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1. Introduction

Fuzzy set theory, introduced by Zadeh [19] in 1965, has emerged as a powerful mathematical tool for modeling
uncertainty and vagueness in various real-world phenomena, moving beyond the limitations of binary logic.
Building upon this, Kramosil and Michalek [9] developed fuzzy and statistical metric spaces, which laid a strong
foundation for further explorations into generalized metric structures, including intuitionistic and neutrosophic
frameworks. George and Veeramani [2] contributed significantly to the field through fixed-point theorems in fuzzy
metric spaces, while Grabiec [3] introduced the notion of G-Cauchy sequences, highlighting certain structural
limitations, such as the absence of G-completeness and the non-implication of compactness [14, 18, 16].

In response to such limitations, Harandi [5] generalized partial metric spaces by introducing metric-like
structures and initiated fixed-point studies therein. Later, Shukla et al. [12] advanced this direction by proposing
fuzzy metric-like spaces and deriving fixed-point results under fuzzy contractive conditions. Meanwhile, Atanassov
[1] introduced intuitionistic fuzzy sets, which were extended to intuitionistic fuzzy metric spaces by Park [11],
establishing a richer framework to handle hesitation degrees in uncertainty modeling. Gregori et al. [4] provided a
structural equivalence between intuitionistic and fuzzy metric spaces, which was further extended to intuitionistic
fuzzy metric-like spaces by Onbasioglu et al. [10].

To model indeterminacy more comprehensively, Smarandache [13] introduced neutrosophic sets, characterized
by independent degrees of truth, indeterminacy, and falsity. Kirisci and Simsek [8] built on this by formulating
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neutrosophic metric spaces, and Sowndrarajan et al. [7] explored their potential via fixed-point results for
generalized contraction mappings.

Nevertheless, neutrosophic metric spaces preserve the classical axiom .A((, ¢,6) = 1 for the truth-membership
function, which may be restrictive in certain contexts. For instance, in evaluating paradoxical evidence in logic
systems or measuring the cost of self-comparison in network models, such a condition may not adequately capture
the underlying structure. To overcome this limitation, we introduce neutrosophic metric-like spaces, where the
axiom is generalized to A((, (,0) < 1. This relaxation provides greater flexibility in modeling self-relations and
indeterminacy, thereby extending the applicability of neutrosophic analysis.

Motivated by these developments and gaps in the existing literature, this paper focuses on the structural and
analytical aspects of intuitionistic and neutrosophic metric-like spaces. It aims to bridge the theoretical gap between
existing fixed-point results in classical fuzzy settings and their neutrosophic counterparts. Specifically, we establish
new fixed-point theorems under neutrosophic contractive conditions involving classical Cauchy sequences. The
novelty of our approach lies in the use of neutrosophic metric-like structures, which accommodate a broader
spectrum of uncertainty than traditional fuzzy or intuitionistic frameworks.

In addition, illustrative examples are provided to demonstrate the validity and scope of the theoretical results.
Finally, we apply our findings to solve a class of integral equations, thereby emphasizing the practical significance
of neutrosophic metric-like spaces in mathematical modeling and analysis.

2. Preliminaries

In this section, we recall some basic notions and definitions that will serve as the foundation for our study.

Definition 2.1. ([10]). Let £ # (). A function p : Z x = — R is termed metric-like on Z provided that it fulfills the
following conditons:

MLD p(C, ) =0=( =¢;

(ML2) p(¢, ) = p(¢,¢);

(ML3) p(¢, 2) < p(¢, ) + p(p, 2).

The pair (2, p) is known a s a metric-like space (MLS) on Z.

It is evident that , p({, ¢) = max{(, ¢} is regarded as metric-like on ZE = [0, 00).

