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Abstract Many transportation planning processes in real-world applications are complex and require strong cooperation
among various vehicles. When using expensive vehicles, their utilization plays a decisive role in an efficient supply chain. In
mining production or civil construction processes, such as mining unloading or road building, the machines are typically
mobile, and synchronization between different types of vehicles ensures better use of vehicle fleets, reduces traveled
distances, non-productive times, and logistics costs. In this paper, we consider two types of vehicles, called primary and
support vehicles. Primary vehicles perform operations and are assisted by at least one support vehicle, with support vehicles
scheduled according to a First-Come, First-Served (FCFS) policy. We refer to this practical problem as the vehicle routing
problem with synchronization and scheduling constraints of support vehicles. To tackle this problem, we introduce three
mixed-integer linear programming models. The first approach involves vehicle routing with synchronization only, breaking
each task into several subtasks by duplicating nodes in the graph representation, which produces an equivalent network
flow problem. The second model addresses subtasks by adding constraints that determine the assignment of each subtask
to a specific primary and support vehicles. The third model incorporates an additional FCFS scheduling constraint for
support vehicles. Computational results on 100 real-world instances show that the second model reduces the first model’s
computational time by 30%. In contrast, the results of the third model indicate that the FCFS constraint for support vehicles
has little impact on solution quality and slightly increases computation time, demonstrating the robustness and practical
applicability of the scheduling approach.
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1. Introduction

This research is motivated by a problem commonly encountered in mining operations, specifically in vehicle
scheduling and routing. It focuses on the pairwise synchronization of operations (e.g., mineral hauling) between
two different types of vehicles, both in space and time. The first type of vehicle, called a primary vehicle, is a
mining loader that performs loading operations. Since loaders generally cannot transport material (e.g., ore or
waste) over long distances, mining trucks, called support vehicles, are required to collect the material during
operations. Once fully loaded, these vehicles transport the material to the processing plant, storage facilities, or
the waste dump, then return to the loader after unloading. Together, primary and support vehicles must accomplish
a set of tasks, each involving the transfer of a specified quantity of ore or waste between a given site and its
designated destination. Given the vehicles’ capacities and the quantities to be transported, each task is naturally
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divided into subtasks, with each subtask representing a fraction of the total task to be completed. All subtasks must
be completed within a defined time horizon, while minimizing total completion time and balancing the workload
across vehicles. The underlying optimization problem can be modeled as a variant of the Vehicle Routing Problem
(VRP) incorporating synchronization constraints and support vehicles scheduling constraints, following the first-
come, first-served policy. We refer to this new problem as the Vehicle Routing Problem with Synchronization and
Scheduling Constraints of Support Vehicles.

The literature on routing problems with synchronization constraints was initially addressed by Drexl [1], where
interdependencies arise from routing decisions involving two or more distinct vehicles. Unlike classical Vehicle
Routing Problems (VRPs), the VRP with Multiple Synchronization Constraints (VRPMS) involves interdependent
routes. A modification in one route may affect others and, in some cases, make them infeasible. To deal with this
problem, five different types of synchronization were proposed by Drexl [1]. Task synchronization is generally
included in any VRP, as delivery tasks or services must be performed exactly once by one or more suitable
vehicle(s). Operation synchronization concerns the spatial and temporal coordination of tasks, referring to the
time offsets required between operations of two or more vehicles at the same or different locations. This concept is
relevant to multi-echelon VRPs (Perboli et al. [5]) and to combined VRP-scheduling problems with time windows
and additional temporal constraints (Bredstrom and Roénnqvist [14]). In addition, operation synchronization can
generate dynamic time windows, in which the execution of a task depends on the completion of another task. From
a temporal viewpoint, three types of operation synchronization are distinguished: pure spatial synchronization,
synchronization with precedence constraints, and exact synchronization (e.g., Mankowska et al. [15]). Resource
synchronization that vehicles compete for common, limited resources (Hempsch and Irnich [16]). Grimault et al.
[17] investigate a pickup and delivery problem with resource synchronization; a set of truck routes is needed to
serve a set of demands sharing a set of resources; the authors introduce a specific synchronization-based destroy
operator for their Adaptive Large Neighborhood Search (ALNS). Movement Synchronization occurs when two
vehicles must be synchronized in space and time to form a single composite vehicle. There are two types of
movement synchronization: movement at the depot and en route. Meisel and Kopfer [4] address a VRP with en
route movement synchronization. This problem involves pickup-and-delivery requests that require coordinated
operations between active and passive vehicles, which can be combined at each customer location. This problem
is solved by the exact branch-and-price procedure proposed by Tilk et al. [8]. Load synchronization means that
vehicles exchange cargo along their routes or deliver it to the same customer. This occurs in routing problems with
split delivery, see e.g., Desaulniers [7], where a customer is served by multiple vehicles, each providing a fraction
of the total customer demand. There are three types of load synchronization: fixed, discretized, and continuous. For
further details in line with the discussion presented here, Soares et al. [18] clarified the concept of synchronization
and proposed a simple mathematical formulation for VRPs with synchronization, in which the different types of
synchronization are explicitly modeled and mathematically defined.

Based on this classification, the concept of synchronization is used broadly. Salazar-Aguilar et al. [3] introduce
a synchronized arc routing problem inspired by snow plowing operations. In this problem, synchronization occurs
along the arcs; the routes must be designed so that street segments with two or more lanes in the same direction
are plowed simultaneously by different synchronized vehicles. A non-linear mixed integer formulation and an
ALNS procedure are proposed. Quttineh et al. [9] model the military aircraft mission planning problem as a VRP
with synchronization constraints, where the target illumination by one aircraft and the attack by another aircraft
require exact operation synchronization. Small instances of the problem are solved optimally with a commercial
solver CPLEX. Rix et al. [12] present a tactical wood flow model with multiple periods in the context of the
Canadian forestry industry, which takes into account synchronization with log loaders. This problem is formulated
as a mixed-integer linear program and solved using column generation. Soares et al. [13] also study a full truck-
load pickup and delivery problem with multi-vehicle synchronization. Their approach integrates truck-and-loader
synchronization to reduce unproductive time, using a fix-and-optimize matheuristic that outperforms traditional
MIP solvers on constrained instances. Fink et al. [10] define a VRP with workers and vehicle synchronization.
Workers use vehicles to move from one location, such as a gate or a depot, to another. Hence, both workers
and vehicles are passive units on their own. The authors solve the problem using a column-generation-based
heuristic. Hof and Schneider [11] introduce the Vehicle Routing Problem with Time Windows and Mobile Depots
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(VRPTWMD). This problem involves fleets of task vehicles and support vehicles, where the latter act as mobile
depots to restore either the load or the fuel capacity of task vehicles used to satisfy customer demands. The authors
propose a hybrid heuristic composed of an adaptive large neighborhood search and a path relinking approach, which
shows compelling performance on larger instances of the related two-echelon multiple-trip VRP with satellite
synchronization, viewed as a special case of the VRPTWMD.

Recently, Soares et al. [19] proposed a robust optimization approach for the Vehicle Routing Problem with
Synchronization, taking into consideration the uncertainty in vehicle travel times between customers. This work
builds on existing approaches in the literature to develop mathematical models for the Robust VRPMP and a
branch-and-cut algorithm to solve more difficult problem instances.

