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Abstract  Structural Health Monitoring (SHM) is essential for preserving the safety and service life of industrial
infrastructure. Corrosion, in particular, remains one of the most critical degradation phenomena, demanding timely
and accurate detection to prevent structural failures and costly downtime. This study proposes a lightweight, real-time
corrosion detection framework tailored for SHM applications. The framework integrates design elements inspired by
the latest YOLOv11 and YOLOv12 architectures while incorporating task-specific optimizations for detecting small,
irregular corrosion patterns under diverse environmental conditions. Two curated datasets, augmented with domain-specific
transformations, are used to enhance model robustness and generalization. Comprehensive benchmarking against previous
YOLO versions (YOLOv3, YOLOvS, YOLOv7, YOLOvS8) demonstrates that our optimized YOLOv11m configuration
achieves up to 7.7% improvement in mAP@50 and 12.1% in mAP@50-95 over YOLOv8m, while the YOLOvI12s
variant offers a competitive accuracy—speed trade-off. These findings highlight the potential of the proposed approach for
deployment in edge-based SHM systems for real-time industrial monitoring.
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1. Introduction

Corrosion is a wide-reaching issue with deleterious effects on the structural integrity and service life of large-
scale industrial infrastructures such as pipelines, bridges, and offshore platforms. When left unidentified, corrosion
can finally lead to disastrous failures involving excessive financial losses, grave ecological concerns, and soul
injuries. The traditional methods of detecting corrosion, such as visual inspections and manual testing, at
occasions demand much manpower, take time, and rely greatly on human subjectivity. As the audiences in choices
of safety and efficiency have become large, the current demand for some automated, reliable, and real-time
products for observing corrosion detection is increasing. Deep learning algorithms have become indispensable for
automating infrastructure inspections, significantly improving accuracy and efficiency in structural assessments.
These technologies are now widely utilized across multiple sectors, including tunnels, roads, bridges, dams, and
railways [20,21,22 ,23,24,25,26,27]. Substantial advancements have been made in integrating deep learning into
this field, particularly in addressing challenges related to object detection. Among these, the You Only Look
Once (YOLO) family of models is one of the leading frameworks for real-time object detection, possessing the
advantages of high speed and accuracy. The latest version of these models, YOLOv12 and YOLOvV11, further
improves upon their older counterparts by introducing certain architectural innovations that allow them to maintain
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high detection performance while still keeping computation efficient. This makes YOLOv12 and YOLOvI11
especially suited to the kind of application that structural health monitoring method requires: real-time processing
and high accuracy. In addition to YOLOv11 and YOLOvV12, previous versions such as YOLOvS8[1] and YOLOv5[2]
have also demonstrated strong capabilities in object detection tasks. YOLOvVS, being one of the more recent
iterations, brings enhanced architectural refinements that improve accuracy and efficiency. Meanwhile, YOLOv5
has been widely adopted in industry due to its balance of speed and performance. Comparing these three YOLO
models allows for a comprehensive evaluation of how advancements in the YOLO family contribute to corrosion
detection performance. This study examines and contrasts the performance of various YOLO models YOLOv12,
YOLOv11, YOLOvVS, YOLOv7, YOLOvVS, and YOLOV3 in detecting corrosion within industrial infrastructures.
Two datasets are utilized: the first, introduced in [12], facilitates the comparison between YOLOvS8 and YOLOVS,
while the second, from [17], supports an evaluation of YOLOv7, YOLOvVS, and YOLOV3. Each model undergoes
independent training and assessment on its respective dataset, with performance measured in terms of detection
accuracy, inference speed, and resilience to different corrosion levels. The goal is to identify the most effective
model for real-time corrosion detection, providing valuable insights into their respective advantages and trade-
offs. Our contribution is not merely applying YOLOv11/YOLOv12 but tailoring their architectures, data handling,
and optimization strategies to address the specific challenges of corrosion detection in Structural Health Monitoring
(SHM), ensuring robustness across diverse surface textures, lighting variations, and degradation patterns. Our main
contributions are summarized as follows:

Performance Analysis: We demonstrate the improved performance of both detection and segmentation using
YOLOvVI11 and YOLOV12, where architecture refinements, dataset preprocessing, and targeted training strategies
enhance robustness under varied corrosion conditions compared to earlier YOLO models

Comprehensive Benchmarking: A detailed comparative study is conducted across several state-of-the-art
object detection models, including YOLOv12, YOLOv11, YOLOv8, YOLOvS, YOLOv7, and YOLOV3, focusing
on their strengths and limitations in corrosion detection.

Dual-Dataset Evaluation: Two different datasets are utilized to ensure a robust and fair evaluation of detection
and segmentation performance across all models.

Latest YOLO Variants Integration: The latest YOLO iterations: YOLOv11 and YOLOVI12 are thoroughly
evaluated to assess their real-time performance and effectiveness in detecting and segmenting corrosion.

The remainder of this paper is organized as follows: The State of the Art section reviews recent developments in
object detection and corrosion detection methods. The Methodology section details advances in real-time corrosion
detection, including YOLOvI11 and YOLOv12 architectures, dataset preparation, and training procedures. The
Results and Comparative Analysis section presents evaluation metrics, quantitative and qualitative results, and
performance comparisons with existing YOLO models. The Inference Test and Variant Analysis section explores
YOLOv11 and YOLOv12 variant performance and the impact of dataset differences. Finally, the Conclusion
summarizes the findings and outlines directions for future research.

2. Overview of AI-Based Approaches for Corrosion Monitoring and Detection

2.1. Advancements in object detection models

2.1.1. Overview of object detection models The field of object detection has undergone significant evolution over
the past two decades, transitioning from traditional feature-based methods to modern deep learning architectures.
Early approaches, such as Haar cascades and Histogram of Oriented Gradients (HOG) [3] combined with Support
Vector Machines (SVM) [4], relied on handcrafted features and shallow classifiers. While these methods achieved
moderate success in constrained environments (e.g., face detection with Haar cascades), their performance was
limited by their inability to generalize to complex, real-world scenarios with diverse object appearances and
backgrounds. The advent of deep learning revolutionized the detection of objects with the R-CNN [5] being the
tipping point. R-CNN applied region proposal algorithms for detecting candidate regions of the object, with the
implementation of CNN-based classification. But its computational inefficiency gave birth to successors like the
Fast R-CNN [6] (which shared the convolutional features across proposals) and the Faster R-CNN [7] (which
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utilized region proposal networks for end-to-end training). Though these models improved accuracy, their multi-
stage pipelines came at the expense of being non-real-time. To address the problem of limited speed, single-shot
detectors emerged. Single Shot MultiBox Detector (SSD) [8] and You Only Look Once (YOLO) eliminated the
use of region proposals through single-pass detection of the bounding boxes as well as the probabilities of the
classes. YOLO revolutionized the use of real-time detection specifically through the use of grids to split the
image and process them as wholes. Later versions (e.g., YOLOv3 [9], YOLOVS [2], YOLOv10 [10], YOLOvI11
[11], YOLOv12 [28]) also included innovations like the use of anchor-free detection, feature pyramid networks,
attention mechanisms as well as light architecture, optimizing the accuracy-speed compromise.