Definition 2.2. ([10]) The 5-tuple (=, A, BB, *, ) is said to be an Intuitionistic Fuzzy Metric-Like Space (IFMLS),
where = is a non-empty set, * denotes a continuous ¢-norm, < signifies a continuous ¢-conorm, and A4, 5 are fuzzy
sets defined on E x = x (0, 00). These elements satisfy the following conditions for all {, o, ¥ € Zand 6, > 0

(i) A 9,0) + B(C,0,0) < 15

(i) A(C, »,0) > 0;

(iii) A(C, 0, 0) =1 = (=¢;

(iv) A(C,¢,0) = A(p, ¢, 0);

V) A(C,9,0) x Alp, 8, @) < A, £, 0 + @);

(vi) A(¢, p,-) is a continuous mapping from (0, co0) — [0, 1]
(vil) B(¢,p,0) < 1;

(vii)) B(¢,,0) =1 = (=3

(ix) B(¢, ¢, 0) = B(e, ¢, 0);

(x) B(C,9,0)0B(¢p,t, @) = B(C,¢,6 + @);

(xi) B(¢,¢,-) : (0,00) — [0, 1] is a continuous mapping.
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2 NEW INSIGHTS INTO FIXED POINTS RESULTS IN NEUTROSOPHIC METRIC LIKE-SPACES

Definition 2.3. ([16]). The sequence {(, }nen in (2, A, B, %, O) termed Cauchy if given any e € (0,1) and each

6 > 0 there exists ng € N such that A((p, Cm,0) > 1 — €, and B((,,, G, 0) < €, forall n, m > ng. Alternatively this

condition met if lim A((n,CGm,0) =1and lm  B((,, (n,0) = 0 for all 8 > 0. The IFMLS (E, A, B, x, <)
m,n— 00 m,n— 00

named to be complete If every Cauchy sequence is converges in (=, A, B, *, ).

Definition 2.4. ([16]). A sequence {(,}neny in an IFMS (Z, A, B,*,<) is referred as G-Cauchy if
lim A(Cp, Cntp,t) =1 and lim B((y, Gugp, t) = 0 for each ¢ > 0 and each p € N. The space (E, A, B, *, <) is
n—o0 n—00

described as complete if every G- Cauchy sequence is in = converges.

Definition 2.5. A non-empty set = is given, with % as a continuous ¢-norm, < as a t-conorm, and A, 5, and C as
neutrosophic sets on Z x E x (0, o). The following conditions are satisfied for all {, p, £ € E and 6, w > 0.
(NML1) 0 < A(C, ¢,0) < 1,0 < B(C,0,0) < L0<C(Cp,0) < 15

(NML2) A(¢, ¢, 0) + B (¢, 0,0) +C(C,,0) <3;
(NML3) A(C, »,0) >

(NML4) A(C, p,0) = 1 = (=3
(NMLS5) A(C, ¢, 0) = A(p, ¢, 0);
(NML6) A(C, ¢, 0) x Ap, ¢, @) < A((, 8,0 + @);

(NML7) A(¢, ¢, .) is contmuous a mapping from (0, co) — (0, 1];
(NMLB) B(¢, »,0) <

(NML9) B(¢, »,0) = 0 =(=

(NML10) B(¢, ¢,0) = B(p, ¢, 0),

(NMLI11) B(¢, p,0)0B(p, t, @) > B(¢,¢,0 + @);

(NML12) B(¢, ¢, .) : (0 oo) (0, 1] is continuous.

(NML13) C((, ,0) < 1

(NML14) C(¢, ¢, 0) = 0= =

(NML15) C(C, ¢,0) = C(, ¢, 0);

(NML16) C(C, ,0)0C(p, &, @) > C(C, 0 + w);

(NML17) C(¢, ¢, .) : (0,00) — (0,1] is continuous. Then (2, A, B,C, *, <) is said to be a Neutrosophic Metric-
Like Space (NMLS).

Example 2.6. Let = = R™. Define 7 * s = min{r, s} and rOs = max{r, s} for all r,s € [0,1]. Consider the
neutrosophic sets A, B and C in E x Z x (0, 00) given by

) max{(,p}
s BCed = o

forall ¢, € ZEand § > 0.

We check only triangle inequalities (NML6), (NML11) and (NML16), because verification of the other
conditions is standard. Let (,p € =and 0, ¢, @
max{(, t} < max{(,p} + max{p, t}
= btw 5 min{ @ }
0+ww+max{(,t} — 0+max{(,t}’ w+max{(,t}
= A(( 8,0+ @) = A(C, ¢, 0) * A(p, ¢, @).

max{(,t} max{¢,p} max{p,t}
0+w+max{(,t} < maX{ 0+max{{,p}’ w+max{<p,€}}

= B((,¢,0)0B(p, ¢, @) > B((, 8,0 + @
Similarly, C(¢, ¢, 0)OC(p, t,w) > C(¢, 8,0 + w)
Hence, (2, A, B,C, %, <) is a NMLS.