Despite extensive research on VRPs with synchronization constraints and on scheduling problems, to the best of
our knowledge, no study has addressed both aspects simultaneously. In this paper, we focus on the mixed-integer
linear formulation of exact operation synchronization, i.e., when the offset is zero and synchronization occurs at the
same vertex. In this case, a vehicle may wait at a vertex that the other required vehicle arrives to start the operation.
The main contributions of this research are as follows:

¢ For the first time, we introduce a new variant for the VRPMS with a homogeneous fleet, in which the task
is disaggregated into subtasks by adding side constraints. These side constraints guarantee that each subtask
can be assigned to a single primary-support vehicle.

» The support vehicles are scheduled according to a First-Come-First-Served (FCFS) policy.

* A real-world case study at a major mining company illustrating the practical implementability of the proposed
models.

We organize the remainder of this paper as follows. In Section 2, we give a detailed description of the problem.
The new mathematical formulations and a theoretical discussion are presented in Section 3. Section 4 presents the
computational experiments and associated discussions. Finally, we summarize the work and provide perspectives
for future research in Section 5.

2. Problem statement

Table 1. Business rules.

Rule Description

R-1 Each task can be decomposed into a minimum set of subtasks according to the capacity of the
support vehicles.

R-2  Each task is assigned to a unique destination.

R-3 The execution of a subtask requires synchronization in time and location between a primary
vehicle and a support vehicle.

R-4 A support vehicle can be allocated to multiple primary vehicles and is not exclusively assigned to
any single one.

R-5  Support vehicles may not arrive at a task simultaneously.

R-6 A primary vehicle can start a task as soon as a support vehicle has arrived.

R-7 A primary vehicle must complete a task before moving on to the next one.

Mineral hauling is a fundamental component of the mining supply chain, as it involves transporting ore and waste
(sterile material) from various locations to processing or storage facilities. This process involves a homogeneous
fleet of vehicles composed of two types: primary vehicles, tasked with loading operations, and support vehicles,
assigned to transporting materiel to a specific destination. Each hauling task corresponds to a specific route and
requires the simultaneous presence of a primary vehicle and one or more support vehicles to ensure operational
feasibility. Primary and support vehicles are not always available. For each vehicle, the days of availability,
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capacities, loading and unloading times (for support vehicles), and travel times between different locations are
defined.

In this context, the objective of the Vehicle Routing Problem with Synchronization Constraints (VRPSC) is to
efficiently plan the daily routes of primary and support vehicles, specifying for each task the vehicles involved
and their order of intervention, while minimizing the total execution time and balancing the workload among the
available vehicles. This must be done while respecting all business rules listed in Table 1.

Task node

Start node
Sink node

Task destination node
Travel arc

| DERO

@ Task node

@] start node

Sink node

A Task destination node
=  Primary vehicle travel arc
..»  Support vehicle travel arc

Figure 2. Example of primary and support vehicle routes.

The VRPSC can be formulated on a directed graph G = (N, A), where N denotes the set of nodes and A the
set of arcs corresponding to the movements between nodes. The graph G is partially shown in Figure 1; for clarity,
some arcs are truncated or omitted. In addition to a source node (¢) and a destination node (¢), the graph contains
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two types of nodes: circle nodes and triangular nodes. Circles represent tasks performed by vehicles based at the
depot, while triangles denote the corresponding unloading destinations. At these locations, materials are unloaded:
waste goes to a dump, ore to a processing unit, or either to a storage facility. The functional association between
each task and its corresponding destination is illustrated by assigning them a common line style. In this network,
the incoming and outgoing arcs of tasks’ destination nodes are reserved exclusively for support vehicles, whereas
the remaining arcs are shared by both primary and support vehicles.

Figure 2 illustrates an example route involving one primary and one support vehicle for three tasks (circles).
The primary vehicle travels between tasks to perform all associated subtasks, while the support vehicle transports
materials to their respective destinations.

Since the locations of tasks and their destinations are known in advance, and the travel speeds of each vehicle
type are predetermined, the destination nodes are omitted from our models. Instead, we account only for the time
required for loading, traveling to the destination, unloading, and returning to the task site.

Table 2. Notation used for modeling the VRPSC variants

Sets and Elements

T Set of tasks to be performed.

H Set of vehicle types: primary (p) and support (s).
Vn  Set of vehicles of type h € H available at the depot.
V Set of all vehicles, regardless of type.

R;  Set of subtasks associated with task ¢ € 7.

N7  Set of all nodes representing the tasks or subtasks.
N Set of all nodes in the network.

A Set of all arcs in the network.

Parameters

t7;  Travel time of vehicle v € V between tasks ¢ and j.

di;  Time required for vehicle v € V to move from node : to node ;.

07, Service time of subtask r of task i by vehicle v € V.

vi;  Travel time of the support vehicle from task i’s destination to task j’s site. For each task 7, 7;;
denotes the travel time from its origin to its destination.

T Total time required for a primary vehicle to serve (e.g., load) a support vehicle.

& Service time (e.g., unloading) required at each task destination.

Decision Variables

sy Starting time of processing the task associated with node i by vehicle v. (})

y?  Binary variable equal to 1 if vehicle v € V is assigned to task i, 0 otherwise. (*>3)

z?.  Binary variable equal to 1 if vehicle v € V executes subtask  of task n, 0 otherwise.(*3)

sV Start time of subtask r of task n by vehicle v. (*3)

nr
xy;  Binary variable equal to 1 if vehicle v travels from node i to node j, 0 otherwise. (*>%)
wP  Continuous variable representing the maximum return time to the depot of all primary vehicles
used. (12:3)

Note. (1) Variables used in VRPSC?; (2+3) variables used in VRPSC2 and VRPSSC; (1:2-3) variables common to all three models.

3. Mathematical models
In this section, we present three mathematical models developed for the studied problem. The first two models,
denoted VRPSC' and VRPSC?2, are two variants of the VRPSC. The third model, denoted VRPSSC, extends

VRPSC? by incorporating scheduling constraints for support vehicles based on a first-come, first-served policy.
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Before describing each model in separate subsections, we introduce the notations common to all three formulations,
summarized in Table 2.

3.1. VRPSC!

In this section, we present the mathematical formulation of the first model, VRPSC!. For this model, each task is
decomposed into several subtasks by duplicating nodes within the network. We start by illustrating the network,
highlighting the task decomposition and the arcs used. Next, we define the notations specific to this variant. Finally,
we present the complete mathematical formulation of the model.

3.1.1. Graph representation

Let G = (N, A) be a directed graph, where IN denotes the set of nodes and A the set of arcs. The graph G for
VRPSC! is partially illustrated in Figure 3. In fact, this graph contains three types of nodes: start-task, subtask,
and end-task. The subtask nodes are obtained by decomposing the nodes associated with each task into multiple
subtasks. The start-task and end-task nodes are fictitious nodes associated with each rask: the start-task node
(denoted 7;) represents entry to the task site, while the end-task node (denoted 5 represents exit from the site.
Also, the graph G contains three types of arcs connecting these different nodes: travel arcs, start-subtask arcs, and
end-subtask arcs. Travel arcs connect the end-task node of one task to the start-task nodes of other tasks, as well
as the depot to the start-task nodes. Start-subtask arcs connect a start-task node to the subtask nodes of the same
task. Finally, the arcs connecting the subtask nodes of a task to its end-task nodes are called end-subtask arcs.