Accuracy vs. Speed Trade-offs
The choice of object detection models often hinges on balancing accuracy and inference speed:

Two-stage detectors like Faster R-CNN have higher accuracy but incur expensive computational overhead,
making them unsuitable for real-time applications.

Single-stage detectors like YOLO sacrifice marginal accuracy in exchange for significant speed improvements,
making them ideal for time-sensitive scenarios such as video processing and industrial monitoring.

This trade-off is critical in structural health monitoring, where real-time corrosion detection must process
high-resolution images or video streams without latency. YOLQO’s architecture, particularly its latest iterations
(YOLOvI11 and YOLOV12), addresses this challenge by optimizing both detection precision and computational
efficiency, making it a compelling choice for industrial applications.

2.1.2. The Shift Toward Real-Time Detection Systems The growing demand for real-time processing in industrial
settings has led to the adoption of lightweight, high-speed models like YOLOv11. Unlike traditional methods that
process data offline, real-time systems offer several advantages:

* Immediate decision-making: Defects or faults can be quickly identified and corrected.

* Scalability: Efficient models can handle multiple sensors simultaneously, processing high-resolution images or
video streams.

* Integration with edge devices: Running YOLOv11 or YOLOvV12 on edge devices like drones and IoT cameras
reduces latency and bandwidth costs.

For infrastructure monitoring, timely detection is particularly crucial. The Corrosion, for instance, develops
gradually but can compromise structural integrity if left unnoticed. YOLOv11 and YOLOV12’s balance between
speed and accuracy makes it an ideal tool for continuous monitoring of aging infrastructure, where delays in
detection could result in costly repairs or even catastrophic failures.

2.2. Corrosion detection methodologies

Recent advancements in deep learning have significantly improved corrosion detection capabilities across various
domains.

[12] A comparative analysis of YOLOvVS and YOLOVS for corrosion segmentation was conducted using three
diverse datasets, evaluated through precision, recall, Fl-score, and mean average precision (mAP). The study
demonstrated that YOLOVS8 consistently outperformed YOLOVS in both segmentation accuracy and computational
efficiency. Visual assessments further underscored YOLOV8’s superior handling of complex corroded surfaces,
though challenges persisted with overlapping bounding boxes in larger datasets. These findings position YOLOv8
as a more robust solution for real-world corrosion detection applications.

[14] An evaluation of DeepLabv3 and DeepLabv3+ for corrosion detection highlighted the critical role of
model configuration and dataset augmentation in enhancing segmentation performance. The study revealed that
DeepLabv3+ achieved superior results, particularly in addressing class imbalances and capturing contextual
information, leading to a higher F1-score and improved detection accuracy.

[15] A fine-tuned SegFormer model was assessed for corrosion detection, specifically targeting challenges
such as class imbalance and limited annotations. A preprocessing step for binary corrosion segmentation was
incorporated to enhance dataset quality. The model yielded promising results, with a test loss of 0.2621, a mean
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accuracy of 0.8139, and a mean IoU of 0.7116, demonstrating its effectiveness in corrosion detection and its
potential for advancing semantic segmentation in critical applications.

[16] Ameli et al. utilized a publicly available dataset comprising 514 corrosion images, employing pixel-wise
annotations based on BIRM and AASHTO guidelines to classify corrosion severity into “Fair,” “Poor,” and
“Severe.” YOLOvVS8 and Mask R-CNN were trained on the annotated dataset, achieving mAP50 scores of 0.726
and 0.674, respectively. The study demonstrated the models’ effectiveness in corrosion segmentation and structural
condition assessment.

[17] Nabizadeh and Parghi proposed an automated corrosion detection system leveraging deep learning and
computer vision techniques to address the challenges of inspecting aging civil structures. Their study compared
the performance of YOLOv3, YOLOvSs, and YOLOV7 in detecting concrete corrosion from real-world images,
employing evaluation metrics such as accuracy, F1-score, recall, and mAP. The results indicated that YOLOvS5s
achieved the highest mAP@0.5 of 0.88, outperforming other models and underscoring its suitability for corrosion
detection in structural health monitoring.

[19] proposed a serial architecture-based corrosion detection method for hydraulic metal structures using
an improved YOLOvV10 model. Their approach involves two stages: YOLOv10-vit for corrosion localization
and YOLOV10-vit-cls for corrosion severity classification. By integrating MobileViTv3 into the YOLOv10n
backbone, YOLOvI10-vit achieves superior precision, while YOLOv10-vit-cls leverages transfer learning to
enhance classification accuracy. This method simplifies annotation by eliminating the need for corrosion severity
labeling, improving efficiency.

[33] addressed the specific challenges of high salinity and humidity environments by exploring various
improved YOLOVS models with modified IoU loss functions. Their work on the Zhoushan seawater station
dataset demonstrated that YOLOvS5-NWD achieved a 7.2% precision improvement, highlighting the importance
of specialized loss functions for small-object corrosion detection in marine settings.

[34] introduced MCD-Net, a convolution and sequence encoding combined network that employs a visual
Transformer sequence encoder within a convolutional encoder-decoder framework. Their method achieved an F1
score of 84.53% on public corrosion data by enhancing global information processing and establishing long-range
feature dependencies through attention-based feature fusion.

While their approachs demonstrates strong performance on general corrosion segmentation, Proposing a new
approach is essential to advance the field by addressing existing limitations and exploring innovative solutions
because real-time corrosion detection requires both high precision and fast processing to ensure timely and accurate
identification. To meet these demanding requirements, continuous efforts toward improvement and innovation are
essential, driving the development of more effective and efficient detection approaches.

3. Methodology

This section details the development and evaluation of the proposed corrosion detection framework, whose
architecture is presented in Figure 1. The design capitalizes on the proven advantages of real-time object detection
paradigms, integrating key concepts inspired by models such as YOLOv11l and YOLOvI12 while adapting
them to the specific requirements of corrosion detection. The proposed pipeline comprises three main stages:
data acquisition and preprocessing, customized model architecture and training, and an extensive performance
evaluation.

