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Abstract The diagnosing of influence is essential to assist in detecting influential observations, which influences the
inference, especially estimation of the model. Classical diagnostic tools like Cooks Distance and DFFITS are well established
and it is possible that less appropriate in model complexities or under different dispersion conditions of data. In the current
paper, a novel effort to advance the area of influence diagnostics to the Gamma regression models (GRM) is proposed
to utilize the metaheuristic approach as called the Secretary Bird Optimization Algorithm (SBOA). To compare the GRM
detection ability of TC and MRE of Cook s Distance and DFFITS and the SBOA based SMOX approach, we run an extensive
simulation study across sample sizes and dispersion parameters. The results of the simulations prove that the Cook Distance
and the DFFITS are reliable but SBOA-ameliorated diagnostic scheme perform better to detect influential cases particularly
in high dispersion scenarios and a limited to moderate samples. Viewed through compared analysis, it can be said SBOA
offers a more thorough detection mechanism.
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1. Introduction

Regression is one of the statistical techniques which identifies the connection flawlessly involving the response
variable and the explanation one. Regression assists us to interpret and analyze how one or more predictors affect
the response variable. Its uses are numerous in the commercial, industrial, medical, etc. field. The regression
analysis can assist in the predictive and forecasting analysis of the variables of interest [1].

The gamma regression model (GRM) is a wide variety of generalized linear models (GLM) which are applied to
continuous, positively valued, strictly positive response variables which tend to be right-skewed [2, 3, 4, 21, 22, 23].
In contrast to traditional linear regression that expects constant variance and normality of distributions, gamma
regression is quite suitable to be applied to those data where the variance is growing in tandem with the mean
as is a common property of gamma-distributed outputs [4, 24, 25]. Under this model, the dependent variable is
considered to be gamma distributed and it is represented by two parameters including a shape parameter and a
scale parameter. The correlation of the mean and the variance is affirmed by the fact that the variance is a multiple
of the mean squared to ensure effectiveness of the model to counter heteroscedasticity which occurs when the data
is skewed [5, 6, 7, 26, 27, 28].

Influence diagnostics in regression analysis refers to efforts to determine specific values of independent data
variables, known as influential observations, which have unusually large influence on the estimated model
parameters or the fit in general [8, 9]. Such observations may have significant influence on parameter estimates,
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standard errors, predictions and statistical inferences and may result into misleading findings, unless identified and
correctly addressed [10, 29, 30].

The major aim of influence diagnostics is to assess the changes in the main elements of regression model due to
the removal or adjustment of each observation [11, 12, 13, 31]. The measures commonly calculated in techniques
include Cooks distance, DFBETAS (changes in parameter estimates), DFFITS (changes in fitted values), leverage
values and changes in deviance or Pearson residuals [14, 32, 33]. These measures assist in signifying information
that may force model behavior unduly.

Influence diagnostics were originally developed with application to classical linear regression but have been
seen applied to GLMs, such as Poisson, logistic, and GRM and models of overdispersion or multicollinearity. In
particular, the detection of influential observations is critical in complex models under which the assumptions are
more sensitive to the outliers or leverage [15, 34, 35].

A higher-level mathematical framework or strategy known as a metaheuristic algorithm is employed to address
optimization issues that are challenging, intricate, or impractical to resolve with conventional optimization
methods. Usually, natural processes like simulated annealing, swarm intelligence, or evolutionary processes serve
as the inspiration for these algorithms [16, 36, 37]. Although they seek to locate a passably decent answer in a
reasonable period of time, metaheuristic algorithms do not promise an ideal solution. They are frequently used in
situations when more conventional optimization techniques are unworkable or wasteful, particularly in situations
involving huge search spaces or non-linear connections.