It is worth noting that the start-subtask arcs and end-subtask arcs, which connect the subtasks, are added

depending on the type of vehicle, as illustrated in Figure 3. Moreover, the destination nodes of the tasks are not
shown in the figure, as they are not explicitly considered in the model.

— 5 Travel arc @

——--» Start-subtask arc @ Task node
End-subtask arc I
> nd-subtask arc @ Subtask node
il Start-task node
% End-task node
~ [7]  Start node
% \ 9] Sink node
[ <: 5
/ @
Support vehicle network for Task i \ Primary vehicle network for Task i
S D). L(1
A S 2Oy
PN, - . S i
Oy : 7 S ; U
| : . N I
5 v 7 P v 4
& >(2 = & 2 =
4 AN PR

Figure 3. Part of the VRPSC' Network.
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For the primary vehicle, the start-subtask arcs and end-subtask arcs are sequential, since the subtasks are
identical. Therefore, the execution order is not important, and the primary vehicle can perform them in any order.

Formally, we define N and A as follows: N = J,. (N; U {53, 51}) U {o,d}, where N; is the set of nodes
representing the subtasks of task 4, and N7 = J,. N is the set of all nodes representing subtasks. And

Vi € NT , (arcs from the depot to the fictitious start-task nodes)

S
Sz

51', 5) Vi € 1\17‘7 (arcs from the fictitious end-task nodes to the depot)

5‘1‘ s n) Vi € T, Vn € ./\/1 5 (arcs from the fictitious start-task node to the subtask nodes)

57) Vi € T, Vn € M, (arcs from the subtask nodes to the fictitious end-task node)

C C C CC

(
(
(j,k) Vi€ T, Vi ke Nk > 7, (rcsbetween the subtask nodes of each task)
(
(

(Si, ~j) VZ,j c T, Z 7£ ] (inter-task transition arcs)

Service and Travel times of each vehicle type are defined as follows:

1 ifv € Vp, (i,4) € A, i,j ¢ N7,

W . T ifoeV,, icT, reN;,
& — te; ifv e Vs, (i,7) € A, i =0, g0 ) P ’ !
ij . . . . e = T+ E+ 2y, ifveVs, ieT, re Ny,
Yij —vii v eV, (4,5) € A, i,j ¢ Ny, i # o0, 0 otherwise
0 otherwise. ’

It should be noted that d}; = ~;; — ;i forv € Vs (i,7) € A, with i, 5 ¢ N7 and i # o, since the support vehicle
v must move directly to task j with travel time ;; after completing the last subtask of task 4, 7;; is subtracted due
to the assumption that the support vehicle returns to the site of task ¢ after each subtask.

3.1.2. Mathematical Formulation
The mathematical formulation of the VRPSC! is given by the following model:
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?{rlgi{}) w? (1)
s.t.: Z Ty — Z ri, =0, YweV,VneN\{od} 2)
(n.j)eA (4m)eA
Sooay— > als=0, Wwey 3)
(e.5)EA (4.5)eA
Z ri, <1, YveV,VneN\{d} 4)
(Jm)eEA
s§—wP <0, Yve, ®)
> > al, =1, ¥neN\{o,d} (6)

vEV)p (j,n)EA

Z Z ri, =1, VneNr (7

vEVs (j,n)EA

Y — (sy+dyy — My-(L—apy)) >0, YoeV,V(i,j) € Ali¢ Ny ®)

5—(s;’+3fr—M1-(1—x}fj))20, YoeV,V(r,j)eA|reN;ieT 9)

sh—sh| =My [2- Y (x;%n+x;f;)) <0, YweV, W eV, VneNs (10)
(j,n)EA

al; €{0,1}, VYeeV,V(i,j) € A (11

se=0. sp >0, YweV,VneN (12)

wP > 0. (13)

The objective function (1), combined with the constraint (5), aims to minimize the maximum return time of the
primary vehicles to the depot. This formulation also ensures that all tasks are completed in minimal time while
balancing the workload among the primary vehicles. Constraints (2) and (3) are flow conservation constraints.
Constraint (4) enforces that each vehicle traverses at most one outgoing arc from each node. Constraint (6) ensures
that each node, except the depot nodes, is covered by exactly one primary vehicle. Similarly, constraint (7) requires
that each node associated with a subtask be covered by a single support vehicle. Constraints (8) and (9) are temporal
scheduling constraints: a vehicle can visit node j only after visiting node 7 (the previous node in its route) and
completing the associated subtask, considering both the service time at node ¢ and the travel time from node ¢
to node j. Constraints (10) ensure synchronization between a primary vehicle and a support vehicle when they
perform the same subtask. This strict synchronization is only activated if both vehicles are actually assigned to the
same node. Finally, constraints (11), (12), and (13) respectively ensure the integrality and non-negativity of the
decision variables.

3.2. VRPSC?

In this section, we introduce the second mathematical model, which addresses a vehicle routing problem with
synchronization constraints. Unlike the first model, subtasks are managed through specific constraints and variables
rather than node duplication.
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Formally, we define N and A as follows: N = Nt U {0, ¢}, where Ny =

representing the tasks.

VEHICLE ROUTING PROBLEM WITH SYNCHRONIZATION AND SCHEDULING CONSTRAINTS

{i|i€ T} is the set of nodes

(O', n) Vn € N’]‘7 (arcs from the depot to task nodes)
A= U (TL7 (5) Vn € NT, (arcs from task nodes to the depot)
U (Tll 5 Tlg) an ,Ng € N'T, ni 7é Tl2.  (arcs between task nodes)

Service and Travel times of each vehicle type are defined as follows :

tij ifv € V, and(s, j) € A,
.
dq ti ifv € V, and(i, j) € A,i = o, o oo
T ir =\ T i
ij vij — v ifv € Vs and(i,j) € A,i € N, ir : .
0 otherwise.

3.2.1. Mathematical Formulation

The mathematical formulation of the VRPSC? is presented as follows.

ifveV, ieT,reR,,
ifv eVs,ieT,reR,,
otherwise.

min wP
x,Y,s,w
s.t.: (2)—(4) (14)
sz —wP <0, Yve, (15)
> al,—yh=0, YweV,¥neNy (16)
(G.n)EA
d yp=1, VneNr 17)
vEV)
zpr —Yn <0, YveV,VneNr,reR, (18)
yh— > 25, <0, YweV,VneNg (19)
TERn
ZZZT"_ Z z;j;z(), vneNr,reR, (20)
vEV), v €Vs
> > =R, ¥neNr 1)
vEV; TER,