Figure | provides an overview of the system’s components and their interconnections, illustrating the end-to-end
detection process

3.1. Advances in Real-Time Corrosion Detection

The evolution of real-time object detection has profoundly influenced a wide range of industrial applications,
including corrosion monitoring and inspection. In this study, we harness the capabilities of two state-of-the-art
object detectors YOLOv11 and YOLOvI12 each introducing novel advancements in detection speed, accuracy,
and robustness. These models are designed to operate efficiently in real-world environments, making them highly
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Figure 1. Corrosion Detection System Architecture Overview

suitable for the rapid and precise identification of corrosion across various material surfaces and structural
conditions.
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Figure 2. YOLOV11 Architecture Overview [11]]

3.1.1. YOLOvll: A New Era in Real-Time Object Detection Introduced by Ultralytics in late 2024[11],
YOLOvV11 marks a major step forward in deep learning-based object detection. Designed to enhance both speed
and accuracy, it refines key architectural components while improving generalization across diverse datasets.

Key Innovations in YOLOv11

* Advanced Feature Representation: Efficient backbone and neck structures for better feature extraction.

» Faster and More Efficient Processing: High-speed inference with robust accuracy, ideal for real-time
applications [11].

* Improved Accuracy with Fewer Computational Resources: Optimized parameter efficiency.

 Versatile Deployment: Seamless integration across cloud, edge, and GPU platforms.

» Expanded Capabilities: Extended to segmentation, classification, and oriented bounding boxes.

YOLOV11 Architecture Highlights:

* Backbone: C3K2 blocks for efficient feature extraction.

* Neck: Spatial Pyramid Pooling Fast (SPPF) for multi-scale feature aggregation.

» Attention Mechanisms: C2PSA block improves focus on important spatial regions.
* Detection Head: Multi-scale predictions for objects of varying sizes.
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Figure 3. YOLOvV12 Architecture Overview. [28]

3.1.2. YOLOvI12: Pushing the Boundaries of Real-Time Detection Building upon the advancements made with
YOLOv11, YOLOV12, introduced in early 2025 [28], continues to refine real-time object detection. YOLOv12
offers superior accuracy and faster processing, with several innovations aimed at optimizing performance,
especially in complex scenarios like corrosion detection.

Key Innovations in YOLOv12

» Feature Reassembly Module (FRM): This novel module enhances small object detection, especially in
crowded or overlapping scenarios. It improves detection precision and robustness by reassembling and
refining features from different scales.

* Dynamic Label Assignment: This innovation optimizes the assignment of labels during training, improving
detection accuracy, particularly for objects that are close together or occluded, which is often the case in
corrosion detection scenarios.
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* Area Attention (A2) Module: The A2 module introduces local attention within segmented areas, significantly
improving computational efficiency and detection accuracy for small, irregularly shaped objects like
corrosion patterns.

* Residual Efficient Layer Aggregation Networks (R-ELAN): R-ELAN integrates residual connections at the
block level, improving feature aggregation. This innovation enhances gradient flow, training stability, and
learning efficiency, especially in larger attention-based models.

* FlashAttention Integration: This integration optimizes memory usage and speeds up attention operations,
reducing computation time while maintaining high accuracy.

 Position Perceiver: Rather than relying on traditional positional encoding, YOLOv12 uses separable
convolution for capturing positional information, resulting in improved speed and accuracy.

YOLOv12 Strenghs:

* Combines fast inference speeds with enhanced performance through attention mechanisms.
* Achieves state-of-the-art object detection accuracy while maintaining real-time performance.

To analyze the segmentation and detection performance of the proposed models, we evaluated different versions
of YOLOvI11 and YOLOv12. For YOLOvVI11, three scaled variants were tested: YOLOv11n, YOLOvl1ls, and
YOLOvI1Im. Similarly, for YOLOv12, we evaluated YOLOv12n, YOLOv12s, and YOLOv12m. Each variant
differs in model size, number of parameters, and computational complexity, influencing both detection accuracy
and inference speed. Table 1 summarizes the key characteristics of these YOLOv11 and YOLOvI2 models,
including the number of parameters (in millions) and floating point operations (FLOPs in gigaflops). Compared
to YOLOv11, the YOLOV12 variants introduce approximately a 10% increase in the number of parameters and a
slight rise in FLOPs, due to enhancements in the backbone and neck structures. Despite this growth, YOLOv12
models maintain real-time performance, offering improved feature representation and detection accuracy without
significant computational overhead.

Table 1. Segmentation and Detection: YOLOv11 and YOLOVI12 Versions Evaluated

Model Input Size | Params (M) | FLOPs (G)
YOLOvlln | 640x640 39 14.2
YOLOvlls 640x640 13.4 48.3
YOLOvIIm | 640x640 30.5 124.8
YOLOvI2n | 640x640 4.5 16.3
YOLOvVI12s 640x640 14.8 52.5
YOLOvVI2m | 640x640 332 135.7

These variations allow us to systematically assess the trade-offs between model complexity, computational
efficiency, and detection accuracy in real-time corrosion detection tasks.

To provide a comprehensive comparison of recent object detection architectures for corrosion detection,
we analyzed the structural and functional differences among YOLOvI1 and YOLOv12. Table 2 summarizes
key architectural innovations, including backbone designs, detection head configurations, feature aggregation
strategies, and attention mechanisms.

These advancements collectively contribute to faster inference speeds, improved handling of small or partially
occluded corrosion areas, and enhanced real-time deployment capabilities, positioning YOLOv11, YOLOv12 as
highly promising solutions for industrial corrosion monitoring applications.
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Table 2. Comparison of YOLOv11 and YOLOV12 Architectures

Feature YOLOv11 YOLOv12

Building Block C2f+ (Enhanced) C2f++ with Attention

Detection Head Anchor-free (Improved) Unified Detection and Segmentation
Head

Kernel Size Adaptive Kernel Dynamic Kernel with Spatial Awareness

Backbone Output Channels 128, 256, 512,768 128, 256, 512, 1024

Neck Architecture Efficient BIFPN Multi-Scale BiFPN++

Feature Aggregation CSP with Transformer Enhancements Enhanced Transformer-CSP Fusion

Training Efficiency Optimized for Low Compute Fast Convergence with Self-Distillation

Small Object Detection Enhanced Superior with Contextual Attention

Real-time Performance Ultra-fast, Low Latency High-Speed with Lightweight Optimiza-
tion

3.2. Datasets and Preprocessing

To ensure a robust evaluation of the corrosion detection models, this study utilizes two distinct datasets with
different characteristics. A summary of the key properties of both datasets is provided in Table 3 to ensure clarity
and reproducibility.

