) for n > 2
2 Sphere 2 (0.5, 0.5)
3 Sum of Squares 2, 5, 10, 100, 1500, 5000, 10000 (1, 1,...,1)
4 Zakharov 2, 5, 10, 100, 1500, 5000, 10000 (1, 1,...,1)
5 Dixon-Price 2, 5, 10, 1500 (2, 2,...,2)
6 Quadratic Function QF1 2, 5, 10, 100, 1000, 1500, 5000 (1, 1,...,1)
7 Raydan 1 2, 5, 10, 100, 1500, 5000 (0.5, 0.5,...,0.5)
8 Raydan 2 2 (1, 1)
9 Extended Rosenbrock 2, 5, 10, 100, 1000, 1500, 5000 (-1.2, -1.2,...,-1.2)
10 Extended DENSCHNF 2, 5, 10, 100, 1000, 1500, 5000 (1, 1,...,1)
11 Extended Tridiagonal 2, 5, 10, 1500 (0, 0,...,0)
12 Extended Himmelblau 2, 5, 10, 100, 1000, 1500 (1, 1,...,1)
13 DBVF 2, 5, 10 (0.1, 0.1,...,0.1)
14 BRYBND 2, 5, 10, 100 (-1, -1,...,-1)
15 Perturbed Quadratic 2, 5, 10, 100 (0.5, 0.5,...,0.5)
16 TRIDIA 2, 5, 10, 100 (1, 1,...,1)
17 Extended Penalty 2, 5, 10, 100, 1000 (1, 1,...,1)
18 BALF 2, 5, 10, 100, 1000 (0.5, 0.5,...,0.5)
19 Diagonal 1 2, 5, 10, 100 (2, 2,...,2)
20 Diagonal 2 2, 5, 10, 100 (2, 2,...,2)
21 Diagonal 3 2, 5, 10, 100, 1000 (0, 0,...,0)
22 Diagonal 4 2, 5, 10, 100, 1000 (1, 1,...,1)
23 Extended Diagonal 100, 1000 (1, 1,...,1)
24 Beale 2, 1500 (1, 1)
25 Booth 2, 1500 (0, 0)
26 Ackley 2, 5, 10 (2, 2,...,2)
27 Rastrigin 2 (1.5, 1.5)
28 Griewank 2, 5, 10 (10, 10,...,10)
29 Matyas 2, 5 (1, 1) for n=2, modified for n¿2
30 Schwefel 2, 5, 10, 1500 (400, 400,...,400)

5.2. Commentaires

In the figures 1, we present the Dolan-Moré performance profiles for five classical conjugate gradient methods:
Fletcher-Reeves (FR), Polak-Ribière-Polyak (PRP), Hestenes-Stiefel (HS), and Dai-Yuan (DY), along with
hybrid methods BAFR and BADY compared against the proposed hybrid hnBARMIL method. These profiles
are generated based on three performance criteria: number of iterations (NOI), CPU time, and number of
function evaluations (NFE), evaluated across a comprehensive suite of test functions varying in dimension and
computational complexity. The Dolan-Moré performance profiles demonstrate hnBARMIL’s clear superiority over
all classical conjugate gradient methods (FR, PRP, HS, DY) across the three performance metrics. Specifically,
hnBARMIL achieves optimal performance on 65% of problems for iteration count (λ = 1.0), substantially
outperforming HS (60%), PRP (45%), DY (35%), and FR (25%), while maintaining this dominance with 80%
efficiency in the critical performance zone (1.0 ≤ λ ≤ 1.5). The classical methods FR and HS demonstrate
adequate performance for standard problems but exhibit significant degradation as problem complexity and
dimensionality increase, particularly evident in the CPU time metric where their curves diverge substantially
from hnBARMIL’s profile. However, when compared to other hybrid methods BAFR and BADY, hnBARMIL
demonstrates competitive performance results with notable distinctions across different problem classes. While
BAFR achieves the best overall results due to its superior performance on several benchmark functions including
the extended Rosenbrock, Rosenbrock functions.., hnBARMIL exhibits exceptional efficiency on specific test
cases, particularly the Zakharov and BRYBND functions. However, this selective performance can be attributed
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(a) Performance Profile hnBARMIL vs Classical CG

(b) Performance Profile hnBARMIL vs Hybrid CG

Figure 1. Performance Profile of hnBARMIL based on NOI, CPU and NFEV

to a computational drawback in hnBARMIL’s theta parameter calculation (conjugacy parameter), which requires
expensive inner products between search directions and gradient vectors, potentially increasing computational
overhead per iteration. Despite this computational burden, hnBARMIL consistently demonstrates better scalability
for large-scale optimization problems, though our experimental evaluation was limited to dimensions up to 10000.
The performance advantage of hnBARMIL over hybrid variants is less pronounced than its dominance over
classical methods

5.3. Applications of hnBARMIL Algorithm in image restoration

In this section, we employ our proposed hnBARMIL algorithm to solve problem (1), comparing its performance
to the FR method. Let ς be an image with dimensions l1 × l2, and let L = {1, 2, . . . , l1} × {1, 2, . . . , l2} represent

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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the indexing set of the image ς . Let N ⊂ L represent the group of noise pixel indices discovered in the first stage.
The second step then involves recovering the noise pixels by minimizing ς(ω):

ςα(ω) =
∑

τ1,τ2∈N

[
ωτ1,τ2 − yτ1,τ2 +

β

2
(2× S1

τ1,τ2 + S2
τ1,τ2)