Observe that

max{¢, ¢}

A(C, p,0) = C(¢C p,0) = 0

A(¢, ¢, 0) = & <1 for¢ >0,

which indicates that even the “self-distance” of a non-zero element is associated with a certain degree of uncertainty
or cost. This highlights the neutrosophic nature of the model, distinguishing it from the classical metric-type
framework.
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Definition 2.7. Let (2, A, B, C, *,<) be a NMLS and {¢,, } be sequence in =
(a) {¢,} is considered convergent to ¢ € = if nh_{rolo A(¢n, ¢, 0) =1, nh_{rgo B(¢ny ¢, 0) =0 and nlglgo C(¢n,¢,0)=0
for all 6 > 0.
(0){¢n} in E is referred to as a Cauchy if given any € € (0,1) and each 6 > 0 there exists no € N such that
Ay Gy 0) > 1 — €, B(Cry Gy 0) <€ and C(Cny G, 0) < €V m,n > ng or equivalently, if

lim  A(n, G, 0) = 1, mljmoo B(n, ¢m,0) = 0 and mI}LrEOOC((m Cm,0) =0forall 6 > 0.

m,n— o0 1— )
(c) The structure (=, A, B, C, x, <) is referred to be complete if every Cauchy sequence ¢, in = converges to some

CEE.

3. Main Results

The core results of this paper are established in this section, highlighting the role of neutrosophic metric-like
structures in generalizing and strengthening fixed-point theory.

Definition 3.1. Let (Z, A4, B,C, *, <) be a NMLS. A function § : = — = is termed a neutrosophic contractive if
there exists a constant ® € (0, 1), referred to as the neutrosophic constant of § such that the following conditions
hold for all (, € Zand § > 0.

1 1
A8 =P [A(w,e) - 1] G.LD
B(H(¢),b(y),0) <B(¢, ¢, 0)and (3.1.2)
C(h(C),h(w),0) <C(C, ¢, 0) (3.1.3)

Theorem 3.2. Let (2, A, B,C, %, <) be a neutrosophic metric-like space and h : = — = a neutrosophic contractive
mapping with neutrosophic contractive constant 9. Let

lim A(C?U Cn-i—lv 0) > 07 (321)
0—0+
91412)14- B(Cna <n+la 9) < land (322)
lim C(Cn,Cot1,0) < 1,n € N (3.2.3)
0—0+

Then, § has a unique fixed point ¢ € = and A({,(,0) = 1,B(¢,¢(,0) =0and C({,¢,0) = 0forall 6 > 0.

Proof

Let (o € = be an arbitrary initial element, and define a sequence (,, C = recursively by ¢, = h((,—1) Vn € N.
If there exists an n € N such that ¢, = (,—1, then (,, is an invariant point of the map §. On the other hand, if
Cn # Cn—1 ¥V n € N, we use the contractive condition (3.1.1) for # > 0 and any n € N. This gives the following

: . 1 _ 1 n
inequality: =25y = 1 = Zmc.scom 1 =0 [
Taking the limit as n approaches infinity, we arrive

1
Aol 1] :

lim A(Cn, i1, 0) = 1,6 > 0. (3.2.4)
n— oo

To establish the sequence {(, }nen is a Cauchy sequence, let us proceed by contradiction. Suppose the opposite,
that there exist € € (0, £), with £ < 1, 6y > 0, and sequences n; and m; such that m; > n; > [ foralll € N and

A(Cmys Cnyy 00) < L —€,1 €N, (3.2.5)

and
A(lefh (nl,ﬁ()) > £ — E,I e N. (326)
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Clearly, from (3.2.5),
llim A(Cmyy Cnyy 00) < £ —€. (3.2.7)
—00
By applying (NML6), for any [ € N and p € (0, 6y), we have
A(C’rnl ) C’I’Lz ) 60) 2 A(sz ) thl,p) * A(<7ﬂz*17 Cﬂz ) 90 - p) (328)

As p — 07 in (3.2.8), leveraging the continuity of h and (3.2.1), we obtain

lim A(Cmys CnyyB0) = lim (lim A(le,(m,é‘o))

=400 l—+o0 \ p—0+
2 hm ( hm A(Cmp(mlflap) *A(leflaé}uvgo _p)>
=400 \ p—0Tt
= l—lg-noo <pll>%1+ A(le ) le—lap)> * l_l)li_noo (pl_lgh A(le—h gm ,00 — p))