Primary Dataset The primary dataset for this study, titled "Corrosion Instance Segmentation,” was sourced
from Roboflow Universe [13]. This dataset is a compilation of images from various sources, including internet
searches and manual captures, providing a diverse representation of corrosion in real-world settings (e.g., bridges,
ship hulls, pipelines) and laboratory environments. The images feature corrosion on a variety of surfaces, primarily
structural steel and painted metals. The original image resolutions vary widely, from approximately 640x427 pixels
to 4032x3024 pixels.

The annotations were provided in an instance segmentation format (Polygon) by the dataset creators [12], with
detailed masks precisely outlining the boundaries of corroded regions. We selected the second version of this
dataset for training due to its optimal balance between size and augmentation diversity. The dataset consists of 5,501
images, split into 5,163 images for training, 223 for validation, and 115 for testing (approximately a 94%/4%/2%
ratio). The applied augmentations, which were pre-applied by the Roboflow platform, include horizontal and
vertical flipping, rotations from -15° to +15°, exposure adjustments from -25% to +25%, Gaussian blur up to
2.5 pixels, and salt-and-pepper noise affecting up to 10% of pixels. These augmentations enhance the model’s
robustness to real-world variations. Examples of images from this dataset are shown in . 4.

Secondary Dataset The second dataset, titled ”photolab” [18], was sourced from Roboflow Universe and
comprises 129 images. This dataset is highly specific, consisting of close-up, high-resolution photographs of bolt
groups and connections on a galvanized steel structure. It is annotated with bounding boxes for object detection
tasks, focusing on localized corrosion on the bolts and nuts. Given the very small size and highly uniform nature
of this dataset, we acknowledge a significant risk of overfitting when used for training deep learning models.
Therefore, its primary use in this study is for a preliminary assessment of model generalization to a very specific,
targeted scenario. The dataset was split by the source provider into 90 images for training, 19 for validation, and 20
for testing (approximately a 70%/15%/15% ratio). The original images are of a uniform high resolution, typically
4032x3024 pixels. Examples of images from this dataset are shown in 5
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Table 3. Detailed summary of the datasets used for model training and evaluation.

Property Roboflow-Corrosion (Instance Segmen- | Photolab-Corrosion

tation)
Original Source & | Mixed sources (internet, manual capture). | Close-up photos of bolt groups on a steel
Content Real-world infrastructure & lab settings. structure.

Materials Depicted

Structural steel, painted surfaces (bridges,
ships).

Galvanized steel bolts and connections.

Total Images 5,501 129

Train/Val/Test Split 5,163/223 /115 90/19/20

Image Resolution | ~640x427 —4032x3024 pixels ~4032x3024 pixels (uniform)
Range

Annotation Type

Instance Segmentation (Polygon)

Object Detection (Bounding Box)

Annotation Process

Annotated by the dataset creator [12].

Annotated by the dataset creator[18]].

Primary Use in Study

Main training and quantitative evaluation.

Preliminary generalization assessment to a
specific use case.

Key Limitations

Heterogeneous sources; test set is rela-
tively small.

Extremely small size, highly uniform, high
risk of overfitting.

|

Figure 4. Examples of 1st dataset images highlighting corrosion on different metal structures and surfaces [12].

3.3. Training Procedure
3.4. Training Settings

In this research work, there is a rigorous evaluation of YOLOv11 and YOLOv12 with their three versions being
compared using the selected datasets. Each variant is fine-tuned with a standard base setup for a level playing
field. The input images have been resized to 640x640 pixels for the optimal use of computational resources with
the quality of feature extraction. We have trained the models for 300 epochs, allowing them to capture complex
corrosion patterns effectively.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 ADVANCING SHM WITH REAL-TIME DEEP LEARNING-BASED CORROSION DETECTION

Figure 5. Examples of 2nd dataset images showing corrosion on Close-up photos of bolt groups on a steel structure .

The learning rate of 0.01 with the SGD optimizer and a momentum of 0.937 was initially adopted from
the Ultralytics repository, where these values serve as strong baselines. To ensure their suitability for corrosion
detection, we conducted a small ablation study by testing alternative learning rates (0.001 and 0.005), a smaller
batch size (8), and the AdamW optimizer. Results showed that the SGD configuration (Ir=0.01, momentum=0.937)
provided the most stable convergence and highest mean average precision (mAP). AdamW produced slower
convergence and slightly lower mAP, while smaller batch sizes offered no significant benefit. A batch size of
16 was therefore retained for its balance between stability and efficiency.

We also assessed the effect of data augmentations (blur, noise, and exposure adjustments). Removing these
augmentations led to weaker generalization on external validation images (mAP drop of approximately 2%),
confirming their contribution to model robustness.

We systematically assess the train and validation performance across the core metrics of assessment in terms of
detecting underfitting or overfitting, with a clear perspective of the generalization power of each model. We also
assess the train and validation times of the three YOLOv11 and YOLOv12 models with regard to their efficiency as
well as their feasibility for use in real-time. To further guarantee the validity as well as the generalizability of our
models, a second stage of evaluation is applied. Other online resources, aside from the initial dataset, were used
for qualitative assessment. Visualization using graphs reveals each model’s ability for adjustment when compared
with actual-world data conditions.

By following this methodical evaluation process, we obtain a comprehensive overview of the performance of
YOLO models in corrosion detection, with particular emphasis on their resilience and flexibility under varying
input conditions. The results highlight each model’s ability to maintain high detection accuracy across diverse
environmental settings and corrosion severity levels.

4. Results and Discussions

This section presents a comprehensive evaluation of the YOLOv11 and YOLOvV12 based systems for real-time
corrosion detection. Their performance is assessed in comparison with other YOLO variants, including YOLOV3,
YOLOVS, YOLOv7, and YOLOVS, focusing on accuracy, inference speed, and qualitative robustness. The analysis
is structured as follows: first, we report the quantitative performance metrics; second, we assess the models’ real-
time capabilities; third, we present qualitative visual results; and finally, we provide a detailed comparative analysis.
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4.1. Evaluation Metrics

To assess the performance of the proposed corrosion detection model, we employ standard object detection and
segmentation evaluation metrics. These include Precision, Recall, F1-score, mean Average Precision (mAP) at
different IoU thresholds, Training Time, and Inference Speed. These metrics provide a comprehensive analysis
of the model’s accuracy, robustness, and efficiency.

4.1.1. Precision Precision measures the proportion of correctly detected corrosion regions among all detected
instances. It is defined as:

.. TP
Precision = TP FP (1)

where TP (True Positives) are correctly predicted corrosion instances, and FP (False Positives) are incorrectly
predicted instances. High precision indicates a lower false detection rate.

4.1.2. Recall Recall measures the proportion of correctly detected corrosion regions among all actual corrosion
instances. It is given by:

TP
Recall = ——+ 2
= TPYFN 2)

where FN (False Negatives) represents actual corrosion regions that were not detected. High recall indicates
that the model is detecting most of the corrosion instances.