]
where

S1
τ1,τ2 = 2

∑
l1,l2∈Pτ1,τ2∩Nc

φα(|ωτ1,τ2 − yτ1,τ2 |), S2
τ1,τ2 = 2

∑
l1,l2∈Pτ1,τ2∩N

φα(|ωτ1,τ2 − yτ1,τ2 |),

with φα =
√
α+ ω2, α > 0, and P represents the collection of the four closest neighbors of the pixel at the

specified position. yτ1,τ2 represents the observed pixel value of the image at position (τ1, τ2); see [23, 24, 25, 28].
We use the PSNR, defined by

PSNR = 10 log10

 2552

1
l1×l2

∑
τ1,τ2

(ωk
τ1,τ2 − ω∗

τ1,τ2)
2


where ωk

τ1,τ2 , ω
∗
τ1,τ2 denote the pixel values of the restored and original images. We tested Lena (256× 256), House

(256× 256), Elaine (256× 256) and Cameraman (256× 256). We also set the stopping criteria as∣∣∣∣Sα(ωk)− Sα(ωk−1)

Sα(ωk)

∣∣∣∣ ≤ 10−4.

We applied salt-and-pepper noise at three different intensity levels: 50%, 70% and 90%.
Figures 2, 3, 4 and 5 display the most notable restoration results for images corrupted at these three noise levels.
The data presented in Table (2) has been visualized as a bar chart to enhance the visibility of subtle differences

Table 2. Numerical results for image restoration problem.

Image Noise level (%) FR-Method hnBARMIL-Method
NI NF PSNR (dB) NI NF PSNR (dB)

Lena
50 82 153 30.5529 31 53 30.5
70 81 155 27.4824 41 62 27.5264
90 108 211 22.8583 69 88 22.8453

House
50 52 53 30.6845 27 44 34.9644
70 63 116 31.2564 37 60 31.1372
90 111 214 25.2870 41 53 25.2313

Elaine
50 35 36 33.9129 27 38 33.8961
70 38 39 31.8640 24 35 31.8097
90 65 114 28.2019 33 49 28.2325

Cameraman
50 59 87 35.5359 28 39 35.4920
70 78 142 30.6259 33 48 30.7009
90 121 236 24.3962 50 57 24.9726

between the values. This graphical representation allows for more effective comparison of the results.
The results in Table (2) and the accompanying PSNR plots 6 indicate that the hnBARMIL method not only

reduces the number of iterations and computational effort in several cases but also maintains or improves the quality
of the restored images, especially at higher noise levels and show the superiority of the hnBARMIL algorithm
compared to FR algorithms.
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(a) House 50% Noise (b) House 50% FR (c) House 50% hnBARMIL

(d) House 70% Noise (e) House 70% FR (f) House 70% HNBARMIL

(g) House 90% Noise (h) House 90% FR (i) House 90% hnBARMIL

Figure 2. Restoration of House image corrupted by 50%, 70%, and 90% salt-and-pepper noise using FR and hnBARMIL
methods.
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(a) Eleine 50% Noise (b) Eleine 50% FR (c) Eleine 50% hnBARMIL

(d) Eleine 70% Noise (e) Eleine 70% FR (f) Eleine 70% hnBARMIL

(g) Eleine 90% Noise (h) Eleine 90% FR (i) Eleine 90% hnBARMIL

Figure 3. Restoration of Eleine image corrupted by 50%, 70%, and 90% salt-and-pepper noise using FR and hnBARMIL
methods.
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(a) Cameramen 50% Noise (b) Cameramen 50% FR (c) Cameramen 50% hnBARMIL

(d) Cameramen 70% Noise (e) Cameramen 70% FR (f) Cameramen 70% HNBARMIL

(g) Cameramen 90% Noise (h) Cameramen 90% FR (i) Cameramen 90% hnBARMIL

Figure 4. Restoration of Cameramen image corrupted by 50%, 70%, and 90% salt-and-pepper noise using FR and
hnBARMIL methods.
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(a) Lena 50% Noise (b) Lena 50% FR (c) Lena 50% hnBARMIL

(d) Lena 70% Noise (e) Lena 70% FR (f) Lena 70% hnBARMIL

(g) Lena 90% Noise (h) Lena 90% FR (i) Lena 90% hnBARMIL

Figure 5. Restoration of Lena image corrupted by 50%, 70%, and 90% salt-and-pepper noise using FR and hnBARMIL
methods.
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Figure 6. Comparative Analysis of PSNR for hnBARMIL and FR

6. Conclusion

In this work, we have introduced and analyzed a novel hybrid CGM denoted hnBARMIL. The hnBARMIL method
is based on a convex combination of the BA and RMIL methods, with its parameter specifically chosen to ensure
that the CG direction aligns with the Newton direction. We provided a rigorous convergence analysis under SWC
conditions and demonstrated that the proposed algorithm satisfy the sufficient descent property, thereby ensuring
global convergence. The Moré-Dolan performance profiles demonstrate hnBARMIL’s clear superiority over all
classical conjugate gradient methods (FR, PRP, HS, DY) across three performance metrics (NOI, CPU and NFEV).
However, when compared to other hybrid methods BAFR and BADY, hnBARMIL shows mixed performance
results, with the performance advantage over hybrid variants being less pronounced than its dominance over
classical methods. Extensive numerical experiments on the application of image restoration problems, where
the hnBARMIL hybrid method is tested on four standard images (Lena, House, Elaine, Cameraman) noised at
various intensity levels (50%, 70%, and 90%). The results indicate that the hnBARMIL method not only reduces
the number of iterations and computational effort in several cases but also maintains or improves the quality of
the restored images, especially at higher noise levels and show the superiority of our algorithm compared to FR
algorithm.
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