=1x lim A(leflagnmgo)
l—+o0
= lim A(<m1717<’n1790) > S_Ea

l—+oc0

and, together with (3.2.7), we have zhm A(Cmyy Cnyy00) = £ — €.
— 00
To prove that llim A(Cmy» Cny+1,00) = £ — €, we proceed using conditions (3.2.1) and (3.2.6) in the following
—00

manner:

lim A(Gn,, Guyt1,00) = lim (hm A(<m1><nl+1700)>

l— 400 =400 \ p—0+

> lim ( lim (le 5 Cm 5 90 - p) * A(Cnl 5 <m+17p)>

T lo+oo \ p—0t

2 hm A(le ) Cnl ) 90) * ]‘

l—+o0

= lim A(Gmys Gy bo) = £ —€
l— 400
Moreover, By utilizing (3.2.1) and (3.2.6), we get:

£ —e= lim ( lim ,A(le,Cn,,ago)>

=400 \ p—0+

> lim ( lim A(levcnl+1790 7p) *A(énz-i-l,é.nlvp))

T l—+oo \ p—0+t

> lim A(Cmanl+1300) 1

l— 400

= lim A(le B Cnl+1a 90)

=400

Therefore, we have: z th:l A(Cmyy Cnyt1,00) = £ — €.
—+00

Now,

lim A(Gny41,Cnit1,00) = lim <hm A(le+1aan+1,9o)>

l—=+o00 l—+oco \ p—0+
Z hm < hm (le-‘rlaleap) * A(leaCnl+1;00 _p)>
l—+o0 \ p—0t
= lilinoo <plg(l)l+ A(sz+17 sz ap>) * lilinoo (pg%h A(sz ) an+1> 90 - p))

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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=1x% lim A(Cm“Cnl-‘rh 90)
l—+o0

= lim 'A(le ) Cm-l—lv 90) =£L—¢
=+

However, we can demonstrate that

£—e= lim ( lim A(le,cnl+1, 00))

=400 \ p—0+

Z lim < lim A(Imeml—‘rlan 7p) *A(<m1+17Cnl+1ap)

=400 \ p—0+t

> 1+ lIm A(Gmi+1,Cnit1,60)
=+

= lim A(le+17§nl+1790)'
=400

SO’ l—lginoo A(Cm,rl-lv Cm-&-la 00) =L —e
By utilizing (3.1.1.) A, the relationship can be written as:

1 1
-1<0

A(sz-‘rla an-‘rh 90) N A(sz ) C’fbl ’ 90)

Asl—oo,wefind: § —1<d[§—1] <4 -1
This results in a clear contradiction.
Referring (3.1.2), we deduce

B(h(Cn—l)y hgna ‘9) = B(Cﬂa <7l+1a 0) < D"B(CO, Clv 9)-
Thus, it follows that

lim B(Gus Gut,0) = 0,0 > 0.

—-1].

)

(3.2.9)

To establish that {{, } nen is a Cauchy sequence, let us proceed by contradiction, that is there exist
e € (0,M), M < 1,6y > 0 and sequences {n;} and {m;} such that m; > n; > [, for every | € N and the following

holds:

B(CmanlaaO) Z m+€7l S Na

and

B(szflﬂcnmeo) < m"‘ 671 c N.

From (3.2.10), we have:

Hm B(Cmys CnysBo) = M+ €.
l—o0

By applying (NMLS11), for arbitrary [ € N and p € (0, 6,), we derive:

B(sz,vgnma()) S B(szvCm;,flap)OB(szflaCnmgO _p)‘

Stat., Optim. Inf. Comput.

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)
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6 NEW INSIGHTS INTO FIXED POINTS RESULTS IN NEUTROSOPHIC METRIC LIKE-SPACES