4.1.3. FI-Score The F1-score is the harmonic mean of Precision and Recall, balancing both metrics. It is defined
as:

Precision x Recall
F1- =2 3
score % Precision + Recall 3)

A high Fl1-score indicates a good balance between precision and recall.

4.1.4. Mean Average Precision (mAP) Mean Average Precision (mAP) is a standard metric for evaluating object
detection and segmentation models. It measures the area under the precision-recall curve at different Intersection
over Union (IoU) thresholds.

* mAP@50 (mAP50): This evaluates the model’s performance at IoU = 0.50, meaning a detection is correct
if it overlaps at least 50 % with the ground truth.

* mAP@[50:75] (mAP50-75): This represents the mean of mAP scores calculated at multiple IoU thresholds
ranging from 0.50 to 0.75 in increments of 0.05. This metric ensures that the model not only detects corrosion
but also accurately localizes it.

4.1.5. Training Time is the total time required to train the model over a defined number of epochs. This metric is
crucial for evaluating the computational efficiency of the model. It depends on dataset size, model architecture,
and hardware configuration.

4.1.6. Inference Speed Inference speed measures how fast the model can process an image during real-time
detection. It is typically measured in:

e Frames Per Second (FPS): Number of images the model processes per second.
* Latency (ms per image): The time taken to process a single image.

A higher FPS and lower latency indicate better real-time performance, which is essential for industrial corrosion
detection applications.
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These evaluation metrics provide a comprehensive assessment of the corrosion detection model, ensuring that
it is both accurate and efficient for real-world applications.

4.2. Quantitative Performance and Comparative Analysis

4.2.1. Primary Dataset

The detection and instance segmentation performance of multiple YOLO model generations, from YOLOv3
to the latest YOLOV12, were rigorously evaluated on the primary dataset, which consists of images representing
various corrosion severities and environmental conditions. Table 4 presents a comparative analysis of these models
on both training and validation sets, including key metrics such as precision, recall, mAP, and computational
efficiency.

Overall Performance Trends and Evolution The results clearly illustrate the performance evolution across
YOLO generations. The older architectures, YOLOv3 and YOLOV7, establish a baseline but are generally
outperformed by newer models in both accuracy and speed. The YOLOVS family shows a significant leap, with
its medium variant (YOLOv5m) achieving a respectable validation mAP@50 of 0.568. However, the most recent
generations, YOLOvVS8, YOLOv11, and YOLOvV12, demonstrate the pinnacle of performance, consistently pushing
the boundaries of precision and mean average precision.

Top-Tier Models in Accuracy Among all models tested, YOLOv11m achieved the highest overall accuracy
metrics. It recorded the best validation precision (0.690), shared the highest validation mAP@50 (0.620) with
YOLOV12s, and achieved the top validation mAP@50:95 (0.420). This makes it the most accurate model for this
specific corrosion detection task, albeit with a higher computational footprint during inference (29.5 ms).

The YOLOvV8n model is noteworthy for achieving the highest training precision (0.703) and the fastest training
speed (1.1 ms per iteration), indicating excellent learning efficiency from the dataset. Meanwhile, the YOLOv12m
model achieved the highest validation recall (0.587), suggesting a superior ability to identify all true corrosion
instances, which is critical for inspection tasks where missing a defect is costly.

The YOLOv12 Family: A Focus on Robustness and Modern Efficiency The YOLOv12 family demonstrates
itself as a highly competitive modern architecture. While YOLOv12m matches YOLOv11m closely in key metrics
like mAP@50 (0.618) and achieves the highest recall (0.587), its standout feature is the efficient inference speed of
the ’s” and 'n’ variants. YOLOv12s provides a particularly strong trade-off, matching the best-in-class validation
mAP@50 (0.620) while maintaining a rapid inference speed (6.0 ms). YOLOv12n also produces solid results
for a nano-sized model, outperforming its predecessor YOLOvVI11n in recall and mAP@50 while being faster. It
is important to note that this performance comes at the cost of significantly longer training times compared to
YOLOV11 and earlier versions, indicating a more complex architecture or training regimen.

Balance of Speed and Accuracy For practical deployment where a balance of speed and accuracy is essential,
several models stand out. YOLOv11s delivers outstanding performance, with validation metrics nearly matching
the top-performing YOLOvI1m (mAP@50 of 0.617 vs. 0.620) while boasting the fastest inference speed (4.3
ms) among all medium and small-sized models. This makes it an exceptionally strong candidate for real-time
applications.

The YOLOVS family also offers compelling speed-accuracy trade-offs, with YOLOv8n having the second-fastest
inference time (9.0 ms) and YOLOv8s providing robust all-around performance.

Conclusion on Model Selection

In conclusion, the choice of the optimal model depends heavily on the deployment priorities:

For maximum accuracy without strict speed constraints, YOLOv11m is the definitive choice.

For a strong trade-off between modern architecture performance and speed, the YOLOv12s model is an
excellent option, offering top-tier mAP with fast inference.

For the fastest high-accuracy deployment, YOLOv11s provides an unbeaten combination of speed and
accuracy.

For scenarios demanding extremely low latency with good enough accuracy, YOLOvV8n and YOLOv12n are
excellent lightweight options.

These findings demonstrate that both YOLOv11 and YOLOv12 families offer viable and leading-edge solutions
for corrosion detection tasks. YOLOvI11m excels in peak accuracy, while YOLOv12s provides a very strong
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balance of modern performance and speed, making the two families complementary depending on the specific
application requirements.

Table 4. Comparative Analysis of YOLOv3, YOLOvS5, YOLOv7, YOLOvS8, YOLOv11, and YOLOv12 Models on the
primary dataset