In regression modelling, influential observations may have a greater influence than warranted on parameter
estimates, standard errors and overall model fit and may result in biased or unstable Inference. Variants of
the classical influence diagnostic procedures, cooks distance, DFBETAS, leverage measures and residual-based
statistics are based on analytic or deletion-based calculations, and can (as models grow in complexity, particularly
with high-dimensional data, multicollinearity, overdispersion, or nonlinearity) be computationally costly or
less useful. General-purpose optimization algorithms motivated by natural process inspirations (e.g., genetic
algorithms, particle swarm optimization, simulated annealing), so-called meta-heuristic methods, may provide
some potential benefits in the context of influence diagnostics because they efficiently handle large parameter
spaces, can identify influential points using optimization criteria, do not require closed-form solutions, and do not
require case-by-case deletions, since they can be equally applicable in creating and building targets [38, 39, 40].

This study helps to fill this gap by suggesting and comparing meta-heuristic methods as resilient inference
diagnostics strategies, with an aim of increasing the detection yield in settings where prior approaches fail because
of model and data complexity, dimensionality, or computational overhead. Secretary bird optimization algorithm
is employed as an influence diagnostic in GRM.

2. Gamma regression model

Positively skewed data often arise in epidemiology, social, and economic studies. This type of data consists
of nonnegative values. Gamma distribution is a well-known distribution that fits to such type of data. GRM
is used to model the relationship between the positively skewed response variable and potentially regressors
[17,41, 42, 43, 44, 45].

Let y; be the response variable and follows a gamma distribution with nonnegative shape parameter v and
nonnegative scale parameter v, i.e. y; ~ Gamma(v, ), then the probability density function is defined as

F ) = () e,y 20, (M)

with E(y) = v/v = 0 and var(y) = v/v? = 6% /v. Given that v = v/0, Eq. (3) can re-parameterized as a function
of the mean () and the shape (v) parameters and written depending on the exponential function as

f (i) = EXP {yi(_l/e)l_/iog(_l/e) + ey, u)} ,

2
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where the canonical link function is —1/6, the dispersion parameter is ¢ = 1/v and c(y;,v) = vlog(v) +
vlog(yi) — log(y:) — log(I'(v)).

Gamma regression model is usually modeled using the canonical link function (reciprocal), §; = —1/x7 3 which
is expressed as a linear combination of covariatesx; = (21, ..., ¥;;)” . The log link function, §; = exp(x! 3), is
alternatively used rather than the reciprocal link function because it ensures that 6; > 0.

The most common method of estimating the coefficients of GRM is to use the maximum likelihood method of
Eq. (4). Given the assumption that the observations are independent and §; = —1/x7 3, the log-likelihood function

is given by

- xI'g — I

g(ﬁ) _ Z {yzxz /8 1/12g(X1 /3) + C(yi; I/)} , (3)
i=1

the ML estimator is then obtained by computing the first derivative of the Eq. (5) and setting it equal to zero, as

n

orp) 1 N

Unfortunately, the first derivative cannot be solved analytically because Eq. (6) is nonlinear in 3. The iteratively
weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the ML estimators of
the gamma regression parameters. In each iteration, the parameters are updated by

Bty = g0 4 =15 (B, (5)

where S(B8) = 9¢(3)/9B8 and I (B) = (—F (826(5)/85857“))71. The final step of the estimated coefficients is
defined as

Ber = (XTWX)'X"Wa, (6)
where W = diag(62) and 1 is a vector where i*" element equals to i; = 0; + ((y; — 0;)/62).
The ML estimator is asymptotically normally distributed with a covariance matrix that corresponds to the inverse
of the Hessian matrix

cov(Bar) = [—E ( ;;E(;Z)] - = Y(XTWX) L. (7

3. The proposed method

Influence diagnostic methods are critical in GRM for detecting observations that have a disproportionate impact on
model estimates, predictions, or overall fit. The hat matrix, H, is fundamental in influence diagnostics for regression
models. The hat matrix for GRM is

H=WY2x(XTXx)  XTW/? (8)

The diagonal elements of the Hat matrix are called leverages denoted as hii = diag (H), and hii are the
i'" diagonal entry of the hat matrix.