Taking the limit as p — 0T in the inequality (3.2.13), and using the continuity of < along with (3.1.2), we can
conclude that:

lim B(szacnlaao) = lim (hIn B(sz’cnmeo))

l——+o0 =400 \ p—0+

< hm <11H1 B(leyCﬂLl—lap)OB(CmL—hCnm00 _p)>

T l=+oo \ p—0t

= lim (hm B(Cmmsz—hp)) <>lhm <hm B(le—h(:nmeo _p)>

l—+oc0 \ p—0+ —+oo \ p—0t

= O<> hm B(le—1’<n“00)
=400
= hm B(le—hé.nme())

l—+o0

<M+e,

from (3.2.12), we deduce that, zhm B(Cmys Cnyy B0) = M+ €.
—00
Now, we aim to prove that llim B(Cmys Cny+1,00) = M + €. This can be established using (3.2.2) and (3.2.11), as
—00

follows:

lim B(Cmanz-‘rheO) = lim (hm B(sz,gm-‘rlveo))

l—+o0 l—+o0 \ p—0Tt

lim ( lim B(le ’ Cm ) 90 - p)OB(CnZ ’ CnlJrlvp))

=400 \ p—0+

lim B(le ) an ) 90)00
l—+o0
l—lg—rﬁfloo B(sz ) Cm ) 00)
=M+e.

IN A

Additionally, based on (3.2.2) and (3.2.11),

lim (hm B(CmL,CnNGO))

=400 \ p—0+

< lim < lm B(¢my s Cuy+15 00 _p)OB(CnHrlaCnmp))
p—0t

l— 400

lim B(le 5 Cnl+17 90)00
l—+oc0

l—lg-noo B(sz ) Cﬂl‘f‘l’ 90)'

M+ e

N

v

Therefore, we can conclude that z lir+n B(Cmys Cnyt1,00) = M+ €.
—+00

Now,

lim B(Gny41,Cni+1,00) = lim <1im B(le+1,an+1,90)>

l—+4o00 l—=+o00 \ p—0t

S lim <hm B(Cmﬁ»laleap><>B(CmLaCnl+1;90_p)>

p—0t

lim (hm B(le+lvcmlﬂp)> ¢ lim (hm B(Cmncnl+1700_p)>

l—+oo \ p—0+ l—+oo \ p—0+

= O<> hm B(CmpC’anl’ 90)
l—+o0
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= hm B(le,C’nl-‘rheO)

l—+oco

=M+,

However, it is evident that

m+€: lim <hm B(le,cnl+1,00)>

=400 \ p—0+
§ lim < lim B(le ) CmH—la 00 - p)OB(CmL+17 Cnl+1ap))
=400 \ p—0+

<00 lim B(Gmyt1sCny+1:60)
l—+o0

- llginm B(le+1’ C"'7114’17 90)

So, z lm  B(Cmy+1, Cny+1,00) = M + €. Within the framework of a contractive condition for B, it follows that
—+00

B(Cmy+15Cnyt1500) < OB(Cmys Cny» o). Letting I — oo, we get M+ 1 < (1 + M) < 1+ M, which clearly leads
to a contradiction. By (3.1.3), we have C(H((n—1), HCn, 0) = C(Cn, Cna1,0) < 0™C((o, (1, 0).
Therefore, we can conclude that

lim C((n,Cnt1,6) =0,0 > 0. (3.2.14)

n—oQ

To show that {(,}nen is a Cauchy sequence, let us proceed by contradiction. Suppose the opposite, that there
exist € € (0,91),91 < 1,60 > 0 and sequences {n;} and {m;} such that m; > n; >, V[ € N and the following
inequalities hold:

C(Cmy>Cnir00) > N+€,l €N, (3.2.15)
and
C(Cmi—1:Cnys 00) <N+ el €N (3.2.16)
From (3.2.15), we have:
zhm C(CmyyCnyyB0) = M +e. (3.2.17)
—00

Applying (NMLS16), for any [ € N and p € (0, 6,), we have:
C(le ) an ) 90) S C(le ) CmZ*hp)Oc(sz*h Cnl ) 90 - p) (32]8)

Taking the limit as p — 0" in the inequality (3.2.18) and using continuity of < along with (3.1.3), we can infer the
following:

lilinoo C(le ) Cm ’ 90) = lilinoo <plirg+ C(le ’ Cnl 5 90))

< lim (hm C(leale—lap)OC(le—lagnlaeo p))

T l>+4o00 \ p—0+t

= hm < hm C(le7<77L1—17p)) <> hm < hm B(le—17<7L1700 _p)>

l—+0c0 \ p—0*+ l—+o00 \ p—0+

=0 lim C(le—lagnlago)
l—+o00
= liiinmC(lefl,CnlaQO)

<MN+e,

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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and together with (3.2.17), this implies that llim CCmyyCnyy0o0) =N+ e
—00
Let us prove that llim C(Cmy» Cny+1,00) = M+ €. By (3.2.3) and (3.2.16), we can establish that:
—00

lim C(Cm“Cnl+1790) = lim (hm C(levé-’nz+1790)>

l—+4oc0 =400 \ p—0Tt

< lim (hm C(cmHCnmeO P)OC(Cnl,Cnl+1,p)>

T =400 \ p—0+t

< lim C(Cm;, s Gy 90)00
l—=+o0

- liiinoo C(sz ’ <nl ) 90)

= m + €.

