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Abstract Bayesian ARIMA models will offer a solid approach for analyzing time series data, providing more flexibility
than traditional recursive models. They also effectively combine previous knowledge with current data to handle uncertainty.
A particular kind of Bayesian ARIMA model with comparable considerations is called a Bayesian AR model. While
Bayesian models employ prior information to estimate a wide range of possible parameter values, older methods frequently
use maximum likelihood estimation to obtain single values for parameters. In order to effectively handle uncertainty, they
also develop a posterior distribution. The applicability of Bayesian techniques to AR(p) models is examined in this work.
It demonstrates their capacity to manage noisy, non-stationary, or incomplete data while allowing for thorough probabilistic
inference, which improves uncertainty comprehension and validates probabilistic forecasts. The Bayesian AR model states
that present values are linearly dependent on past values, which are further amplified by white noise. We use previous
distributions to evaluate the variance and establish the model parameters. Consequently, these values are adjusted in response
to observations, resulting in more complex and adaptable dimensional distributions. The Bayesian ARIMA model aids in
forecasting and drawing conclusions when time series are more complicated and need variance considerations. Bayesian
AR(p) models display the temporal correlations between data points regardless of how stationary they are. These models are
commonly estimated using Markov Monte Carlo (MCMC) techniques like Metropolis-Hastings and Gibbs sampling. These
models perform well when handling asymmetry, incomplete data, and structural changes. Even when used in a Bayesian
manner, traditional models struggle to capture uncertain time series or intricate nonlinear patterns. These contemporary
issues can be resolved with the appropriate use of an Echo State Network (ESN). An effective recursive neural network for
forecasting evolving time series is the ESN. To identify the most effective inputs for the ESN, the hybrid Bayesian AR-
ESN methodology utilizes the optimal configuration of the Bayesian AR model. The capacity of this approach to accurately
simulate nonlinear interactions is recognized. A Bayesian AR model and an ESN model were integrated in this hybrid
Bayesian AR-ESN methodology study. The results show that combining Bayesian AR and ESN significantly increases
forecasting accuracy, particularly when forecasting error metrics are used. When compared to conventional techniques, the
Bayesian model significantly increases predictive accuracy.
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1. Introduction

A chronologically ordered set of observations where each value depends on the previous one is called a time
series. This pattern produces a sort of movement that can be used to forecast potential future events. Weather-
related variables and maximum wind speed are examples of chaotic time series. Among the variables that influence
these characteristics are temperature and air pressure. Combining these two creates a nonlinear pattern that is
challenging to depict using traditional linear techniques like the autoregressive (AR) model. [1, 2] . Forecasting
is challenging due to the variability and instability of maximum wind speed data over time. Linear models may
inadequately represent the complexity of structures and the rapidity of changes. Various models, including AR
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and ARIMA, have been proposed for forecasting time-dependent variables. However, they encounter issues as
they solely rely on point estimates and are unable to address uncertainty or nonlinear interactions. Consequently,
Bayesian models are particularly intriguing, as they represent a significant advancement in time series analysis.
They provide a comprehensive probabilistic representation of parameters and predictors, utilizing past knowledge
to address data deficiencies and rectify discrepancies [3, 4]. Barnett, Kohn, and Sheather (1996) present a complete
Bayesian treatment of autoregressive model estimation incorporating choice of autoregressive order, enforcement
of stationarity, treatment of outliers and allowance for missing values and multiplicative seasonality. [S] proposes
a Bayesian procedure to the ARIMA model to forecast the peak season demand which uses a dummy variable
to account for the past years intermittent demand. To capture uncertainty in the Bayesian ARIMA model, the
non-informative prior distributions are assumed for each parameter. Oyelam and Ogundeji in 2024 employed
Bayesian statistical methods to model and forecast inflationary dynamics in Nigeria over two decades (2003
to 2024) by Adopting a Bayesian Seasonal ARIMA. The analysis incorporates prior knowledge and provides
robust uncertainty quantification in parameter estimation and forecasting [6]. In 2025, Singh et, al. attempt to
analyze infant mortality rate data using one of the well-known time series models (ARIMA model) and focused
on Bayesian estimation of the parameters of the model considered [7]. Bayesian models are robust; nonetheless,
they are incapable of completely encapsulating intricate, nonlinear events. Researchers have been employing
artificial intelligence techniques, particularly the Echo State Network (ESN), a variant of recurrent neural networks
designed for analyzing time-dependent series [8, 9] . This work employs a hybrid Bayesian AR-ESN strategy that
integrates a Bayesian AR model with an ESN. Initially, the time series is analyzed to determine the optimal rank
utilizing autocorrelation functions (ACF) and partial autocorrelation functions (PACF). This assists in determining
the structure of the AR model. The ESN subsequently receives this structure as input. employing this model to
predict the maximum wind speeds in Mosul on a daily basis. To ensure uniformity within each seasonal group,
the data were categorized into two seasons (hot and cold) from (2012/07/16 to 2023/01/17) [10, 11]. Metrics like
the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) showed that the hybrid model
produced noticeably more accurate forecasts when comparing the results of the conventional AR model with the
ESN-based AR model. The enhancement is attributable to the ESN’s capacity to demonstrate nonlinear correlations
and dynamic interactions among temporal variables that linear models fail to encapsulate [12, 13]. By employing
a state space model to ascertain the fundamental structure of the Echo State Network, including the formulation of
internal matrices and the randomization of feedback weights. The geographical model effectively analyzes climate
data. Researchers have utilized it to illustrate historical temperature data and seasonal variations. For instance,
they employed discrete time series to forecast the minimum and maximum temperatures in the Makkah region or
utilized deep ESNs within additive decomposition models [ 14]. Other research has employed Echo State Networks
(ESNs) with wavelet transforms to analyze both seasonal and non-seasonal time series components, while in our
study, we developed a novel method to integrate ESNs with an AR model. Initially, a Bayesian technique was used
to compute the AR model. With random errors removed, the variables that were obtained from it were used as ESN
inputs. Thus, we used two different approaches. The AR coefficients, their magnitudes, and their signals are used
as inputs to the ESN in the first technique. The second approach ignores the values and signals and only uses the
variables [15]. This hybrid approach provides a versatile and adaptive means to forecast chaotic time series, such
as wind velocity. The results indicate that it significantly outperforms existing models in terms of accuracy and the
management of structural complexity [16].