Two influence measures in the GRM can be used: (1) Cook’s Distance (CD) which is measuring the change in
the entire parameter estimate vector if a particular observation is deleted. In this, large values indicate influential
observations that substantially affect regression coefficients. (2) DFFITS (Difference in Fits) which is measuring
the change in the fitted value for an observation when that observation is omitted. The CD and DFFITS for GRM
can be defined, respectively, as [18]:

hii

1
D;= =? =12 ....
C (3 T'X’L 1 _ hZZ 7Z )< 7n7 (9)
hii
DFFITS= |t;| 4/ ——— 10
tal 1 — hii (10)
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o . . . . . e
where x; = om0 S the standardized Pearson residual and £ is the leverage , t; = X; nepx? I8 the

jackknife Pearson residual, and ¢ is the estimated dispersion parameter which is calculated byé =(1/(n-
P)) i ((yz —0,)? /éf) The largest value of Eq. (9) specifies that the i observation is the influential

observation and the DFFITS declared the i*" observation as the influential if DEFITS > 2\/7; .

The main objective of using meta-heuristic algorithms to perform influence diagnostics in the GRM was the
optimization of influential data points detection and evaluation. These algorithms offer a global search power which
has the capability of searching complex and nonlinear high dimensionality areas effectively like those experienced
in gamma regression impact diagnostics.

Meta-heuristic algorithms can be used to optimize either criteria or objective functions associated with the
influence diagnostics measures including Cook s distance, DFFITS, residual or likelihood displacement in gamma
regression. The aim is to detect a set of observations or parameter perturbations that influence model fitting
or parameter estimates as much as possible. Some of the algorithms such as the secretary bird optimization
algorithm propose solutions by iterating the candidate solution to find influential cases. This algorithm is able
to search combinations of observations to identify the ones with high influence as well as balanced exploration
with exploitation in order to evade local optima and exhaustively traverse the data space.

Secretary Bird Optimization Algorithm (SBOA) is new population-based metaheuristic algorithm which is
developed based on the survival behavior of secretary bird in its natural habitat [19]. The algorithm is used to
adapt two primary survival modes of these birds that include hunting snakes (exploration) and predator evasion
(exploitation) to drive exploration and exploitation successfully to optimize complex problems. Secretary birds
survive by persistently hunting snakes and escaping predators. This dual behavior forms the basis of SBOA’s two-
phase search mechanism: (1) Exploration Phase (Hunting Behavior): Models the bird’s search for prey, encouraging
global search and diversity. (2) Exploitation Phase (Escaping Behavior): Models the bird’s evasion of predators,
focusing on refining and exploiting promising solutions.

In the initial implementation of the SBOA, the random position initialization of Secretary Birds in the search
space as

Xij=1bj+1r X (U,bj—lbj), 1=1,2,..,.N,5=1,2,..., Dim (1)
The position of the i*"secretary bird X;is determined by the random number rbetween 0 and 1 while Ib;andub;
represent the lower and upper bounds. Each secretary bird provides values for problem variables which allows
evaluation of the objective function. The objective function values are combined into a vector after the evaluation
process.

th

P [ F(X1)
F=| R - | Fx) (12)
LN v L FEN) v
The vector F'contains objective function values while F;represents the objective function value achieved by the
ith secretary bird

The strategy of hunting by the secretary birds as a mode of trying to get to the snakes as outlined in the
exploration Phase has three main phases namely; the searching phase, the feeding phase as well as the attacking
phase. Biological statistical data of the hunting stages of the secretary bird and the time spent on the hunting process
have been considered to divide the process into three equal shares. These intervals correspond to searching for prey
t < 3T, consuming prey +7' < t < 27T and attacking prey 27 <t < 7.

The mathematical modeling of secretary bird position updates during the Searching for Prey stage is

1
While t < §T7 iCZ;wPl = Tj,j + (frandom,l - xrandomﬂ) X Rl (13)
new,P1 . new,P1 )
Xi— X; , iof F; < F; (14)
X, else
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When a secretary bird locates a snake it follows a unique hunting pattern. The secretary bird follows a
different hunting pattern than other raptors because it uses its quick foot movements to circle the snake [20].
The mathematical model for updating the secretary bird’s position in the Consuming Prey stage is [19].