Model Precision Recall F1-score mAP@50 mAP@50:95 Speed (ms) Training Time
Train  Val  Train  Val Train  Val Train Val Train Val  Train Inference (hours)
YOLOvV3 0.600 0.580 0.580 0.560 0.590 0.570 0.580 0.560 0.350 0.320 12.0 50.0 12.0
YOLOvV5n 0.643 0.661 0.549 0474 0.592 0.552 0.553 0461 0.301 0234 58 50.9 0.327
YOLOvSs 0.659 0.618 0.545 0.593 0.597 0.605 0.568 0.552 0.334 0305 7.9 24.7 0.357
YOLOvSm  0.627 0.636 0.593 0.579 0.592 0.593 0.606 0.568 0.531 0.343 9.8 28.9 0.452
YOLOv7 0.640 0.615 0.600 0.576 0.620 0.595 0.610 0.561 0.390 0.337 8.0 20.0 4.0
YOLOvVS8n 0.703 0.644 0.531 0.564 0.605 0.601 0.577 0.587 0.345 0315 1.1 9.0 0.336
YOLOv8s 0.632 0.624 0.574 0.598 0.602 0.611 0.589 0.578 0.357 0.319 2.0 7.6 0.361
YOLOv8m  0.630 0.621 0.588 0.604 0.608 0.613 0.590 0.543 0.370 0.299 24 9.7 0.477
YOLOvIIn 0.643 0.647 0.534 0.536 0.574 0.575 0.588 0.588 0.389 0.389 4.3 6.8 0.349
YOLOvIls 0.662 0.663 0.574 0.573 0.617 0.616 0.619 0.617 0417 0417 74 4.3 0.473
YOLOvlim 0.687 0.690 0.570 0.570 0.619 0.620 0.619 0.620 0.420 0.420 14.8 29.5 0.517
YOLOvI2n 0.645 0.646 0.553 0.555 0.594 0.594 0.592 0.594 0386 0.387 1.2 5.5 1.481
YOLOvI2s 0.655 0.659 0.584 0.585 0.615 0.621 0.619 0.620 0419 0419 2.7 6.0 1.924
YOLOvI2m 0.646 0.647 0.587 0.587 0.615 0.618 0.618 0.618 0418 0418 17.2 4.8 9.239

4.2.2. Secondary Dataset
To assess model generalizability across different data environments, performance was evaluated on a second,
more focused dataset. This dataset differs from the primary one in three key aspects: context, diversity, and scale.
Context Diversity: The primary dataset is a large, mixed-source collection from real-world infrastructure and
lab settings, presenting a wide variety of corrosion types, backgrounds, and scales. In contrast, the secondary
dataset consists of close-up photos of a single, specific structural element: bolt groups on a steel structure. This
results in a much more homogeneous set of images with less variation in scene composition.

Scale: The primary dataset is significantly larger, providing more data for models to learn generalizable features.
The smaller size of the secondary dataset presents a different challenge, testing a model’s ability to learn effectively
from limited, specific examples.

These fundamental differences directly explain the shifts in model performance observed in Table 5.

Performance Shift in a Homogeneous, Limited-Data Context

The performance hierarchy changes notably on the secondary dataset. YOLOvVSs emerges as a top performer,
achieving the highest validation mAP@50 (0.893). This suggests that its architecture is particularly efficient at
learning and recognizing patterns from a smaller, more focused dataset without overfitting.
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Conversely, YOLOvVS8s demonstrates its robustness by delivering the most well-rounded performance. It achieves
the highest validation recall (0.852) and, critically, the highest validation mAP@50:95 (0.481). Its ability to
maintain high precision and the best localization accuracy on this dataset underscores its adaptability to both
diverse and specific visual tasks.

Analysis of Modern Architectures on a Narrower Task

The YOLOv11 family, particularly the YOLOv11m variant, maintained its signature strength of high precision
(0.903), proving highly reliable for minimizing false positives even in this specific context. However, the more
complex YOLOv12 models did not show a clear advantage here. This indicates that their advanced architectures,
which may excel on large and varied datasets, do not necessarily provide a performance boost on smaller, more
homogeneous datasets where the learning problem is less complex. The larger models might be prone to overfitting
or simply not have enough data to leverage their full capacity.

Computational Implications

The smaller dataset size also contributes to the dramatically shorter training times across all models compared
to the primary dataset. In this context, YOLOV8s again presents a compelling package by combining top-tier
accuracy with the fastest inference speed (11.6 ms), making it ideal for a potential dedicated inspection system for
this specific component.

The comparative analysis across the two datasets leads to a critical conclusion: the optimal model is not universal
but is heavily influenced by the nature of the training data.

For large, diverse datasets mimicking real-world variability (like the primary dataset), the latest models like
YOLOv11m and YOLOvV12s excel by leveraging their complex learning capabilities.

For smaller, focused datasets of a specific component (like the secondary dataset), older, well-established
architectures like YOLOvSs can achieve peak mAP@50, while robust modern models like YOLOv8s provide
the best all-around accuracy and speed.

This underscores the importance of matching the model architecture to the data environment. A larger, more
complex model is not inherently better; for targeted applications, a simpler model trained on precise, context-
specific data can be the most effective and efficient solution.

4.3. Qualitative Results

To further assess the performance of the YOLOvI1l and YOLOvI12 variants, we present qualitative results
comparing their detection and segmentation capabilities on various corrosion images. Tables 6 and 7 illustrates
the results obtained alongside the original images. Each row in the table corresponds to a different test image,
showcasing the effectiveness of each model in detecting and segmenting corrosion regions.

The qualitative results in Table 3 highlight detection and segmentation differences among the YOLOv11 variants.
In Row 1, all models accurately detect widespread surface rust, but YOLOv11m achieves slightly sharper mask
boundaries. Row 2 (bridge girder) shows YOLOvVI11m producing tighter segmentation around the corrosion patch,
whereas YOLOv11s and YOLOV1 In slightly extend into unaffected areas. In Row 3 (fence corrosion), all variants
detect small rust spots, though YOLOv11s and YOLOvVI11n exhibit minor over-segmentation of the surrounding
metal. Row 4 (bolts) demonstrates that YOLOv11m maintains more consistent mask alignment with the true
corroded region. These visual trends align with the quantitative evaluation in Section 4.2, where YOLOvI1m
achieves the highest mAP and IoU scores, confirming its superior balance between detection precision and
segmentation quality for real-time SHM corrosion monitoring.

The qualitative comparison in Table 4 illustrates the detection behavior of YOLOv12 variants across various
corrosion conditions. In Row 1, all models successfully detect multiple corrosion spots on the beam, though
YOLOv12m and YOLOV12n show slightly cleaner bounding box placement than YOLOv12s. Row 2 (rusted bolt)
reveals that all variants capture the corroded region accurately, with YOLOv12m offering the tightest fit around the
circular rust area. In Row 3 (heavily corroded nuts and bolts), YOLOv12s tends to produce more bounding boxes,
occasionally overlapping, whereas YOLOv12n and YOLOv12m maintain more concise detections. Row 4 (metal
sample) shows minimal difference between the three, with all variants producing consistent localization.
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Table 5. Comparative Analysis of YOLOv3, YOLOvS5, YOLOv7, YOLOvS8, YOLOv11, and YOLOv12 Models on the
secondary dataset