2. Methodology

2.1. Autoregressive (AR) Model

The autoregressive process can be used to express the current value of the time series using the linear regression
function of the previous p values of the time series. The AR(p) autoregressive model of order pt" can generally be
written as follows.

¢(B)Zt = a (D
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2 USING BAYESIAN AR-ESN FOR CLIMATIC TIME SERIES FORECASTING

(1-¢1B—¢sB* —--- —$,B")Z; = a 2

or
Zy = P12y 1+ G2l o+ -+ Pply_p +oay 3)
where ¢ — k is the kth autoregressive coefficient or parameter that reflects the impact of altering the kth
autoregressive variable Z;_j on Z; the autoregressive model,k =1,2,3,...,p, a; , is the independent and

identically distributed random error that signifies a white noise process with a mean of zero and constant variance
o2 , or can be expressed as a; ~ i.i.d.N(0,02) , and . If the time series data requires any order of differencing
to achieve mean stationarity W; = (1 — B)?Z; , W, is utilised in place of Z; in equations (1), (2), and (3). The
primary properties of AR(p) are enumerated below.

i. The variance of AR(p) is written as follows.

Yo=03=0./(1—¢1p1 — daps— - — dppp) - 4)
ii. The autocorrelation of AR(p) is as follows.
Pk = P1px—1 — P2pr—2 — *** — PpPr—p (5)
where k =1,2,3,....

iii. iii. The partial autocorrelation of AR(p) can be just evaluated as significant or insignificant such as follows.

ik # 03k <p (6)

ke = 05k > p. (7)

The present value is contingent upon the two preceding values. Each ¢ coefficient indicates the extent of the
impact of the respective historical value on the present value. A large coefficient value indicates that past values
significantly influence current values, rendering the model appropriate for forecasting in time series that are heavily
reliant on historical data.

2.2. Bayesian ARIMA and Bayesian AR models

The traditional ARIMA(p,d,q) framework is enhanced by Bayesian ARIMA models, which integrate prior
distributions on parameters and estimate posterior distributions via simulation methods. The conventional ARIMA
equation is

¢(B)(1 — B)'Z, = 0(B)ay,a, ~ N (0,07) ®)
where
- ¢(B)=1—¢1B — ¢2B* — ... — ¢, BP denotes the autoregressive (AR) polynomial,
- 0(B)=1-6B —0,B% — ... — 0,BY signifies the moving average (MA) polynomial,

- B is the backshift operator (BZ; = Z;_1 .
- d is the order of differencing.
- a; is the white noise error term, assumed to be normally distributed: a; ~ N ((), ag) .

Bayesian approaches utilize previous knowledge regarding parameters (e.g., ¢;,0;,0%) and observed data to
generate posterior distributions. This diverges from conventional methods that depend on maximum likelihood
estimation. This facilitates analysts in elucidating uncertainty and doing model averaging when the model order
(p, d, q) is indeterminate. Bayesian ARIMA models are particularly beneficial for: « Bayesian ARIMA models
are particularly useful for analyzing time series that display data gaps or are intermittently accessible, such as
situations where seasonal data is not available. * Incorporating priors to integrate expert viewpoints, ® It is crucial
to assess the uncertainty of forecasts and parameters, particularly in unstable systems like inventory management
or financial prediction. Bayesian ARIMA facilitates the integration of structural knowledge or external constraints
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(such as anticipated totals over time) in high-dimensional or limited forecasting scenarios through the application
of conditional simulation techniques. Bayesian implementations typically use sampling techniques such as Gibbs
sampling or Metropolis-Hastings, both of which are forms of Markov Chain Monte Carlo (MCMC). These
techniques facilitate the acquisition of posterior samples for the latent variables of the ARIMA model [17, 18, 19].
ARIMA models based on point estimates by Maximum Likelihood Estimation and do not inherently quantify
parameter uncertainty, while Bayesian ARIMA improve the traditional methodology via prior distributions for
its parameters and using simulation methods MCMC to obtain the posterior distributions in order to handle
uncertainty.