Z(r-&-l) - (snr + 871’27"271;7") >0, Vv € Vvvn € NT,’I" €R, (22)
—(sy+d; —My-(1—2))>0, YweVV(i,j)eA|li=0ca=1 (23)
— (spp+di; —My-(1—2};))>0, YoeVV(i,j)eA|j=0b=|Ri+1 (24)
— (sh+df; = My-(1—ay)) >0, YweVV(i,j)eAlij¢{odhb=Ri|+1La=1 (25

sfw sV -y (2 - z;;;) <0, Y(0,0) €V, x Vs,Vn € Ny,r € Ry, (26)
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Ypszpr € {0,1}, Yo e V,¥Yn e Nr,r € R, 27
rj; €{0,1}, Yv eV, V(i,j) € A (28)
Spr>0 YveV,VneNy,reR, (29)

se =0, Yvel. (30)

w? > 0. 3D

The objective function and the constraint (14) are the same as in the VRPSC! model. Constraints (15) calculate
the maximum return time of the primary vehicles to the depot. Constraint (16) links the x and y variables: if a
vehicle v traverses an arc entering node n, then y;, = 1, indicating that this vehicle covers a subset of the subtasks
associated with task n. Constraint (17) ensures that each node corresponding to a task is covered by exactly one
primary vehicle, which executes all subtasks associated with that task. Constraints (18) and (19) enforce that the
variables z;.,. are zero whenever y. = 0. In other words, if vehicle v does not cover node n, it executes no subtask
associated with that node. Conversely, if a vehicle executes no subtask of a given task, it does not cover that task.
Constraints (20) and (21) ensure that all subtasks are executed by both a primary and a support vehicle. Constraints
(22) schedule the subtasks r of a task n: a vehicle cannot execute two subtasks simultaneously. Constraints (23),
(24) and (25) ensure that a vehicle can only visit node j after visiting node ¢ and completing the subtasks associated
with 7. For a primary vehicle, this means completing all subtasks of ¢, while a support vehicle must complete at
least one. Synchronization is handled using sj,, representing the end of the last subtask of ¢, and s7,, representing
the start of the first subtask of j, and is activated only if the vehicle executes at least one subtask in both ¢ and
j. Constraints (26) ensure synchronization between a primary vehicle and a support vehicle executing the same
subtask 7. Finally, constraints (27), (28), (29), (30), and (31) enforce the integrality and non-negativity of the
decision variables.

3.3. VRPSSC

This section introduces the mathematical model for the vehicle routing problem that includes synchronization and
scheduling constraints for support vehicles. It mainly extends the VRPSC? model.

min w?
T,Y,8,Ww
s.t.: (14) — (30) (32)
sh.— (s;; + Mo (1 — z,‘ir)) <0, (v,v')€VsxVs,¥neNrreR, (33)

Constraint (33) ensures support vehicles are assigned to subtasks following a first-come, first-served policy. For
each subtask r of a task n, it selects the support vehicle that becomes available first.

3.4. Theoretical discussion

In this section, we compare some weaknesses of the first model, VRPSC!, with the second, VRPSCZ2. The latter
is a more compact model based on fewer variables. Table 5 illustrates the size difference between VRPSC! and
VRPSC? for some representative real-world instances. The compactness of VRPSC? arises from its underlying
graph structure, which is built on a smaller set of nodes and arcs compared to VRPSC!. This reduction is due
to a more aggregated time-space representation that removes redundant transitions. Consequently, the feasible
solution space is captured more efficiently, with fewer decision variables and constraints. Conversely, VRPSC!
uses an extended network with dummy nodes that explicitly list all possible transitions between service and
synchronization events. While this offers greater modeling flexibility, it also significantly increases the model
size and computational time. The main theoretical implication is that VRPSC? strikes a better trade-off between
expressiveness and computational efficiency. Its smaller graph reduces the number of binary variables and
constraints, demonstrating the efficiency differences between the two models.
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Given that the linear relaxations of the three models are relatively weak, we introduce several valid inequalities
to strengthen the relaxation and improve computational performance.

Z (Z nr) yn+ Z d ij_567 V’UEVP (34)

neN+ \reR (i,5)EA
shy+ > dbabi 4 [ dl+ DA | cals <sp, YueEV,,VneNy (35)
(n,j)EA reER;
> <d2i + > +d}’n> xl < sV, YveV,VneNr (36)
(i,n)EA reR;
+ Y 0y, <sh,, WweV,VneNr (37)
reR,

Where b = |R,| + 1,0 = 1.

Inequalities (34) and (35) define a lower bound on the vehicles’ return time to the depot, denoted by s§.
Inequalities (34) ensure that the return time to the depot for each primary vehicle is greater than or equal to the
sum of travel and service times. In contrast, inequalities (35) compute a bound for s§ when the vehicle returns to
the depot via node 7 followed by node j. Inequalities (36) define a lower bound on the start time of the first subtask
of each task, based on its predecessors. Inequalities (37) define a lower bound on the completion time of the last
subtask executed by a primary vehicle, which must execute all subtasks associated with the task.

4. Computational experiments

In this section, we present computational results comparing the performance of the proposed models on 100
real-world instances from a Moroccan mining company. At the processing site, the company operates 10 zones
where loading operations of either ore or waste material must be performed before transportation to designated
destinations. All tasks must be executed by a fleet of up to five loaders and eight trucks. The travel times of primary
and support vehicles between the zones and their respective destinations, as well as the loading and unloading
durations, were measured directly on-site. We assume that the constants M; and Ms are fixed to a 24-hour time
horizon due to operational rules in the mining industry. If the number of problem subtasks increases, these values
can be adjusted through benchmarking. A time limit of 10 minutes was set for each model.

For clarity of exposition, the instances are labeled according to the format: ). - [R;| — [T| — [Vp| — Vs, where
> _ic7 |Ri| denotes the total number of subtasks, |7| represents the number of tasks containing at least one subtask,
|Vp| is the number of primary vehicles, and |Vs| is the number of support vehicles.

The MILPs are implemented in GUROBI version 12.0 via the Python 11.0 API. The tests were performed on a
Dell 64-bit Oracle Linux machine (Intel i7, four CPU cores, 3.40 GHz).

4.1. Numerical Results

In this section, we present the numerical results of the three models. For each model, we provide the computational
time (Time), the optimality gap in % (Gap), the objective value expressed in hours (obj), the number of primary
vehicles used (P.V.), and finally the number of support vehicles used (S.V.). Detailed results of the experiments are
reported in Tables 3, 4, 6, and 7.

The comparative analysis of the VRPSC! and VRPSC? models, conducted over 89 solved instances, shows that
VRPSC? significantly outperforms VRPSC! across all performance metrics. The data in Tables 3 and 4 reveal
consistent improvements in both solution quality and computational efficiency. Statistical analysis using paired t-
tests confirms a clear performance advantage for VRPSC?, with results indicating high statistical significance. On
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average, VRPSC? decreases computation time by 30.4% (381.7s vs. 265.6s; p < 0.001; d = 0.55) while enhancing
solution quality by 6.4% (3.487 vs. 3.265; p < 0.001; d = 0.58). The observed effect sizes, classified as moderate
to large based on Cohen’s standards (according to d value), further support the practical significance of these

improvements.

Figure 4 demonstrates the computational advantage of VRPSC?, exhibiting consistently lower computational
times throughout the entire range of instance complexity. This advantage is especially significant for large-scale
instances, where VRPSC? reduces the average computational time from 533.28 s to 10.40 s for 80-subtask
instances, representing a 98.1% reduction. Figure 5 further corroborates these findings, emphasizing VRPSC?’s
enhanced capacity to attain solution optimality in larger-scale instances.
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Figure 4. Average solving time by number of subtasks for VRPSC! and VRPSC2.
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Figure 5. Success rate (optimality proven) by number of subtasks for VRPSC! and VRPSC?