Additionally, based on (3.2.3) and (3.2.16),

N+e= lim <lim C(le,gnl,90)>

=400 \ p—0+t

< lim (lim C(leacnz+17€0 —p)<>C<<nl+1,Cm,p)>

~ l—+oo \ p—0t

> lim C(le7<nl+1a90)<>0
l—+o0

= lim C(Cm“CnH-laao)'

=+

Therefore, we can conclude that z lir+n B(Cmys Cnyt1,00) = DN+ €.
— 400

Now,
liiglooc(le+17 Cru+1.60) = liifrnoo <p1i%1+ C(Cmi+15 Crut1, 90)>
< . lim ( lim C(CWLHrl? Cm,,P)QC(CmL ) <n1,+17 90 - p))
—+oo \ p—0+

= lim <hm C(le+17<mlvp)> ¢ lim (hm C(CWLUCTLH-MHO p))

=400 \ p—0+ =400 \ p—0+

=00 lim C(Gmy,sCnyt1,60)
l—+o0

== ll}inooc(leaan+1790)

=MN—+e,

However, it is evident that,

MN+¢e= lim (hm C(le,Cnl—i-heO))

l—+o00 \ p—0+

< i (T ClCoisGurssoto = PIOC(Gm11.Gurs1,0))
p—0t
§0<> lim C(anl+1;<nl+1700)
l—+00
= lim C(Cmyt1,Cnit1, bo)-
l—+o0

So, l lir+n C(Cmy+1,Cny+1,00) = DM+ €. Under the contractive condition for C, it holds that
—+00
C(Cmy+1; Cnyt1,00) < OC(Cmyy Gy B0). As I — oo, this leads to M+ 1 <d(1+M) <1+M€, results in a clear
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contradiction.

In all three scenarios, {(, }nen is a Cauchy sequence, ensuring the existence of ¢ € = such that lim ¢, = (.
n—oo

As a consequence, the following hold:

Jim. A(Gn, €, 0) = A(C, ¢, 0) = n})}}gw A(Cny Cm 0)

Jim B(¢n, ¢, 0) = B(,(,,¢.0) = . lim B(Gns G 0) and

lim C(CnyC,0) =C(C,C,0) = Tim  C(CnyCm, 6).

noo n,m—r00

Additionally, it follows that m —1<9? [m - 1} . As n,m — oo, this implies

m -1<0 {m - 1}, which holds only if A(, ¢, , ¢, 0) = 1.

Similarly from B(p, Cn,0) < 0B(Cm-1,Cn-1,0) as n,m — oo, we derive B((,(,0) <0B((,¢,0), which is
possible only if B(¢, (,t) = 0 and C((m, ¢y 0) < 0C(Cm—1,Cn—1,0) as n,m — oo, we arrive at:

C(¢,¢,t) <0C(¢, ¢, t), which holds only if C(¢, ¢, 0) = 0.

Thus, we conclude

nlgr;o A(Cna Ca 0) = A(Ca Cv 0) = n 717111300 A(Cru(mve) = 17
lim B(Cn, ¢,0) = B((,¢,0) = lim B(Cn,(m, ) = 0and
lim (GG, 0) =C(¢C.0) = Tim C(Gn, G ) = 0.

We now prove that ( is a fixed point of f. To do this, we use Definition(3.1) to establish the following inequalities

1 1
W -1<90 [w - 1:| B(H(C), b(),0) <0B(C,¢,0),C(h(C), blp),0) <C(C,p,0).
3.2.19)

From these inequalities, we derive

AGH(0),0) 2 A G0 (©).5)

)4
) s (b n.5)
)

*
o _
,4,9)+1 0

&

B <Cn,C, >
oC <<n+la C ) )
(r69.916.2)

<>DC Cnv Ca 2)
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Letting n — oo and applying (3.2.19), (3.2.20) and (3.2.21), we obtain,

A(C,5(C),0) = 1,B(¢,h(C), ) = 0and C(¢, h(¢), 0) = 0.
Thus h(¢) = ¢, confirming that ¢ is fixed point of h and A({, ¢,0) = 1,B(¢, ¢, 0) = 0andC((, ¢, 6) = 0.