2.2.1. Prior Distribution In Bayesian statistics, the prior distribution reflects the analyst’s beliefs regarding the
model parameters prior to observing any data. Bayesian ARIMA models use prior distributions for the moving
average coefficients ¢ = (phiy, phis, dots, phi, , autoregressive coefficients § = (61, 6,,...,6, , and innovation
variance o2 . Employing distinct Gaussian priors for the autoregressive and moving average coefficients, alongside
an inverse-Gamma prior for the variance, is a prevalent and straightforward approach.

¢i ~ N(pp,04), 0j ~ N(ug,09), 0% ~ inverse — Gamma(a, 3)

These selections are favored because of their conjugacy qualities, which facilitate posterior updates in Gibbs
sampling. The inverse-Gamma prior o2 ensures that the complete conditional posterior of the variance remains
within the same distributional family, facilitating calculations during each sampling step. In hierarchical Bayesian
ARIMA models, the variances 03) and o7 may be assigned hyperpriors, often derived from the inverse-Gamma
distribution. This enables the model to determine the appropriate level of regularization based on the data.

O’i, o3 ~ inverse — Gamma(a, j3)

Such formulations are most effective in scenarios with limited data and a significant danger of overfitting. In real
life, people often use weak or unhelpful priors (like a small epsilon) to reduce the effect of priors when they don’t
know much about the topic. In probabilistic modeling of uncertainty, prior distributions are occasionally assigned
to the parameters p, d, and q in the ARIMA model. It is commonly presumed that there exists a consistent prior
over a specific interval.

p,d,q ~ Discrete Uni form(0, pmaz)

The diverse priors facilitate the application of Bayesian model averaging across various model configurations,
significantly benefiting automated forecasting systems. In situations where predictions need to follow certain rules
(like staying within a set range or adding up to a specific number), helpful priors or adjustments can be added to
the simulation process to make sure the results are useful ([18, 19] . The priors were chosen to be non-informative
and that the results are therefore not expected to be sensitive to minor changes in their specification.

2.2.2. Likelihood Function Within a Bayesian ARIMA paradigm, the likelihood function indicates the probability
of observing the data Z = (Zy, Za, ..., Z,) contingent upon the model parameters. To obtain a stationary series
using an ARIMA (p, d, q) model, one must difference the observed time series d times Z; = (1 — B)d%. The
altered series can be represented as an ARMA(p, q) process:

¢(B)Z; = 0(B)ay,a,IN (0,07) 9)
Assuming the innovations are conditionally normal 6 = (¢,6,0?) the probability of the model parameters is
articulated as:
—d—p 2

-z T—d q P
1 2 1
L (90,0,@5702 | Z) o' (0_2> exp _ﬁ E Zy — 6y — E Hth_j — E diai_; (10)
j=1 i=1

t=p+1

This formulation regards the ARIMA model as a conditional regression issue, wherein Z; it is forecasted based
on its historical values and prior residuals. The ARMA process is recursive and reliant on lagged values a; ; hence,
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4 USING BAYESIAN AR-ESN FOR CLIMATIC TIME SERIES FORECASTING

Kalman filtering, state-space representations, or conditional likelihood approximations are necessary for precise
likelihood assessment. The likelihood is crucial for determining the posterior distribution, as it indicates the extent
to which the model parameters account for the observed data. Bayes’ theorem integrates the prior distribution
with the likelihood of deriving the posterior in Bayesian ARIMA models. In practical applications, beginning
values (e.g..Z — 1, ..., Z, ) and residuals a; are either regarded as constant or eliminated using data augmentation
techniques. In Gibbs sampling, a; the model parameters can be iteratively modified along with them [17, 18] .

2.2.3. Posterior Distribution The posterior distribution is essential in Bayesian ARIMA inference. The model
parameters have been adjusted based on the observed data. Bayes’ theorem posits that

p<00707¢a02 | Z) X L(90a9a¢502 ‘ Z) 'p(90797¢70-2) (11)

where:
* L(e) signifies the likelihood of the data.
* p(e) denotes the joint prior distribution of the parameters.
Due to the nonlinear and recursive nature of ARMA processes, it is often challenging to analytically modify
the resulting posterior. We simulate and estimate the posterior distribution utilizing sampling techniques such as
Metropolis-Hastings or Gibbs sampling. In contrast to other modeling methodologies, Bayesian modeling offers
the complete distribution of each parameter rather than merely a point estimate. This enables the generation of
posterior prediction intervals and credible intervals that illustrate the uncertainty of the parameters. Utilizing the
data and the priors as a reference, the posterior distribution ¢; will illustrate the complete spectrum of potential
AR coefficients. The posterior may incorporate model index variables if the model’s structure is ambiguous (for
instance, if p, d, and q are indeterminate). Consequently, the posterior probability for each ARIMA configuration
may be computed. Bayesian model averaging, or BMA, is a technique employed in time series ensemble models
and automated forecasting systems. It is founded on this ([18, 19, 20]. The final Bayesian ARIMA equation keeps
the basic structure of the regular ARIMA model but adds uncertainty about the parameters through probabilistic
inference.

q
(I=XLy =[]0 -6L) a (12)

1 j=1

k
1=
where

*)\; the roots of the autoregressive polynomial.