Although both models perform similarly on small instances—achieving minimal computational times and 100%
success rates for 10 subtasks—a pronounced divergence emerges as problem complexity increases. VRPSC!
exhibits notable performance degradation, frequently failing to converge within the allotted 600-second time limit:
its success rate drops to 62.5% for 20 subtasks and falls to 12.5% for instances with 30—50 subtasks. In contrast,
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Table 3. Results of VRPSC! and VRPSC? (Part 1).

VRPSC! VRPSC?
Instance Time Gap Obj P S. Time Gap Obj P S.
10-4-1-2 0.1 0.000 2.25 0.3 0.000 2.25
10-4-1-3 0.1 0.000 2.12 0.1 0.000 2.12
10-4-2-2 1.3 0.000 1.83 0.8 0.000 1.83
10-4-2-3 1.0 0.000 1.37 0.6 0.000 1.37
10-6-2-4 04 0.000 1.23 0.5 0.000 1.23
10-6-2-5 0.3 0.000 1.23 0.3 0.000 1.23
10-6-3-4 48.6 0.000 1.69 21.6 0.000 1.69
10-6-3-5 04 0.000 0.90 0.5 0.000 0.90
10-8-3-6 1.4 0.000 095 1.0 0.000 0.95
10-8-3-7 0.9 0.000 0.95 1.6 0.000 0.95
10-8-4-6 1.3 0.000 0.78 1.2 0.000 0.78
10-8-4-7 09 0.000 0.78 1.2 0.000 0.78
10-10-4-7 2.7 0.000 0.78 3.6 0.000 0.78
10-10-4-8 7.0 0.000 0.78 2.9 0.000 0.78
10-10-5-7 16.5 0.000 0.68 6.4 0.000 0.68
10-10-5-8 1.8 0.000 0.65 34 0.000 0.65
20-4-1-2 0.9 0.000 4.00 0.6 0.000 4.00
20-4-1-3 03 0.000 3.53 0.2 0.000 3.53

20-4-22 6000 0059 3.57
20423 6000 0144 2.57
20-6-2-4 2286 0.000 2.07

19.2 0.000 3.57
73.3 0.000 2.55
65.7 0.000 2.07

20-6-2-5 1.8 0.000 2.06 0.7 0.000 2.06
20-6-3-4 149.7  0.000 2.06 5.1 0.000 2.06
20-6-3-5 0.7 0.000 2.06 0.7 0.000 2.06
20-8-3-6 9.9 0.000 1.53 3.6 0.000 1.53
20-8-3-7 1.8 0.000 1.53 33 0.000 1.53

20-8-4-6 600.0 0.096 1.36
20-8-4-7 600.0 0.024 1.26
20-10-4-7 600.0 0.064 1.25
20-10-4-8 17.7  0.000 1.17
20-10-5-7 600.0 0.068 1.18
20-10-5-8 186.2 0.000 1.10
30-4-1-2 6.8 0.000 5.50
30-4-1-3 1.8 0.000 4.96
30-4-2-2 600.0 0314 5.22
30-4-2-3 600.0 0.162 3.70
30-6-2-4 600.0 0.103 3.02
30-6-2-5 600.0 0.004 2.72
30-6-3-4 600.0 0.293 290
30-6-3-5 600.0 0.177 249
30-8-3-6 600.0 0.126 2.14
30-8-3-7 600.0 0.051 1.97
30-8-4-6 600.0 0.171 1.93
30-8-4-7 600.0 0.140 1.86
30-10-4-7 600.0 0.131 1.76
30-10-4-8 600.0 0.089 1.68
30-10-5-7 600.0 0.101 1.69
30-10-5-8 600.0 0.050 1.60

600.0 0.082 1.34
600.0 0.024 1.26
600.0 0.064 1.25
16.3 0.000 1.17
600.0 0.068 1.18
27.6 0.000 1.10
2.0 0.000 5.51
0.4 0.000 4.96
19.2  0.000 5.20
280.8 0.000 3.59
600.0 0.032 2.80
2.3 0.000 2.71
600.2 0.208 2.59
600.0 0.060 2.18
600.0 0.074 2.02
600.0 0.021 1.91
600.0 0.179 1.95
600.0 0.075 1.73
600.0 0.110 1.72
600.0 0.032 1.58
600.0 0.084 1.66
142.9 0.000 1.52

LhUl-lk-lk-Jk-lkwwwb)l\)NNN—#MM-&LL#WMMWNNNl\)>—"—*MML#-&LMW&&NNNNN'—"—g
C)O\]OC)\]\]CJ‘\\]O’\LII-bLII-lkb-)l\)b')[\)C>O\]C)O\]\]O\\]CJ‘\UI-bLII-IkL.\J[\)b)l\)O(D\]\]\]\ICJ'\\]O\Lhl\.)Lll-lkb-)l\)L)J[\).<
lllul-lk-lk-J>-lku)babou‘)l\)l\)l\-)l\-)'—‘>—‘(JlLII-Jk-l>-l>-l>b~)k».)u)b~>l\.)l\-)l\)[\)>—‘>—*LIILJl-lk-lk-Jk-lkuJL»Jb-)l\.)l\.)l\)l\-)l\-)>—"—‘.<
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Table 4. Results of VRPSC! and VRPSC? (Part 2).