RB = randn(1, Dim) (15)
1 2
While §T <t < §T’ x?j“’m = Tpest + eXp((t/T) AN4) X (RB —0.5) X (Tpest — T45) (16)
new,P1 . new,P1 )
Xi— X; , if F} < F; 17
X, else

where randn(1, Dim)represents a randomly generated array of dimension 1 x Dimfrom a standard normal
distribution (mean = 0, standard deviation =1), and x}.s;represents the current best value.
The mathematical modeling for updating the secretary bird’s position in the Attacking Prey stage is

2
While t > 2T, 2P = gy + (1= Yp) A2 x Yp)) x @5 x RL (18)
) X_new,Pl ’Lf F'new,Pl <F
Xi= @ ’ i E 1
! { X, else (19)
The weighted Levy flight named RL serves to improve the optimization accuracy of the algorithm.
RL = 0.5 x Levy(Dim) (20)

The Levy(Dim)function represents the Levy flight distribution function in this context. It is calculated as follows:

Levy(D) = s x 2D

o]

The constant smaintains a value of 0.01 while n maintains a value of 1.5. Both uand vrepresent random numbers
within the [0, 1] interval. The mathematical expression for cappears below

(T 4n) xsin(zm) \7
7" (rw") < 2<“>> =

2 2
The gamma functionI” appears in this expression with nset to 1.5.

In the exploitation stage, secretary birds use different avoidance techniques to defend themselves and their food
sources when they encounter predators. The SBOA design assumes that either of these two conditions will happen

with equal likelihood:

1. C; refer to camouflage by environment.
2. () refer to fly or run away.

The initial response of secretary birds to predator detection involves searching for appropriate camouflage areas.
The birds will choose to flee or run quickly when they cannot locate a suitable and safe camouflage area. We
introduce a dynamic perturbation factor denoted as (1 — t/T)2 in this context. The changing parameter element
allows the algorithm to maneuver effectively between finding new solutions (exploration) and relying on existing
solutions (exploitation). The adjustment of these factors enables users to boost exploration intensity or maximize
exploitation effectiveness during different stages of the process. The mathematical modeling of secretary birds’
evasion strategies through Eq. (23) leads to an updated condition which can be expressed through Eq. (24).

SnewP2 _ { Ch: Xpest + (22X RB—1) x (1 — %)2 X x4, 1frand <1y 23)

i - C2: xij+ Ry X (Trandom — K X 5 5), else
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) Xﬁew,PQ ’Lf Fﬂew,PQ < F,
Xi= ¢ ’ v ' 24
{ X, else (24

The calculation involves r = 0.5and Ryfor random array generation from normal distribution and .4, qom for

random candidate solution and K for random integer selection through Eq. (25).
K = round(1 + rand(1,1)) (25)

In SBOA, each member is coded as O (the training instance is considered as influential) or 1 (the training instance
is not considered as influential). A representation of the purpose of SBOA is shown in Figure 1.

m, m, m. | m, m,
1 0 1 | 0 0
Not influential instance Influential instance

Figure 1. An illustration of purpose SBOA.

The proposed approach will efficiently help to find and eliminate the influential instances with less estimation
error performance. The parameter configurations for our proposed approach are presented as follows.

The number of secretary birds is set to 30 and the number of iterations is t,,,x= 1000.

The positions of each secretary birds are randomly determined by uniform distribution with the range [0, 1].
The fitness function is defined as Eq. (9).

The positions are updated using Eqs. (13)-(23).

Steps 3 and 4 are repeated until a ¢, is reached.

SR W=

4. Simulation results

In this section, a Monte Carlo simulation experiment is used to examine the performance of our proposed method.
The response variable of n observations from GRM is generated as y; ~ Gamma(0;,v), where v € {0.75,2} and

0; = exp(x!' B), B = (1, ..., Bp) with Z?:l B3 =1and ) = By = ... = f8,. In addition:

1. Three explanatory variables are included as p = 1,3,7.

2. Four sample size are included as n =30, 50,100,200.

3. The explanatory variable are generated as Xij ~ N (0, 1) with influential points (IP) as 5", 10t", 15" | 20"
, 25%"in the X as zij = ao + xij,i=5,10, 15, 20, 25, j=1,2,3,4, where ao = Zj + 100.