* §; while the roots of the moving average polynomial. For the model to exhibit both stationarity and invertibility,
the roots must be outside the unit circle. Bayesian estimations do not utilize fixed numbers. It determines the
posterior distributions of parameters ¢ and 6 , providing dependable ranges and simulations for future predictions.
The Bayesian ARIMA approach generates multiple predictions rather than a single one. Samples {9(5)}§:1 from
the posterior distribution are utilized to forecast subsequent observations:

S
1
_ ~ (8)
P (Yren | yr1) = /p(yT+h | 0)p (0| yr.7) db ~ 5 SEﬂP (yT+h |0 ) (13)

This mindset is highly beneficial for decision-making in ambiguous situations, such as financial planning, supply
chain forecasting, or evaluating climate risk [18, 5] . The autoregressive (AR) model is a fundamental approach for
analyzing time series data. Univariate time series data are effective for model development and forecasting. The
classical AR(p) model posits that the current value of a time series is a linear function of its preceding p values,
augmented by random noise. Conventional frequentist estimation methods, like maximum likelihood estimation
and ordinary least squares, fail to consider uncertainty in the model or existing knowledge regarding the parameters.
The Bayesian framework is advantageous as it provides a complete posterior distribution and incorporates prior
knowledge on the model’s parameters. Bayesian AR(p) models can be advantageous when uncertainty exists over
the appropriate lag order, managing outliers, and imputing missing data [21].

It is necessary to establish prior distributions for the parameters ¢ = (¢1, ..., ¢,) and o2 to conduct a Bayesian
analysis. A prevalent option is:
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- The standard prior for ¢,

¢ ~ N(pp,04)
- For 02 , employ an inverse-Gamma prior:
02.G.(a,b)

In the absence of substantial prior knowledge, one may employ flat or non-informative priors [22] . The
likelihood function for the AR(p) process given a sample (71, Z, ..., Z,) is [21] :

T 1 (Zt -y ¢'Zt—*)2
L(¢,0%| Zy1) = — T 14
(¢7 o° | 1.T) t_lg_l J2no? exp 952 (14)

Bayes’ Theorem provides the joint posterior distribution of ¢ and o2 :

p (6,02 | Zrr) < L(¢,02 | Zi.r) - p(e) - p (02) (15)

Using conjugate priors, specifically a normal distribution for and an inverse-gamma distribution for o2 , leads to

posterior distributions that belong to established families. In certain instances, they can be computed analytically,
while in others, simulation may be employed to approximate the results [21, 22].

2.3. Markov Chain Monte Carlo (MCMC)

MCMC techniques are essential for Bayesian ARIMA modeling. They facilitate sampling from intricate posterior
distributions when analytical integration is unfeasible. In Bayesian ARIMA, MCMC creates a Markov chain that
eventually represents the posterior distribution of the model parameters based on the data.p(o, 0, ¢, 02| Z) The
primary objective is to generate a collection of samples {#(1),#(2) ... 99} that closely resemble the actual
posterior about their empirical distribution. Once the chain has converged during the “burn-in” phase, these
samples are utilized to estimate quantities such as:

* ”Posterior” denotes the back or rear position E|[¢;, Z] .

* Credible intervals.

* Projected distributions.

Bayesian ARIMA employs two primary MCMC algorithms:

» The Metropolis-Hastings algorithm proposes a new value from a proposal distribution based on a specified
probability and subsequently determines whether to accept or reject it.

e The Gibbs sampling method repeatedly selects samples from the entire conditional distributions of each
parameter. MCMC is a crucial element of the ARIMA architecture due to the recursive error components of
the likelihood, which render the posterior decomposition into simple forms unfeasible. MCMC allows for the
direct incorporation of parameter constraints, such as stationarity and invertibility, into the sampling process by
eliminating non-compliant draws. MCMC facilitates the comparison of Bayesian models by computing posterior
model probabilities or Bayes factors. MCMC-based Bayesian ARIMA is an effective and adaptable forecasting
instrument that accounts for both model order and parameter uncertainty. In practical applications like limited
policy simulations or sporadic demand, MCMC enables the modeling of complete uncertainty distributions and the
generation of forecasts that are probabilistically coherent [18, 19, 20].