Instance Time Gap Obj PV. S.V. Time Gap Obj PV. S.V.
40-4-1-2 68.7 0.000 7.68 I 2 2.9 0.000 7.68 I 2
40-4-1-3 2.7 0.000 6.62 1 3 0.6 0.000 6.62 1 3
40-4-2-2 600.0 0.452 7.38 2 2 106.0 0.000 7.18 2 2
40-4-2-3 600.0 0.342 5.23 2 3 498.3 0.000 5.01 2 3
40-6-2-4 600.0 0.204 4.21 2 4 600.0 0.090 3.68 2 4
40-6-2-5 600.0 0.012 3.39 2 5 600.0 0.009 3.38 2 5
40-6-3-4 600.0 0.240 3.66 3 4 600.0 0.190 3.43 3 4
40-6-3-5 600.1 0.051 2.93 3 5 600.0 0.018 2.83 3 5
40-8-3-6 600.0 0.194 2.94 3 6 600.0 0.016 2.52 3 6
40-8-3-7 600.0 0.061 2.64 3 7 81.1 0.000 2.48 3 7
40-8-4-6 600.0 0.196 2.71 4 6 600.0 0.128 2.50 4 6
40-8-4-7 - - - - - 251.3 0.000 2.18 4 7
40-10-4-7 - - - - - 600.1 0.150 2.26 4 7
40-10-4-8 600.0 0.241 2.53 4 8 600.0 0.040 2.00 4 8
40-10-5-7 600.0 0.239 247 5 7 600.0 0.227 2.29 5 7
40-10-5-8 600.0 0.168 2.26 5 8 600.0 0.041 1.96 5 8
50-4-1-2 9.6 0.000 8.30 1 2 1.1 0.000 8.30 1 2
50-4-1-3 6.1 0.000 8.08 1 3 0.7 0.000 8.08 1 3
50-4-2-2 600.0 0.455 7.93 2 2 118.1 0.000 7.86 2 2
50-4-2-3 600.0 0.312 6.28 2 3 600.0 0.144 542 2 3
50-6-2-4 600.0 0.275 5.68 2 4 600.0 0.131 4.74 2 4
50-6-2-5 600.1 0.148 4.87 2 5 600.0 0.048 4.36 2 5
50-6-3-4 600.0 0.202 5.20 3 4 600.0 0.151 4.89 3 4
50-6-3-5 600.0 0.158 4.93 3 5 600.0 0.037 4.31 3 5
50-8-3-6 600.0 0.023 4.36 3 6 19.5 0.000 4.26 2 6
50-8-3-7 600.0 0.023 4.36 3 7 10.7 0.000 4.26 2 7
50-8-4-6 600.0 0.043 445 4 6 17.0  0.000 4.26 2 6
50-8-4-7 600.0 0.156 5.05 4 7 14.8 0.000 4.26 2 7
50-10-4-8 600.0 0.044 2.95 4 8 41.3 0.000 2.83 4 8
50-10-5-7 600.0 0.190 3.48 5 7 600.0 0.031 291 5 7
50-10-5-8 600.1 0.057 2.99 5 8 65.0 0.000 2.83 4 8
60-4-1-3 30.8 0.000 9.53 1 3 1.4 0.000 9.53 1 3
60-4-2-2 - - - - - 429.7 0.000 9.83 2 2
60-4-2-3 600.0 0.079 6.98 2 3 288.2 0.000 6.70 2 3
60-6-2-4 600.0 0.134 6.28 2 4 600.0 0.007 5.48 2 4
60-6-2-5 431.1  0.000 5.44 2 5 9.8 0.000 5.44 2 5
60-6-3-4 600.0 0.326 5.65 3 4 600.0 0.247 5.06 3 4
60-6-3-5 600.0 0.326 5.65 3 5 600.0 0.106 4.26 3 5
60-8-3-6 600.0 0.289 544 3 6 600.0 0.087 4.25 3 6
60-8-3-7 600.0 0.193 4381 3 7 54.0 0.000 3.88 3 7
60-8-4-6 600.0 0.336 5.83 4 6 600.0 0.063 4.14 3 6
70-4-2-3 - - - - - 2.8 0.000 8.38 2 3
70-6-2-4 - - - - - 600.0 0.142 6.67 2 4
70-6-2-5 - - - - - 600.0 0.014 5.80 2 5
70-6-3-4 600.1 0.349 8.08 3 4 600.0 0.231 6.84 3 4
70-6-3-5 600.0 0.271 7.22 3 5 600.0 0.047 5.52 3 5
70-8-3-6 - - - - - 600.0 0.099 4.73 3 6
70-8-4-6 - - - - - 600.0 0.127 4.88 4 6
80-8-3-6 - - - - - 164 0.000 7.47 3 6
80-8-3-7 - - - - - 12.1  0.000 7.47 3 7
80-8-4-6 - - - - - 109 0.000 7.47 3 6
80-8-4-7 333.1 0.000 7.47 4 7 2.2 0.000 747 4 7
AVG 3817 0.10 349 29 5.1 273.6 004 358 28 5.1
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VRPSC? demonstrates strong robustness, maintaining success rates of 75% at 20 subtasks and 37.5-56.25% for
instances with 30-50 subtasks.

Analysis of performance distributions further supports these findings: VRPSC? outperforms VRPSC' on 45
instances in terms of computational efficiency (5:1 ratio) and on 49 instances regarding solution quality (16:1
ratio). For example, in instance 20-4-2-3, VRPSC! reaches the time limit with an optimality gap of 0.144%, while
VRPSC? solves the same instance in 73.3 seconds with a zero gap. In large-scale instances, VRPSC? consistently
achieves objective values that are equal to or better than VRPSC!’s while significantly reducing computational
time. The scalability of VRPSC? is especially clear in these cases, where it attains a 100% success rate for 80-
subtask problems compared to 25% for VRPSC!. Notably, the similarity in fleet configurations between the two
models suggests that the performance improvements of VRPSC? are due to enhancements in the model formulation
rather than structural changes to the solutions. This is supported by Table 5, which reports the number of constraints
and variables for some instances. This table indicates that VRPSC? consistently reduces the number of constraints
and variables, demonstrating the efficiency and effectiveness of the improved formulation.

Table 5. Number of constraints and variables in VRPSC! and VRPSCZ2.

VRPSC! VRPSC?
Instance C . Variables . Variables
onstraints < v Constraints - <
Binary Continuous Binary Continuous
10-10-5-8 3544 1690 417 3215 1742 300
20-10-5-8 5079 2120 547 4285 1872 430
30-10-5-8 6796 2718 677 5355 2002 560
40-10-5-8 8682 3472 807 6425 2132 690
50-10-5-8 11881 5438 937 7495 2262 820
60-8-4-6 9917 4838 781 5318 1440 711
70-6-3-5 10902 6446 673 3912 976 633
80-8-4-7 22269 14100 1079 7607 1804 1002

Sensitivity analysis regarding fleet size, as reported in Tables 3 and 4, reveals that increasing the number of
vehicles (primary or support) generally reduces objective values, reflecting improved route optimization. This
effect is particularly pronounced for small instances (10-20 subtasks), where additional vehicles accelerate task
completion. For larger-scale instances (30-80 subtasks), the marginal benefit decreases, suggesting resource
saturation and highlighting the importance of optimal fleet sizing.

In summary, the full experimental results—including tabular data, computational times, success rates, and
statistical validation—demonstrate that VRPSC? is a more efficient model. It offers better scalability, greater
computational efficiency, and increased robustness, which is particularly important for medium to large-scale
instances where operational requirements are most stringent.

Tables 6 and 7 present the computational results for the VRPSC? and VRPSSC models. For most small instances,
both models achieve identical objective values with very low computational time. For medium and large instances,
the two models perform comparably in terms of the number of vehicles used. However, the VRPSSC model exhibits
a slight increase in objective value and computational time, particularly for larger instances. The average values
(AVG) confirm that VRPSC? achieves a slightly lower mean computational time (273.6 s vs. 281.4 s) and an almost
identical average optimality gap compared to VRPSSC, while the average objective value and number of vehicles
remain unchanged.

These results indicate that scheduling support vehicles under a First-Come, First-Served (FCFES) policy
yields only a marginal reduction in solution quality. Nonetheless, this strategy provides a more structured and
operationally realistic sequencing of support vehicle activities, enhancing the robustness and practical relevance of
the model in real-world settings where vehicle arrival order critically affects task coordination and overall system
efficiency.
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Table 6. Results of VRPSC? and VRPSSC (Part 1).