Model Precision Recall F1-score mAP@50 mAP@50:95 Speed (ms) Training Time
Train Val Train Val Train Val Train Val Train Val Train Inference (hours)
YOLOV3 0.780 0.720 0.700 0.680 0.738 0.699 0.750 0.720 0.400 0.380 1.0 25.0 0.250
YOLOvV5n 0.836 0.771 0.722 0.750 0.775 0.760 0.794 0.777 0451 0434 0.2 18.1 0.194
YOLOVS5s 0.844 0.849 0.902 0.806 0.871 0.827 0.925 0.893 0416 0419 0.2 20.8 0.167
YOLOvSm  0.810 0.780 0.820 0.770 0.815 0.775 0.835 0.780 0.440 0.420 0.2 22.0 0.353
YOLOv7 0.820 0.790 0.800 0.770 0.810 0.780 0.830 0.780 0.450 0.420 0.2 19.0 0.350
YOLOv8n 0.843 0.770 0.778 0.806 0.810 0.788 0.825 0.784 0444 0411 0.2 16.8 0.145
YOLOVS8s 0.891 0.814 0.861 0.852 0.876 0.833 0.889 0.884 0.561 0.481 0.2 11.6 0.598
YOLOv8m  0.858 0.904 0.861 0.786 0.860 0.841 0.905 0.881 0470 0.460 0.2 25.0 0.409
YOLOvIIn 0.882 0.822 0.722 0.722 0.794 0.769 0.822 0.797 0.446 0.441 3.2 26.5 0.130
YOLOvlls 0.885 0.894 0.858 0.703 0.871 0.787 0.886 0.881 0.470 0459 6.3 13.7 0.256
YOLOvIIm 0912 0903 0.778 0.777 0.839 0.835 0.879 0.857 0472 0455 10.5 30.9 0.424
YOLOvI2n 0.868 0.839 0.833 0.806 0.850 0.822 0.861 0.844 0464 0450 6.0 13.6 0.219
YOLOvI2s 0.875 0.833 0.777 0.832 0.823 0.832 0.870 0.784 0.452 0.465 8.6 23.8 0.379
YOLOvI2m 0.798 0.867 0.878 0.724 0.835 0.790 0.871 0.834 0.447 0441 18.0 60.7 0.598

4.4. Limitations and Trade-offs

This study has some limitations. The primary dataset is sufficiently large and diverse, but the secondary
dataset is relatively small (129 images) and highly domain-specific. This may reduce the generalizability of the
findings to other specialized contexts. In terms of training settings, while we conducted a focused ablation study
(testing alternative learning rates, batch sizes, optimizers, and augmentations), we did not perform an exhaustive
hyperparameter search. More advanced schedules, augmentation policies, or regularization strategies may yield
additional improvements and remain an avenue for future work. Finally, computational resources posed practical
constraints: larger models required substantially longer training times and greater hardware capacity, which may
limit their accessibility for some practitioners. Another limitation is that the datasets were obtained from Roboflow
with pre-existing annotations. While this facilitated rapid experimentation, we did not independently validate
annotation quality or compute inter-annotator agreement, which may affect label reliability in cases of ambiguous
corrosion boundaries. Future work should incorporate independent annotation checks and formal agreement
metrics to strengthen dataset robustness. An important practical consideration is the trade-off between accuracy,
speed, and model size. As shown in Table 4, smaller models such as YOLOv11n (3.9M params, 14.2 GFLOPs) and
YOLOv12n (4.5M params, 16.3 GFLOPs) achieve competitive validation mAP (0.588 and 0.594, respectively)
while maintaining very fast inference times (6.8 ms and 5.5 ms). These lightweight models are attractive for
deployment on edge devices with limited GPU capacity. In contrast, medium-sized models such as YOLOv11m
(30.5M params, 124.8 GFLOPs) and YOLOv12m (33.2M params, 135.7 GFLOPs) provide the highest accuracy
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Table 6. Qualitative Comparison of YOLOv11 Variants for Detection and Segmentation : a sample images from the first
dataset

Original Image YOLOv11s YOLOvlin YOLOv11im

(mAP@50 up to 0.620) and Fl-scores (0.620) but at the cost of slower inference (up to 29.5 ms) and higher
training times. This illustrates the classical trade-off: accuracy improves with model size, but speed and hardware
requirements worsen. Therefore, model selection should be guided by application constraints: edge deployment
favors compact “n/s” versions, while server-side or offline batch processing can exploit the more accurate “m”

versions.
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Table 7. Qualitative Comparison of YOLOv12 Variants for Detection : a sample images from the first dataset

Original Image YOLOv12s YOLOv12n YOLOvVI2m

5. Inference Test and Comparative Analysis of YOLOv11 and YOLOV12 Variants

To evaluate the performance of different YOLOv11 and YOLOV12 variants for corrosion detection, we conducted
a series of inference tests using multiple model architectures: YOLOv11s, YOLOv11n, YOLOvI11m (trained on
two distinct datasets), as well as YOLOv12s (trained on two distinct datasets), YOLOv12n, and YOLOv12m. The
qualitative results, presented in Figures 6, 7, 8, and 9, demonstrate each model’s detection accuracy and confidence
levels. These comparisons highlight the strengths, limitations, and generalization capabilities of the YOLOv11 and
YOLOV12 variants when applied to real-world corroded metal surfaces.
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5.1. YOLOvl1ls vs. YOLOvIIn: Model Variants Comparison

The results on Figures 6 and 7 indicate that YOLOvlln achieves a higher confidence score compared to
YOLOv11s, demonstrating its improved detection capability. Specifically:

* YOLOvl11s provides a detection confidence of 0.72 and 0.76 across different samples. While it correctly
identifies corrosion regions, the segmentation mask suggests that it might miss finer details, leading to partial
coverage.

* YOLOvl11n, in contrast, achieves a confidence score of 0.87 and 0.79, indicating more reliable detection with
better coverage of corrosion regions. The bounding boxes are more consistent, and the segmentation areas
closely align with the corroded regions, suggesting improved generalization.

These results suggest that YOLOv1 1n provides a better trade-off between accuracy and efficiency, making it a
preferred option for lightweight deployment scenarios.

5.2. YOLOv11m: Impact of Training Dataset on Detection Performance

To analyze the effect of dataset variation, we trained YOLOvI11m on two different datasets and evaluated their
performance on corrosion detection. refer to Figures 6 and 7The results show:

* YOLOvI11m trained on the first dataset achieves a confidence score of 0.83, indicating a strong ability to
detect corrosion regions with high precision. The bounding box is well-aligned, and the segmentation mask
effectively captures the rusted area.

* YOLOvI11m trained on the second dataset, however, shows a lower confidence score of 0.70, suggesting a
decline in detection reliability. Similarly, in other test cases, the confidence score drops to 0.49, reinforcing
the hypothesis that the dataset may influence generalization capability.