2.3.1. Gibbs Sampling Bayesian ARIMA models utilize Gibbs sampling, an effective variant of Markov Chain
Monte Carlo (MCMC), and particular kinds of prior knowledge. This method involves keeping the other values
fixed while iteratively choosing each parameter based on its entire conditional distribution. It entails repeatedly
selecting each parameter from its whole conditional distribution, under the assumption that the other values remain
constant. The subsequent approach is employed to modify the Gibbs sampler for a Bayesian ARIMA model:

¢(t+1) ~p (¢ ‘ (g(t)7 02(t)’ Z) (16)
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6 USING BAYESIAN AR-ESN FOR CLIMATIC TIME SERIES FORECASTING

e+ P (9 | ¢(t+1)’ 02(75)’ Z) 17)

o2~ Inverse — Gamma (o, 8) (15

Direct sampling of the entire conditional distribution is feasible when a closed-form solution exists, as
demonstrated with conjugate priors. Metropolis-Hastings steps are includedin Gibbs sampling to address
challenging conditional distributions. This is occasionally referred to as Metropolis-within-Gibbs [18]. Chib and
Greenberg (1994) demonstrate the application of Gibbs sampling in models with ARMA error mechanisms.
The authors demonstrate the feasibility of employing numerical approaches to estimate or compute complete
conditionals, especially in models incorporating moving average components. They provide detailed guidelines for
estimating probabilities. This is the conventional method for conducting Bayesian time series modeling currently.
Gibbs sampling offers several advantages:

* User-friendly

» Exhibits favorable convergence characteristics when appropriately configured

e Compatible with latent variable models and hierarchical priors. Initialization, chain autocorrelation, and
convergence diagnostics must be conducted with meticulous attention. When parameters exhibit high similarity,
reparameterization or block sampling techniques are occasionally employed to enhance the mixing of ARIMA
models. Gibbs sampling facilitates comprehensive Bayesian analysis, encompassing thorough result summaries,
predictions, and assessments of probability models [17, 18].

2.4. State Space (SS) model

Employing the AR model as a linear statistical framework to analyze nonlinear time series data will increase
stochastic uncertainty, hence diminishing predicting accuracy and addressing the data’s nonlinearity. The SS
approach will be employed to address random uncertainty, enhancing forecasting accuracy owing to its effective
performance in time series analysis. The SS technique can be articulated as a statistical approach for estimating
and forecasting unmeasured state space equations. The SS approach integrates observations and current predicting
values by employing weights that mitigate biases and mistakes. The state equation (SE) and the observation
equation (OE) constitute a set of equations known as the linear model of the state space, which can be expressed
as follows:

Zy=AZ; 1+ Buy_1 +e1y (19)

Yi=CZ; + ez, (20)

Z; 1s the m-dimensional state vector, u; is a specific input vector, Y; is an output observation vector, e; ; and es ;
are independent white noise vectors; A, B, and C are constant matrices. The SE equation, denoted as equation (19),
and the OE equation, denoted as equation (20), can be expressed in state space as follows:

Zt = AZt_l + But_l + O/(lt (21)

Y, =C% (22)

r =mazx(yg, j)

g denotes the count of lagged series of the variable Z;, j signifies the count of lagged series of the residuals Z; , is
the state vector with dimension r, u; is the lagged series vector of the residuals, and a, is the rotated vector of the
current residuals.

Equations (21) and (22) are complex in application; therefore, they can be restructured for simplicity as follows
[23, 24].

Zt = AZt,1 + C/at (23)
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g = CZy 24

a=Y,-Y; (25

Z; the m-dimensional state vector, A represents the state transition matrix of dimensions (m X m), while C
signifies the display transition matrix of dimensions (m x 1). §; the displayed rotation vectors illustrate the SS

output series, where m indicates the number of lagged series terms Z; . All lagged series of the residuals a; are
included on the right side of the AR data model equation after simplification, Z; retaining only the left side.

Zt == [ Zl,t Zgﬁt e Zm,t :I/ (26)
P P, P --- P,
1 0 0 0
A= 0 1 0 0 27)
0 0 0 0 .
C=[100 -- O]me (28)

(P, P2, Ps, ..., Py,) After simplification, just the left half of the AR data model equation remains, and all
parameter values of the lagged series and all time-lagged residual series are integrated on the right side. The input
variables and the ESN architecture used in this investigation will be defined by the matrix A, the row vector C, and
the variables in the AR data model equation.

2.5. Echo state network (ESN)

ESN is a highly efficient computational technique for time series forecasting because it is made to handle time-
dependent data. The design is more accurate than conventional neural networks, has an easy-to-understand learning
process, and has substantial processing power to solve nonlinear problems. Since its inception as a deep learning
neural network, ESN has emerged as a preferred option for researchers in time series forecasting [23, 24]. The
ESN technique uses a large number of randomly initialized recurrent neurons, called reservoirs, that act as a hidden
layer. Training a recurrent neural network, such as the Echo State Network (ESN), is made easier by the randomly
generated recurrent reservoir. Since (p) represents the dimension of the input variables and (m) represents the
number of hidden nodes in the Echo State Network (ESN), training the output weights is a key idea in ESN. One of
the benefits of ESN over traditional neural networks, however, is that the input and reservoir weights are allocated
at random and are not taught. ESN is widely used in many fields, such as time series forecasting. [25, 26, 27, 28].
ESN is a neural network developed through the linear regression method, allowing it to address the limitations of
conventional neural network models. It demonstrates superior performance and an accelerated learning rate [29].
The following two equations articulate the modeling process of the Echo State Network (ESN):