19.2  0.000 5.20
280.8  0.000 3.59
600.0 0.032 2.80

23 0.000 2.71
600.2 0.208 2.59
600.0 0.060 2.18
600.0 0.074 2.02
600.0 0.021 1091
600.0 0.179 1.95
600.0 0.075 1.73
600.0 0.110 1.72
600.0 0.032 1.58
600.0 0.084 1.66
142.9 0.000 1.52

10.0 0.000 5.22
4.7 0.000 3.63
5251 0.000 2.82
48 0.000 2.71
600.1 0.150 2.54
600.0 0.068 2.20
600.0 0.101 2.08
600.1 0.016 1.90
600.0 0.188 1.97
600.0 0.064 1.71
600.0 0.105 1.71
600.0 0.019 1.56
600.0 0.126 1.74
600.0 0.160 1.81

VRPSC? VRPSSC

Instance Time Gap Obj PV. SV Time Gap Obj PV. SV
10-4-1-2 0.3 0.000 225 I 2 0.1 0.000 225 I 2
10-4-1-3 0.1 0.000 2.12 1 3 0.1 0.000 2.12 1 3
10-4-2-2 0.8 0.000 1.83 2 2 0.7 0.000 1.90 2 2
10-4-2-3 0.6 0.000 1.37 2 3 0.6 0.000 1.37 2 3
10-6-2-4 0.5 0.000 1.23 2 4 0.5 0.000 1.23 2 4
10-6-2-5 0.3 0.000 1.23 2 5 03 0.000 1.23 2 5
10-6-3-4 21.6  0.000 1.7 2 2 242 0.000 1.70 2 2
10-6-3-5 0.5 0.000 0.90 3 5 04 0.000 0.90 3 5
10-8-3-6 1.0 0.000 0.95 3 6 1.4 0.000 0.95 3 6
10-8-3-7 1.6 0.000 0.95 3 7 1.5  0.000 0.95 3 7
10-8-4-6 1.2 0.000 0.78 4 6 1.7 0.000 0.78 4 6
10-8-4-7 1.2 0.000 0.78 4 7 1.8 0.000 0.78 4 7
10-10-4-7 3.6 0.000 0.78 4 7 3.8 0.000 0.78 4 7
10-10-4-8 29 0.000 0.78 4 7 40 0.000 0.78 4 7
10-10-5-7 6.4 0.000 0.68 5 7 6.8 0.000 0.68 5 7
10-10-5-8 34 0.000 0.65 5 8 4.1 0.000 0.65 5 8
20-4-1-2 0.6 0.000 4.00 1 2 0.5 0.000 4.00 1 2
20-4-1-3 0.2 0.000 3.53 1 3 0.3 0.000 3.53 1 3
20-4-2-2 19.2  0.000 3.57 2 2 2.6 0.000 3.64 2 2
20-4-2-3 73.3  0.000 2.55 2 3 30.5 0.000 2.58 2 3
20-6-2-4 65.7 0.000 2.07 2 4 19.3  0.000 2.08 2 4
20-6-2-5 0.7 0.000 2.06 2 5 1.4  0.000 2.06 2 5
20-6-3-4 51 0.000 2.06 3 4 35.0 0.000 2.07 3 4
20-6-3-5 0.7 0.000 2.06 3 5 1.7 0.000 2.06 3 5
20-8-3-6 3.6 0.000 1.53 3 6 1427 0.000 1.53 3 6
20-8-3-7 33 0.000 1.53 3 7 10.5 0.000 1.53 3 7
20-8-4-6 600.0 0.082 1.34 4 6 600.0 0.115 1.39 4 6
20-8-4-7 600.0 0.031 1.27 4 7 600.0 0.031 1.27 4 7
20-10-4-7 600.0 0.064 1.25 4 7 600.0 0.100 1.30 4 7
20-10-4-8 16.3 0.000 1.17 4 8 49.0 0.000 1.17 4 8
20-10-5-7 600.0 0.068 1.18 5 7 600.0 0.068 1.18 5 7
20-10-5-8 27.6 0.000 1.10 5 8 183.0 0.000 1.10 5 8
30-4-1-2 20 0.000 5.51 1 2 1.4 0.000 5.51 1 2
30-4-1-3 04 0.000 4.96 1 3 0.2 0.000 4.96 1 3
4-2-2 2 2 2 2
4-2-3 2 3 2 3
6-2-4 2 4 2 4
6-2-5 2 5 2 5
6-3-4 3 4 3 4
6-3-5 3 5 3 5
8-3-6 3 6 3 6
8-3-7 3 7 3 7
8-4-6 4 6 4 6
8-4-7 4 7 4 7
0-4-7 4 7 4 7
0-4-8 4 8 4 8
0-5-7 5 7 5 7
0-5-8 5 8 5 8
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Table 7. Results of VRPSC? and VRPSSC (Part 2).