4. The simulation is replicated 1000 times to detect the generated influential observations in percentages.

The simulation results in terms of the influential observations detections (in parentage %) for all the combinations
are summarized in Tables 1-6. Form these tables, several points are observed:

1. For every combination of dataset size and number of influential points, the SBOA method consistently detects
the highest percentage of influential observations. Detection rates with SBOA mostly fall around 90-95%,
substantially higher than CD and DFFITS.

2. As the number of influential observations increases (from 5 to 25), detection percentages tend to increase
slightly for all methods, indicating improved detection when more influential points are present.

3. Detection percentages generally improve or remain stable as the dataset size grows from 30 to 200,
where SBOA maintains high detection rates (above 90% across settings), suggesting good scalability and
robustness.
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Table 1. Influential observations detections (%) for the GRM when p=1 and v = 0.75

n 1P CD DFFITS SBOA
30 5 70.58 68.39 90.58
10 71.22 69.57 91.05
15 73.68 71.25 91.38
20 70.42 70.06 90.74
25 75.98 73.66 92.71
50 5 71.63 69.44 91.63
10 72.27 70.62 92.1
15 74.73 72.3 92.43
20 71.47 71.11 91.79
25 77.03 74.71 93.76
100 5 71.82 69.63 91.82
10 72.46 70.81 92.29
15 74.92 72.49 92.62
20 71.66 71.3 91.98
25 77.22 74.9 93.95
200 5 72.55 70.36 92.55
10 73.19 71.54 93.02
15 75.65 73.22 93.35
20 72.39 72.03 92.71
25 77.95 75.63 94.68

Table 2. Influential observations detections (%) for the GRM when p=1 and v = 2

n 1P CD DFFITS SBOA
30 5 69.26 67.07 89.26
10 69.9 68.25 89.73
15 72.36 69.93 90.06
20 69.1 68.74 89.42
25 74.66 72.34 91.39
50 5 70.31 68.12 90.31
10 70.95 69.3 90.78
15 73.41 70.98 91.11
20 70.15 69.79 90.47
25 75.71 73.39 92.44
100 5 70.5 68.31 90.5
10 71.14 69.49 90.97
15 73.6 71.17 91.3
20 70.34 69.98 90.66
25 75.9 73.58 92.63
200 5 71.23 69.04 91.23
10 71.87 70.22 91.7
15 74.33 71.9 92.03
20 71.07 70.71 91.39
25 76.76 73.88 93.81

. Cook’s Distance slightly outperforms DFFITS in most scenarios, especially for larger numbers of influential
observations, but both lags noticeably behind SBOA.

. The advantage of SBOA persists consistently across small, medium, and larger sample sizes, showing its
effectiveness in influence diagnostics.

. Across all sample sizes and numbers of influential observations, SBOA detects a slightly higher proportion
of influential points when dispersion is 0.75 compared to 2. The difference varies but is consistently positive,
typically around 1-2 percentage points higher.

. Regardless of dispersion, SBOA demonstrates high accuracy in detecting influential observations, with
percentages mostly above 89% even in small samples and lower numbers of influential points.

. Detection rates consistently improve as the number of predictors decreases. When p=1 SBOA yields the
highest detection percentages, followed by p=3, and with p=7 having the lowest percentages. This suggests

Stat., Optim. Inf. Comput. Vol. 14, December 2025
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Table 3. Influential observations detections (%) for the GRM when p=3 and v = 0.75

n 1P CD DFFITS SBOA
30 5 69.26 67.07 89.26
10 69.9 68.25 89.73
15 72.36 69.93 90.06
20 69.1 68.74 89.42
25 74.66 72.34 91.39
50 5 70.31 68.12 90.31
10 70.95 69.3 90.78
15 73.41 70.98 91.11
20 70.15 69.79 90.47
25 75.71 73.39 92.44
100 5 70.5 68.31 90.5
10 71.14 69.49 90.97
15 73.6 71.17 91.3
20 70.34 69.98 90.66
25 75.9 73.58 92.63
200 5 71.23 69.04 91.23
10 71.87 70.22 91.7
15 74.33 71.9 92.03
20 71.07 70.71 91.39
25 76.63 74.31 93.36