Zy=f(W.Z—1 + Wi Xy) (29)

:gt = WoutZt (30)

Equations (29) and (30) are derived from the state space model tailored for time series analysis, based on the SE
equation (23) and the OE equation (24), incorporating a nonlinear function such as the tangent function.
In this context, t denotes the number of time steps, X; while the rotated input vector is represented with dimensions
(1 x t) and corresponds to the series of residues in the SS model as outlined in equation (23). Additionally a;, Z;
the rotated matrix of internal states has dimensions (m X t) and is situated in the hidden layer, and finally, §; the
output vector has dimensions (t1 x) for the neural network. The output weights may be determined through the
general inverse method utilizing the subsequent formula:

Wou = 125 =, (Zi2:) 7, €2)
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8 USING BAYESIAN AR-ESN FOR CLIMATIC TIME SERIES FORECASTING

WZ = A7W/in = CI7WOllt =C

z2=W,Zt-1+ Win Xt
£ () this research employs the nonlinear tangent function, represented by the following formula:

1— e—2z

f(z) = tanh(z) = =

(32)

If only the Z; ’s lagged series which represent the variables of AR model regardless of the parameters and signs
are used to determine the inputs structure of the Artificial neural network (ANN) generally or ESN as in this study,
this method can also be called hybrid AR-ESN model [30, 31, 32] or it can just be ESN [33, 34, 35]. Using an AR
model instead of ARIMA model, regardless of several time series conditions, resulted in a simple input structure
for the ESN according to [31, 36, 37]. In the first stage, the AR model will be constructed. An AR(p) model
was used to determine the inputs structure of the ESN. The inputs structure of the ESN depended on the number
of autoregressive parameters. ACF and PACF are used directly for the original time series data and for the first

difference series to provide an idea about the autoregressive order. AR(p) model is a function of linear components
that can be written as follows.

2.6. Time Stratification (TS)

An efficient technique for analyzing time series data is time stratification (TS). It makes it easier to arrange data
according to seasonal variations, which are important factors that affect time series dynamics and forecasting
results. By classifying data according to particular seasonal time strata, this approach aims to provide a deeper
understanding of how seasons or cyclical temporal patterns affect the variable being studied. When time series
exhibit consistent seasonal trends under similar correlation and influence conditions, time series analysis can be
effectively applied to a diversity of time series. By classifying data into more uniform categories, this method
reduces random volatility and boosts the accuracy of statistical and predictive modeling. By separating recurring
seasonal patterns from general behavior, this technique improves forecast model performance and produces more
reliable results than those obtained from aggregate, unclassified data. [38, 39].

2.7. The measurement of forecasting errors

The average of the absolute discrepancies between expected and actual values is known as the mean absolute error,
or MAE. ([11]. The subsequent formula is employed to ascertain it:

1 n .
MAE = =% |y — | (33)
t=1

- y; : the actual value.
- g : the anticipated value.
- n: the quantity of samples (or observations).

Root Mean Square Error (RMSE) quantifies the accuracy of a data forecast. This is the notation for RMSE [11]

and [40]:
n 2
RMSE — 1] 2t=1% (34)
n

t=1,2,...,n; a; =y — Y, where n represents the number of observations, y; denotes the true value at time ;
signifies the predicted value of the observation at time ¢, and a; indicates the error series at timet.
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3. Results and discussion

3.1. Data Description and Study Framework

This study establishes a dual forecasting framework that integrates nonlinear modeling with the Bayesian AR(p)-
ESN hybrid model, employing the Echo State Network (ESN) inside a Bayesian analytical context, alongside
probabilistic linear modeling with the Bayesian AR(p)-ESN model. The daily maximum wind speed in Mosul
is a complex climatic time series that this combination aims to predict with greater accuracy. The agricultural
weather station located in Nineveh Governorate, at coordinates 43.16°E and 36.33°N, supplied the data. Given
the significant temporal fluctuations and evident seasonal variations in these data, analytical models capable of
capturing both linear and nonlinear aspects of the time series are required. A time-stratified (TS) methodology
was employed to establish seasonal homogeneity in the data, dividing the series into two discrete seasons: the
cold season (November to March) and the hot season (May to September), covering the years 2012 to 2023. To
ensure the robustness of the probabilistic models used, sufficient training and testing observations were employed.
Consequently, the seasonality of the data and associated models will be presumed, with each seasonal cycle
comprising five months (s = 5). Initially, non-informative prior distributions were employed to develop Bayesian
AR(p) models, and Markov Chain Monte Carlo (MCMC) techniques were utilized to estimate the dimensional
distribution of the coefficients and error variance. Modeling was conducted over several lags (2, 3, 4, and 5)
to determine the optimal series structure for each season. These models provide a comprehensive probabilistic
framework that facilitates uncertainty analysis and the establishment of confidence intervals for future projections,
rather than solely depending on traditional point estimates. In the subsequent phase, the resonant state network
was constructed utilizing the outputs of the Bayesian AR(p) model. The input matrix Z is created by combining
the lagged time variables and residuals from the Bayesian model after the initial random error has been removed.
This matrix is entered into the ESN using a stochastic internal structure (matrix A) and an output vector (C),
which is intended to improve the model’s forecasts. The hybrid Bayesian AR(p)-ESN model combines Bayesian
inference, which accurately captures the characteristics of time series, with a neural network architecture that
can capture complex interactions between variables and nonlinear patterns. Two implementations of this model
were carried out: one that uses only the variables and not the AR coefficients, and another that includes the AR
coefficients estimated using the Bayesian model, along with their values and signs. This combination of flexible
neural networks and a strict Bayesian approach is more predictive and ideal for unpredictable climatic data because
of the rapid changes in the environment. Preliminary comparative data indicate that the hybrid model exhibits
superior prediction accuracy and resilience, especially when evaluated using metrics such as MAPE and MSE.
General Study Framework: The subsequent steps provide the overarching framework of the study:

1. We divide the climate data into two seasons, a warm season and a cold season, using the Time Stratified (TS)
method to achieve seasonal homogeneity in the time series attributes.

2. Dividing the season-specific data into two subsets: training data for model development and testing data for
evaluating predictive model efficacy. The training period data is analyzed using a Bayesian AR(p) model over
several lags (2, 3, 4, 5). The parameters of each model are estimated via MCMC techniques and dimensional
inference.

3. We utilize the outputs of the Bayesian AR(p) model to build the input matrix Z, which includes the residuals
and lagged temporal variables, while eliminating the initial random error. The network relies on an output vector
(C) and an internal stochastic state matrix (A). The methodology is referred to as the hybrid Bayesian AR(p)-ESN
model.

4. The study’s general framework can be articulated as depicted in Figure (1). Figures (2) and (3) illustrate the
maximum wind speed variable for both the hot and cold seasons during the training and testing periods.

3.2. Bayesian Autoregressive Model (BAR)

The initial step in this framework is to ascertain the configuration of the Bayesian AR(p) model. The partial
autocorrelation function (PACF) of the original series is employed to determine the optimal rank of the model,
indicating the number of prior time periods that exert a statistically significant influence. Currently, we do not
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Figure 1. General framework for the research
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Figure 2. time series plot of the maximum wind speed of hot season
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Figure 3. time series plot of the maximum wind speed of cold season

discuss stationarity criteria, as the primary objective of employing the Bayesian AR(p) model is to ascertain the
characteristics of the input layer of the ESN, rather than to generate predictions. Figure (4) below illustrates the
autocorrelation functions (ACF) and partial autocorrelation functions (PACF) for the maximum wind speed data

for the summer and winter seasons.

Figure (4) demonstrates that the ranks (p=2 till p=5) are the optimal Bayesian AR(p) models. These models can
be applied to the data, despite Figures 2 and 3, which do not display any evident non-stationarity. These models

can be expressed numerically using Equation (3), as demonstrated below.

Zy = 0.537912Z;_1 + 0.01947Z; _5 + a,

Stat., Optim. Inf. Comput.
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Figure 4. ACF and PACF of the maximum wind speed data for the hot and cold seasons.

Zy = 0.535701Z;_1 — 0.03666Z;_2 + 0.104532Z;_3 + ay (36)

Zy = 0.529889Z;_1 — 0.03438Z;_2 + 0.075616Z;_3 + 0.052781Z;_4 + a 37

Zy = 0.5258342Z; 1 — 0.042Z,_5 4 0.079266Z;_3 + 0.007439Z;_4 + 0.0852Z;_5 + a, (38)
Z; = 0.300404Z; 1 + 0.021043Z; 2 + ay 39)

Zy = 0.297208Z;_1 — 0.01525Z; _2 + 0.114033Z;_3 + a, (40)

Zy =0.290876Z;_1 — 0.01522Z;_5 + 0.099838Z;_3 + 0.046963Z;_4 + a; 41)

Zy =0.2905817;_; — 0.01879Z;_5 4+ 0.0991447,_5 + 0.0381897,_4 + 0.0291187;_5 + ay 42)

3.3. State Space (SS) model Based on Bayesian AR(p)

We employed Bayesian AR(p) models to determine the maximum wind speed in both the hot and cold seasons.
Subsequently, we employed these models to construct a State Space (SS) framework that distinctly illustrates the
temporal variations of the time series. The Bayesian equations employed to estimate the SS model originate from
Bayesian AR(p). The model is transformed into a format (23) and (24) that encompasses:

Zi, ] [ 0537912 0.01947 Zua |, [ 1],

Za g 1 0 oo L Z2,t-1 0" @3)
o] %]
Yi=1y 1 7z
1x2 2,
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AR, 0.290581 —0.01879 0.099144 0.038189 0.029118 2141 1
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1x5

The state equation: illustrates the temporal evolution of the system’s state. The observation equation illustrates
the relationship between real observations and the underlying conditions. This paradigm provides a dynamic
representation that facilitates the management of the series’ underlying temporal structure. Indicators such as the
Mean Absolute Error (MAE) and Root mean square error (RMSE) presented in Table (1) and (2) can be utilized
to evaluate the efficacy of a model. This image illustrates a phase in the construction of the hybrid ESN model,
subsequently employed to determine the network inputs.