VRPSC? VRPSSC

Instance ime ap j P.V. SV ime ap j P.V. SV

[)- _1-2 2-9 UUUUU ;-68 I 2 Il; UUUUU ;lE;S I 2

0.6 0.000 6.62 0.6 0.000 6.62

40-4-1-3 1 3 1 3
40-4-2-2 106.0 0.000 7.18 2 2 52.,5 0.000 7.23 2 2
40-4-2-3 4983  0.000 5.01 2 3 3.1 0.000 5.13 2 3
40-6-2-4 600.0 0.090 3.68 2 4 600.0 0.092 3.69 2 4
40-6-2-5 600.0 0.009 3.38 2 5 76.6 0.000 3.40 2 5
40-6-3-4 600.0 0.190 3.43 3 4 600.0 0.206 3.50 3 4
40-6-3-5 600.0 0.018 2.83 3 5 600.0 0.064 297 3 5
40-8-3-6 600.0 0.016 252 3 6 600.0 0.008 2.50 3 6
40-8-3-7 811 0.000 248 3 7 114.0 0.000 2.48 3 7
40-8-4-6 600.0 0.128 2.50 4 6 600.0 0.142 2.54 4 6
40-8-4-7 251.3 0.000 2.18 4 7 600.0 0.060 2.32 4 7
40-10-4-7 600.1 0.150 2.26 4 7 600.0 0.203 241 4 7
40-10-4-8 600.0 0.040 2.00 4 8 600.0 0.169 2.31 4 8
40-10-5-7 600.0 0.227 2.29 5 7 600.0 0.145 2.20 5 7
40-10-5-8 600.0 0.041 1.96 5 8 600.0 0.031 1.94 5 8
50-4-1-2 1.1 0.000 8.30 1 2 2.9 0.000 8.30 1 2
50-4-1-3 0.7 0.000 8.08 1 3 0.4 0.000 8.08 1 3
50-4-2-2 118.1  0.000 7.86 2 2 13.2  0.000 7.88 2 2
50-4-2-3 600.0 0.144 542 2 3 227 0.000 5.59 2 3
50-6-2-4 600.0 0.131 4.74 2 4 600.0 0.149 4.84 2 4
50-6-2-5 600.0 0.048 4.36 2 5 600.0 0.074 4.48 2 5
50-6-3-4 600.0 0.151 4.89 3 4 600.0 0.160 4.94 3 4
50-6-3-5 600.0 0.037 4.31 3 5 600.0 0.042 4.33 3 5
50-8-3-6 19.5 0.000 4.26 2 6 102.6  0.000 4.26 2 6
50-8-3-7 10.7 0.000 4.26 2 7 127.0 0.000 4.26 2 7
50-8-4-6 17.0  0.000 4.26 2 6 52.8 0.000 4.26 2 6
50-8-4-7 148 0.000 4.26 2 7 106.8  0.000 4.26 2 7
50-10-4-8 41.3 0.000 2.83 4 8 600.0 0.038 2.93 4 8
50-10-5-7 600.0 0.031 291 5 7 600.0 0.135 3.26 5 7
50-10-5-8 65.0 0.000 2.83 4 8 600.0 0.010 2.86 5 8
60-4-1-3 1.4 0.000 9.53 1 3 1.1 0.000 9.53 1 3
60-4-2-2 4297 0.000 9.83 2 2 238.8 0.000 9.88 2 2
60-4-2-3 288.2  0.000 6.70 2 3 11.3  0.000 6.70 2 3
60-6-2-4 600.0 0.007 5.48 2 4 551.6 0.000 5.51 2 4
60-6-2-5 9.8 0.000 5.44 2 5 19.7 0.000 5.44 2 5
60-6-3-4 600.0 0.247 5.06 3 4 600.0 0.240 5.01 3 4
60-6-3-5 600.0 0.106 4.26 3 5 600.0 0.179 4.64 3 5
60-8-3-6 600.0 0.087 4.25 3 6 600.0 0.076 4.20 3 6
60-8-3-7 54.0 0.000 3.88 3 7 600.0 0.194 4.81 3 7
60-8-4-6 600.0 0.063 4.14 3 6 600.0 0.187 4.77 4 6
70-4-2-3 2.8 0.000 8.38 2 3 7.3 0.000 8.38 2 3
70-6-2-4 600.0 0.142 6.67 2 4 600.0 0.211 7.25 2 4
70-6-2-5 600.0 0.014 5.80 2 5 600.0 0.024 5.86 2 5
70-6-3-4 600.0 0.231 6.834 3 4 600.0 0.242 6.94 3 4
70-6-3-5 600.0 0.047 5.52 3 5 600.0 0.076 5.69 3 5
70-8-3-6 600.0 0.099 4.73 3 6 600.0 0.163 5.09 3 6
70-8-4-6 600.0 0.127 4.88 4 6 600.0 0.103 4.75 4 6
80-8-3-6 164 0.000 7.47 3 6 364 0.000 7.47 3 6
80-8-3-7 12.1  0.000 7.47 3 7 2292 0.000 7.47 3 7
80-8-4-6 109 0.000 7.47 3 6 554 0.000 7.47 3 6
80-8-4-7 22 0.000 747 4 7 44.1  0.000 7.47 4 7
AVG 273.6 0.04 358 28 5.1 2814 005 363 28 5.1
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To confirm the statistical validity of our observations, a paired 7-test was conducted to evaluate
the significance of the differences in objective values between VRPSC? and VRPSSC. The results revealed a
statistically significant difference (#(99) = —3.88, p < 0.001), with VRPSC? producing slightly better solutions
(mean difference = —0.05). The effect size, measured using Cohen’s d (—0.388), indicates a small to moderate
effect magnitude.

These findings are consistent with the visual evidence shown in Figure 6, where the close alignment of the
performance curves and the substantial overlap of confidence intervals emphasize the functional similarity between
the two formulations. Although the difference is statistically significant, its moderate magnitude suggests that
VRPSSC maintains nearly equivalent optimization performance as VRPSC?2, while potentially offering additional
operational benefits not explicitly acknowledged in this comparative analysis.
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Figure 6. Average objective values by number of subtasks for VRPSC? and VRPSSC.

The scalability analysis of VRPSC!, VRPSC?, and VRPSSC across all 100 instances reveals significant
computational challenges as problem complexity increases. The three models demonstrate robust performance
on small instances but struggle with larger configurations. A clear pattern emerges when examining instances that
hit the 10-minute time limit: computational complexity rises sharply with the ratio of subtasks (TS) to the total
number of vehicles available (TV). Table 8 presents a detailed analysis across ranges of this ratio, considering time
limit and complete failures (”-) in VRPSC! as scalability limitations.

Table 8. Scalability Analysis by TS/TV Ratio Ranges.

Ratio (TS/T.V) Time Limit Rate (%)
Range VRPSC! VRPSC? VRPSSC
<15 0 0 0
1.5-25 45.5 36.4 45.5
2.5 —3.5 58.8 58.8 58.8
> 3.5 82.0 443 443
Total instances 65.0 41.0 42.0

From Table 8, two major trends can be observed. First, VRPSC? emerges as the most robust approach,
particularly for ratios exceeding 3.5. This model reduces the proportion of instances reaching the time limit
by 46% compared to VRPSC! (44.3% versus 82.0%), thereby maintaining a success rate of 55.7%, whereas
VRPSC! achieves only 18%. Second, VRPSSC demonstrates comparable performance to VRPSC?, representing a
significant improvement over VRPSC!. Its main advantage lies in superior stability for intermediate ratios.
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Furthermore, the exponential degradation in VRPSC! performance with increasing ratios indicates that
computational complexity grows faster than the availability of vehicle resources. The 65% time-limit failure rate
observed across all 100 instances clearly illustrates its limited scalability, particularly beyond a ratio of 2.5. These
findings substantiate the hypothesis that exact optimization approaches reach intrinsic performance limits when
ratios exceed 3.5, as even the most advanced formulations (VRPSC? and VRPSSC) succeed in finding optimal
solutions in only about 55% of cases within 10 minutes. Overall, the results underscore the need for heuristic or
decomposition-based strategies to effectively address large-scale instances characterized by high task-to-vehicle
ratios.

5. Conclusion

This paper investigates a variant of the Vehicle Routing Problem with Synchronization Constraints (VRPSC) and
introduces three new models: VRPSC!, VRPSC?, and VRPSSC. The first two models differ in how tasks are
disaggregated: VRPSC! duplicates nodes, whereas VRPSC? uses additional variables and constraints to allocate
subtasks. The VRPSSC model further incorporates a First-Come, First-Served (FCFS) scheduling constraint for
support vehicles. Computational experiments conducted on 100 real-world instances show that VRPSC? achieves
an approximately 30% reduction in solution time compared to VRPSC!, while consistently providing solutions
with a gap below 0.25% in less than 10 minutes. Regarding VRPSSC, the results indicate that adding the FCFS
constraint for support vehicles maintains solution quality and computational time comparable to those of VRPSC?.

This approach improves planning, robustness, and scalability, making it suitable for practical applications such as
construction, urban logistics, or transportation, where perfect synchronization and an FCFS policy are desirable. Its
practical utility could be further enhanced by integrating the model into a decision-support system with a graphical
interface, enabling planners to efficiently generate feasible plans within ten minutes and respond dynamically to
disruptions, such as truck breakdowns or driver unavailability.

However, the study has limitations. It relies on the assumption of perfect synchronization, which may not hold in
dynamic environments, and on the use of a commercial solver (Gurobi) to solve the MIP-based formulation, which
may limit scalability for very large instances without dedicated heuristics or acceleration strategies.

Future research should explore several promising directions. First, developing metaheuristics, such as Adaptive
Large Neighborhood Search, would enable solving larger problem instances. The model could also be extended
to handle dynamic settings with real-time task arrivals and to incorporate uncertainty in travel or service times.
Another critical improvement involves explicitly modeling and minimizing vehicle waiting times to significantly
enhance practical applicability. This is especially important for operations with heterogeneous fleets, where
effectively managing delays during subtask execution would markedly improve the models’ realism and operational
efficiency.
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