Next, we prove the uniqueness of the fixed point ¢ of .
Suppose there exists another fixed point 1y of h such that
A(¢,1,0) < 1,B(¢,9,0) > 0andC(¢, 1, 0) > 0, for some 6 > 0.
From the definition of (3.1), we have the following inequalities

1 1 1 1
ACo.0) T AB©.em.0 Ay VT Agye -
B(C.v.0) = B(H(). b(n). 6) < 9B(C.1.6) < B(C, 1, 6) and
o

C(¢,n,0) =C(h(C),h(n),0) <0C(¢,n,0) <C(¢,,0).

This leads to a contradiction, as the inequality cannot hold simultaneously. Therefore, we conclude that A((, 1, 0) =

1,B(¢,9,0) = 0andC(¢,v,0) = 0,V0 > 0. Thus, ¢ is a unique fixed point of b. O
Example 3.3. Let ==10,2],axb=ab and a{Ob = max{a,b}. Define the neutrosophic sets as follows:
A, 0,0) = _M B, p,0)=1— e‘maxgc’w}, and C((, ¢, 0) = =22 for all ¢, €Z,0 > 0. Then,
(2, A,B,C, %, <>) forms a complete NMLS. Consider the mapping b given by

0, ¢=1
h¢) =< § ¢e0,1) .

ToCe(12]
max{(é2,¢/2} < Inaxgc,tp}
= W —1< ey 1

— max{¢,p}

1
= e — L < amoam)
max((/2/2)  max{Cip)

0 — 0
= e~ max{(éZ,cp/Q} > e Inaxég,tp}

=1 - e maxld/2e/2) o - max{Ce)

B(h(€), b(y),0) < 0B(¢, ¢,0).

= B(H(¢), b(y),0) < dB(C, ¢, 0)

Similarly, C(h(C), b(y),0) < dC(C, ¢, 0).

Therefore, b is a neutrosophic contractive function for % < 0 < 1. By Theorem (3.2), h has a unique fixed point.

4. Application

Let 2= = C([, o], R) denote the collection of all the real-valued continuous functions defined on [¢, g]. Now,
consider the integral equation given below.

"
S(r) =n(e) + 8 | F(re)d(m)Tefor m.c € ol O
X
where 7(e) € C([¢, 0], R), F € E. Define the functions A, B and C as follows:

0
A(6(), o(r),0) = W;’Efp] 0 + max{d(n), o(m)’
]
B((m), o(m),0) =1 — ﬂgg’ﬂ] 0 + max{d(r), o(m)} and
0

inf
relx,u) 0 + max{d(m), o(m)}

C(d(m), o(m),0) = —1V68,0€ Zandf > 0.
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Define ¢ x ¢ = min{s.¢} and ¢Op = max{s, ¢}. Then, let (£, A, B,C, %, ") be a complete NMLS.

Theorem 4.1. Let max{F(m,e)p(n), F(r, e)o(m)}? < max{o(r),o(n)}? V 9,0 € Z,w € (0,1) and V 7, e €
2

[x, p]. Furthermore, assume that (6 f ; Fe> < w < 1. Then the integral Equation (I) has a unique solution.

Proof

Define § : :—>:asf5( )= +5f” (m)Te for all 7, e € [x, p]-
For any 4, 0 € E, we compute