Table 1. MAE values of different BAR models

Lags 2 Lags 3 Lags 4 Lags 5
Training Testing Training Testing Training Testing Training Testing
Cold 1.0018 1.6009 1.0046 1.5997 1.0075  1.5937 0.994 1.5915
Hot  1.1235 14015 1.1087 13927 1.1066  1.3932  1.1021  1.3928

Table 2. RMSE values of different BAR models

Lags 2 Lags 3 Lags 4 Lags 5
Training Testing Training Testing Training Testing Training Testing

Cold 14116 2.1891 1.4134 2.179 14175  2.1747 14012  2.1682
Hot 1.6026  1.8498  1.5908 1.8355 1.5916 1.8338  1.5816 1.833

3.4. Hybrid Bayesian AR-ESN method

Method is a hybrid model that integrates the internal architecture of the Echo State Network (ESN) with the
fundamental equations of the Bayesian AR(p) model. A hybrid model, termed the Hybrid Bayesian AR-ESN,
was developed utilizing the internal architecture of the ESN, which is founded on the fundamental equations of
the Bayesian AR(p) model. The lagged time variables and residuals from the Bayesian model were utilized to
determine the network’s input matrix Z. We applied the entire ESN methodology with all the details in Table (3)
to the identical dataset for both seasons and utilized the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) metrics to assess the outcomes, as illustrated in Table (4) and (5).

The ESN was initialized with random matrices U, V', and W. The Burgers’ equation, gradient-based training
was applied to the readout instead of the standard pseudo-inverse method.

Tables (1) and (2), (4), (5) indicate that the hybrid Bayesian AR-ESN model outperforms the model utilizing
solely Bayesian AR. The hybrid model exhibited reduced the Mean Absolute Error (MAE) and Root mean square
error (RMSE) values, enhancing its predictive accuracy. Utilizing the TS technique to segment maximum wind
speed data by season and employing a hybrid model based on Bayesian analysis and the ESN network significantly

Stat., Optim. Inf. Comput. Vol. x, Month 202x



14 USING BAYESIAN AR-ESN FOR CLIMATIC TIME SERIES FORECASTING

Table 3. Hyperparameters of the ESN.

Hyperparameter Symbol/Value Description

Reservoir size 5 Number of neurons in the reservoir.

Spectral radius 0.9 The largest absolute eigenvalue of the reservoir weight
matrix U.

Input scaling 1 Scaling factor applied to the input weights V.

Readout regularization 0 Ridge regularization parameter applied to the output

weight W for training, while Gradient descent (GD)
used for the regularization.

Sequence length (for training) 5 Number of time steps per training subsequence.
Training epochs 1000 Number of GD iterations on the readout.
Learning rate 1 Learning rate used for training optimizer W.

Table 4. MAE values of different Bayesian AR-ESN models

Lags 2 Lags3 Lags 4 Lags 5
Training Testing Training Testing Training Testing Training Testing

Cold  0.9877 1.537 09639  1.5458 09943 1.5365 0.99774 1.52564
Hot 1.1338 1.363 1.0828  1.3742 1.1 1.3849  1.0723 1.361

Table 5. RMSE values of different Bayesian AR-ESN models

Lags 2 Lags 3 Lags 4 Lags 5

Training Testing Training Testing Training Testing Training Testing

Cold  1.3986 2.091 1.3951 2.092 1.4379  2.0745 1.43221 2.06323
Hot 1.6151 1.7869 1.5698 1.8058  1.5828 1.8219  1.5705 1.7902

improved the forecasting results. This indicates that the proposed model effectively articulates complex temporal
variations and generates predictions more accurately.

4. Conclusions

Compared to standard Bayesian models as Bayesian AR(p), the hybrid Bayesian AR-ESN model is a more
accurate forecasting tool, particularly when examining complex and nonlinear climatic data as maximum wind
speed series. This conclusion is supported by the data shown in the Results and Discussion section. The nonlinear
adaptive features of the Echo State Network (ESN) are combined with Bayesian analysis, which offers an accurate
probabilistic representation of temporal structure, the forecast accuracy is significantly improved, according to
the comparison of the two models. Forecasting error measurement parameters like Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) were significantly reduced when the hybrid model was used. According
to the study, Bayesian AR(p) estimates model parameters and represents linear temporal effects effectively in a
probabilistic context; it falls short in capturing the complex correlations and nonlinear dynamics present in the
time series. Therefore, it must be combined with ESN as a nonlinear layer that enhances the linear representation
and increases the predictive power of the model. The suggested approach predicts univariate climatic time series
quite well, particularly those with abrupt changes and seasonal volatility.This increases the method’s suitability for
use in upcoming real-world meteorological and renewable energy applications.
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