Table 4. Influential observations detections (%) for the GRM when p=3 and v = 2

n 1P CD DFFITS SBOA
30 5 67.85 65.66 87.85
10 68.49 66.84 88.32
15 70.95 68.52 88.65
20 67.69 67.33 88.01
25 73.25 70.93 §9.98
50 5 68.9 66.71 88.9
10 69.54 67.89 89.37
15 72 69.57 89.7
20 68.74 68.38 89.06
25 74.3 71.98 91.03
100 5 69.09 66.9 89.09
10 69.73 68.08 89.56
15 72.19 69.76 89.89
20 68.93 68.57 89.25
25 74.49 72.17 91.22
200 5 69.82 67.63 89.82
10 70.46 68.81 90.29
15 72.92 70.49 90.62
20 69.66 69.3 89.98
25 75.35 7247 924

that SBOA performs better in simpler models with fewer predictors, likely because fewer variables reduce
complexity and noise, enabling clearer identification of influential points.

5. Conclusion

The research on the diagnostic of influence in GRM using SBOA, as well as conventional measures, such as
Cook Distance and DFFITS revealed considerable information about the effectiveness of diagnostic measures of
influence in regression. The simulation results show that both Cook Distance and DFFITS remain useful classical
statistics to detect influential observations, but that using SBOA within the higher dispersion and small sample
size scenarios is useful to achieve greater diagnostic precision. Because SBOA is adaptive, it is able to detect
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Table 5. Influential observations detections (%) for the GRM when p=7 and v = 0.75

n 1P CD DFFITS SBOA
30 5 67.58 65.39 87.58
10 68.22 66.57 88.05
15 70.68 68.25 88.38
20 67.42 67.06 87.74
25 72.98 70.66 89.71
50 5 68.63 66.44 88.63
10 69.27 67.62 89.1
15 71.73 69.3 89.43
20 68.47 68.11 88.79
25 74.03 71.71 90.76
100 5 68.82 66.63 88.82
10 69.46 67.81 89.29
15 71.92 69.49 89.62
20 68.66 68.3 88.98
25 74.22 71.9 90.95
200 5 69.55 67.36 89.55
10 70.19 68.54 90.02
15 72.65 70.22 90.35
20 69.39 69.03 89.71
25 74.95 72.63 91.68

Table 6. Influential observations detections (%) for the GRM when p=7 and v = 2

n 1P CD DFFITS SBOA
30 5 66.14 63.95 86.14
10 66.78 65.13 86.61
15 69.24 66.81 86.94
20 65.98 65.62 86.3
25 71.54 69.22 88.27
50 5 67.19 65 87.19
10 67.83 66.18 87.66
15 70.29 67.86 87.99
20 67.03 66.67 87.35
25 72.59 70.27 89.32
100 5 67.38 65.19 87.38
10 68.02 66.37 87.85
15 70.48 68.05 88.18
20 67.22 66.86 87.54
25 72.78 70.46 89.51
200 5 68.11 65.92 88.11
10 68.75 67.1 88.58
15 71.21 68.78 88.91
20 67.95 67.59 88.27
25 73.64 70.76 90.69

(potentially relatively large) influential data points more efficiently and precisely, which makes false positives and
negatives less likely than with classical techniques. The informative value of this comparative analysis is in the
ability of SBOA to develop into a powerful optimization-based measure of goodness of influence diagnostics as
it advances and expands traditional methods, thus enhancing reliability and accuracy of the diagnostics of the
influence occurring in GRM. In future, the investigation can be conducted to examine how SBOA can apply to
another complex model of regression and expand its use in modeling and estimation.
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