sup wb
relxu) @0+ max{fo(m), fo(m)}

A(fé(ﬂ-)a f@(ﬂ-)v we) =

wb
= sup
TE D u] w0+max{77(e) +Bf; F(m,e)d(m)Te,n(e +6f F(r e)5(7r)Fe}
~ s wb
TE [ u] w0+max{5 f“ )6(W)Fe,ﬂf: F(w,e)é(w)Fe}
~ sup wt .
"€ 0 + max{F(m,e)d(r), F(r, e)o(n)} (ﬁ f; Fe)
0
- WEFP 10+ max{5(r), ()}
A(8(), o(m), 6).
A(fé(m), fo(r), @ ) A(8(m), o(m), )
1 1
= A, jelm),=0) - A, o), 0)
B, folm). =) = 1= s
=1— sup wt
TEXH] w9+max{ —|—Bf‘ e)d(m)Te, n(e +,Bf’ Jo(m )Fe}
=1— sup il
melx.ul wh + max {,8 f’ )(5(7T)F€,ﬁf;: F(ﬂ,e)g(ﬂ)Fe}
60
=1— sup
m€br] wh + max{F(m,e)d(w), F(m,e) (6 f” Fe>
0
= A T a5, o)}
< B(4(m), o(7),0),
. wb
C(f(s(ﬂ)afg(ﬂ)ﬂﬂa) = ﬂé&f,u] ) +max{f5(7r),fg(7r)} -1
. wb
= inf -1
TE[X ] w9+max{ —&—Bf” )o(m)Te,n(e) —|—ﬁfH Yo(m )Fe}
wb
= inf -1

€lom 50 + max {ﬁ f; F(rm,e)d(m)le, f; F(m, E)Q(W)Fe}
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. wb

= inf -1
mebonl 4+ max{F(r,e)d(n), F(r,e)o(r)} (ﬂ f; Fe)
wb

inf -1
~ relx.u] wbh + max{d(n), o(m)}
< C(6(m), o(m), 0).

As all requirements of Theorem(3.2) are fulfilled. the integral equation admits a unique solution. O

S.

conclusion

In this paper, we have successfully introduced the notion of neutrosophic metric-like spaces as a natural extension
of both intuitionistic fuzzy metric spaces and classical metric-like spaces. The developed framework provides
greater flexibility for handling uncertainty and indeterminacy in mathematical analysis. Fundamental properties
such as sequence convergence, G-Cauchy sequences, and contractive mappings have been rigorously explored,
leading to new fixed-point theorems under the neutrosophic setting. Illustrative examples confirm the validity
of the theoretical results, while potential applications highlight the wider relevance of the proposed structure in
advancing fuzzy and neutrosophic mathematical modeling.

kPN =

16.
17.

18.
19.

REFERENCES

K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 1986, 20, 87-96.

A. George, P. Veeramani, On some result in fuzzy metric spaces, Fuzzy Sets Syst. 1994, 64, 395-399.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 1989, 27, 385-389.

V. Gregori, S. Romaguera, P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 2006, 28, 902-905.
A.A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 204, 1-10.

Ishtiaq U, Saleem N, Uddin F, Sessa S, Ahmad K, di Martino F, Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-
Like Spaces and Certain Fixed-Point Results with Application, Symmetry. 2022; 14(11):2364. https://doi.org/10.3390/sym14112364.
M. Jeyaraman, S. Sowndrarajan, Common fixed point results in neutrosophic metric spaces, Neutrosophic Sets and Systems,
2021(42), 208-220.

M. Kirisci, N. Simsek, Neutrosophic metric spaces, Math. Sci. 2020, 14, 241-248. https://doi.org/10.28919/math/4543.

I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 1975, 11, 326-334.

S. Onbasioglu, B.P. Varol, Intuitionistic Fuzzy Metric-like Spaces and Fixed-Point Results, Mathematics 2023, 11, 1902.

J.H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 2004, 22, 1039-1046.

S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst. 2014, 11, 81-92.

F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic; ProQuest Information and Learning: Ann Arbor, MI,
USA, 1998.

G. Song, Comments on A common fixed point theorems in a fuzzy metric spaces, Fuzzy Syst. 2003, 135, 409-419.

S. Sowndrarajan, M. Jeyaraman, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces,
Neutrosoph. Sets Syst. 2020, 36, 23. https://doi.org/10.5281/zenodo.3966651.

P. Tirado, On compactness and G-completeness in fuzzy metric spaces, Iran. J. Fuzzy Syst. 2012, 9, 151-158.

Uddin F, Ishtiaq U, Javed K, Aiadi SS, Arshad M, Souayah N, Mlaiki N, A New Extension to the Intuitionistic Fuzzy Metric-like
Spaces, Symmetry. 2022; 14(7):1400. https://doi.org/10.3390/sym14071400

R. Vasuki, P. Veeramani, Fixed point theorems and Cauchy sequcence in fuzzy metric space, Fuzzy Seys Syst. 2003,135, 415-417.
L.A. Zadeh, Fuzzy sets. Inf. Control 1965, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Application
	5 conclusion