The performance variation observed in models trained on the second dataset can be attributed to several key
factors:

» Dataset Specificity vs. Generalizability: The second dataset’s focused nature on close-up bolt group images
creates a highly specialized domain. Models trained on this data may struggle with the diverse corrosion types
and environmental variations present in the more generalized first dataset, leading to reduced cross-dataset
performance.

* Scale and Diversity Limitations: compared to the larger primary dataset, the second dataset provides limited
variation in corrosion patterns, viewing angles, and environmental conditions. This restricted diversity can
limit the model’s ability to learn robust, generalizable features.

* Annotation Consistency Challenges: The homogeneous nature of bolt group images, often featuring
repetitive structural elements and similar corrosion patterns, may introduce annotation ambiguities that affect
the model’s learning of distinct corrosion boundaries and features.

5.3. Key Observations and Implications

* Model architecture influences detection reliability: YOLOv11n outperforms YOLOv11s, showing better
localization and segmentation accuracy.

* Training dataset quality plays a crucial role: YOLOv11m trained on the first dataset generalizes better
than the second dataset-trained model.

* Confidence score variations indicate dataset challenges: The second dataset-trained model demonstrates
lower confidence, suggesting the need for enhanced preprocessing or data augmentation techniques.

5.4. YOLOv12 Variants: Visual Inference and Detection Insights

Figures 8 and 9 provide a qualitative evaluation of YOLOv12s, YOLOv12n, and YOLOvVI12m on two corroded
surfaces. The results show:
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* YOLOV12s consistently produced accurate detections with high confidence scores (up to 0.83),
demonstrating precise localization of corroded areas. Its performance remained stable across both simple
and complex surfaces, making it well-suited for general-purpose corrosion inspection tasks.

* YOLOvI12n, despite its lightweight architecture, underperformed compared to the other variants. It failed to
detect corrosion in one instance and showed reduced confidence scores (e.g., 0.70) in the presence of noisy
textures, suggesting limitations in capturing subtle corrosion features.

¢ YOLOV12m identified multiple corrosion regions, even in highly degraded surfaces. However, the model
exhibited a wide range of confidence scores (0.80 to as low as 0.33), and some bounding boxes extended
into non-corroded regions. This suggests a trade-off between sensitivity and precision, with potential over-
segmentation in some cases.

These findings emphasize that while model selection is important, dataset quality and diversity are equally crucial
in ensuring robust and accurate corrosion detection. Future work will focus on enhancing dataset annotations,
applying advanced augmentation techniques, and testing on real-world corrosion scenarios to validate these models
further.

Figure 6. Inference test results of YOLOvV11 models on a corroded metal surface, showing variations in detection confidence.
Higher confidence scores (above 0.7) generally indicate strong and reliable detections in object detection tasks.
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5.5. Deployment Scenarios for Structural Health Monitoring

The proposed corrosion detection framework demonstrates strong applicability for deployment in real-world
Structural Health Monitoring (SHM) environments, where continuous and accurate assessment of structural
integrity is essential . In operational contexts, the system can be integrated into various sensing and inspection
platforms to enable automated, scalable, and cost-effective monitoring.

Aerial Inspections via UAVs : Unmanned Aerial Vehicles (UAVs) equipped with high-resolution optical or
multispectral imaging systems can be employed to survey large-scale structures such as bridges, transmission
towers, and offshore platforms [29]. By embedding the corrosion detection model into onboard computing modules,
preliminary defect assessments can be generated in near real time, reducing the need for manual post-processing
and accelerating maintenance decision-making [32].
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Figure 7. Second inference test results of YOLOv1l models on a different corroded surface, highlighting model
generalization. Higher confidence scores (above 0.7) generally indicate strong and reliable detections in object detection
tasks.

Original Image

YOLOV11m trained on 1st DATASET YOLOV11m trained on 2nd DATASET

Figure 8. First inference test results of YOLOv12 models on a corroded metal surface, showing variations in detection
confidence. Confidence scores closer to 1.0 represent stronger detections, while lower scores (e.g., below 0.5) suggest weaker
or uncertain detections. In this case, the YOLOv12 models produced lower confidence values compared to YOLOv1I,
indicating less reliable corrosion detection on this surface.
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IoT-Enabled Fixed Monitoring Systems: The model can be deployed on low-power edge devices integrated
into stationary IoT sensor networks, enabling continuous monitoring of critical infrastructure components such as
pipelines, storage tanks, and wind turbine towers [30].
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Figure 9. Second inference test results of YOLOv12 models on a different corroded surface, showing model consistency
and generalization. Confidence scores above 0.7 (e.g., 0.83 and 0.80) indicate strong and reliable detections, while lower
values (e.g., 0.42, 0.33, and 0.15) reflect weaker confidence, suggesting model uncertainty in identifying corrosion across all
regions of the surface.
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Robotic and Autonomous Inspection Systems: In industrial facilities or confined environments, the detection
system can be embedded in robotic crawlers, smart pigging devices, or remotely operated vehicles[31,32]. Such
platforms allow internal and external surface inspection without human presence, mitigating safety hazards and
ensuring consistent inspection quality.

6. Conclusion

This study emphasizes the advancements introduced by YOLOv11 and YOLOv12 in the domain of real-time
corrosion detection, demonstrating notable improvements over earlier YOLO versions. The results confirm that
both models offer enhanced accuracy and segmentation quality, positioning them as strong candidates for structural
health monitoring applications. The comparative analysis with YOLOvS and YOLOVS reinforces the effectiveness
of YOLOv11 and YOLOvVI12, particularly in detailed corrosion assessment scenarios where precise localization
is essential. While trade-offs remain between accuracy and inference speed, the flexibility of the models variants
allows for adaptation to a variety of real-world industrial settings. However, the evaluation of YOLOv11m and
YOLOV12s trained on two different datasets revealed a notable drop in confidence scores when applied to the
second dataset, indicating potential dataset limitations. Factors such as class imbalance, inconsistent annotation
quality, and low variability in corrosion patterns likely contributed to the reduced detection reliability. Although
YOLOV12 was not evaluated on the second dataset, its strong performance on the primary dataset suggests similar
potential when applied under optimized conditions. Addressing the aforementioned limitations through improved
dataset curation and advanced augmentation techniques will be critical for enhancing model generalization. These
findings contribute to the progress of deep learning in automated corrosion detection, offering a more reliable and
efficient approach for industrial applications. Future research will explore further optimizations and enhancements
to improve performance across diverse environmental conditions.
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Generalization Across Materials: Expanding datasets to include more diverse materials and environmental
conditions for better generalization.

Integration with Edge Devices: Deploying our models on embedded systems and edge devices for real-time,
low-power corrosion monitoring.

Multi-Modal Analysis: Combining image data with sensor-based corrosion detection to enhance reliability.
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