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1. Introduction

Atanassov introduced the concept of intuitionistic fuzzy sets, which expanded the framework of fuzzy sets
by incorporating the degree of hesitation alongside membership and non-membership [1]. This significant
advancement has inspired further research in generalized metric spaces and fixed-point theory.

George explored fuzzy metric spaces and established foundational results that became integral to studies in
this domain [2]. Kramosil developed the concept of fuzzy metrics, linking them with statistical metric spaces
to provide a broader understanding of their theoretical underpinnings [9]. Poovaragavan extended this work to
multidimensional common fixed-point theorems and contraction in V -fuzzy metric spaces, providing new avenues
for research [5, 6, 10, 11].

Gopal investigated k-NMS, presenting the first contraction principle in such spaces, which has broadened the
application of fixed-point theorems [3]. Johnsy contributed to generalized NMS, particularly focusing on fixed-
point results for (ψ − ϕ)-contractions [7].

Huang explored fuzzy f -contractions and established fixed-point theorems in fuzzy metric spaces, highlighting
their practical applications in mathematics and engineering [4]. Park introduced intuitionistic fuzzy metric spaces,
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providing an extension to classical metric spaces and enabling more robust modeling of uncertainty [12]. Patel et
al. [13] explored k-fuzzy metric spaces and their applications, providing valuable insights into the theoretical and
practical aspects of these spaces in nonlinear analysis.

Sowndrarajan expanded fixed-point theory to NMS, demonstrating the potential of contraction theorems in this
context [14]. Simsek further advanced the study of NMS by proving fixed-point results specific to these spaces
[15]. Kirisci developed a comprehensive theory of NMS, focusing on their unique properties and applications [8].

Smarandache introduced neutrosophy, a generalized theory for dealing with uncertainty, which has been applied
extensively in various mathematical frameworks [16]. Vasuki contributed significantly to the study of Cauchy
sequences and fixed-point theorems in fuzzy metric spaces, establishing results that have found broad applicability
[17].

Wardowski explored fuzzy contractive mappings, providing new insights into fixed points in fuzzy metric spaces
and their practical applications [18]. Finally, Zadeh’s seminal work on fuzzy sets laid the foundation for all
subsequent developments in this domain [19]. In this present paper, the authors investigate Tirado-type contractions
and their fixed-point results within the framework of k-NMS. The study extends existing fixed-point theorems by
introducing these contractions, which are useful in handling imprecision and uncertainty inherent in neutrosophic
spaces. The findings offer new insights into applying these contraction mappings in various real-world problems
where ambiguity and partial truth are present.

2. Preliminaries

Definition 2.1. [2] A transformation ⊙ defined on [0, 1]2 to [0, 1] is referred to as a continuous triangular norm
(CTN) if it meets the subsequent assertions:
(i) Commutativity and Associativity: ⊙(e, f) = ⊙(f, e) and ⊙(⊙(e, f), g) = ⊙(e,⊙(f, g)) for all e, f, g ∈ [0, 1],
(ii) Continuity: ⊙ is a continuous function;
(iii) Neutral Element: 1⊙ e = e for all e ∈ [0, 1],
(iv) Monotonicity: e⊙ f ≤ g ⊙ h whenever e ≤ g and f ≤ h for all e, f, g, h ∈ [0, 1].

Definition 2.2. [12] A transformation ⊕ defined on [0, 1]× [0, 1] to [0, 1] is referred to as a continuous triangular
conorm (CTCN) if it meets the subsequent assertions:
(i) Commutativity and Associativity: ⊕(e, f) = ⊕(f, e) and ⊕(⊕(e, f), g) = ⊕(e,⊕(f, g)) for all e, f, g ∈ [0, 1],
(ii) Continuity: ⊕ is a continuous function,
(iii) Neutral Element: 0⊕ e = e for all e ∈ [0, 1],
(iv) Monotonicity: e⊕ f ≥ g ⊕ h whenever e ≥ g and f ≥ h, for all e, f, g, h ∈ [0, 1].

Examples of t-norms and t-conorms include:
(i) e⊙ f = e · f , e⊕ f = min{e, f},
(ii) e⊙ f = min{e, f}, e⊕ f = max{e, f},
(iii) e⊙ f = max{e+ f − 1, 0}, e⊕ f = min{e+ f, 1}.

Definition 2.3. Let U be a universe of discourse. A neutrosophic set A in U is defined as

A = {⟨x, TA(x), IA(x), FA(x)⟩ : x ∈ U},

where

• TA(x) denotes the degree of truth-membership of the element x in A,
• IA(x) denotes the degree of indeterminacy-membership of the element x in A,
• FA(x) denotes the degree of falsity-membership of the element x in A.

Here,
TA(x), IA(x), FA(x) ⊆ [0, 1],

and they are independent, i.e.,

0 ≤ inf TA(x) + inf IA(x) + inf FA(x) ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3.
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Definition 2.4. An ordered triple (A,By,⊙) is a FMS if A is nonempty. ⊙ is a CTN. By is a FS on A2 × (0,∞)
fulfilling the following claims, for all φ, ι, k ∈ A and λ, s > 0
(i) By(φ, ι, λ) > 0,
(ii) By(φ, ι, λ) = 1 if and only if φ = ι,
(iii) By(φ, ι, λ) = By(ι, φ, λ),
(iv) By(φ, ι, λ)⊙By(ι, k, s) ≤ By(φ, k, λ+ s),
(v) By(φ, ι, .) : (0,+∞) → [0, 1] is continuous.

Definition 2.5. A IFMS is a 5-tuple (A,By, Dy,⊙,⊕) where A is a non-empty set. ⊙ and ⊕ are CTN and CTCN
respectively. By, Dy be FS, on A2 × (0,+∞) fulfills the following assertions, for all φ, ι ∈ A and λ, s > 0,
(i) By(φ, ι, λ) +Dy(φ, ι, λ) ≤ 1,
(ii) By(φ, ι, λ) > 0,
(iii) By(φ, ι, λ) = 1 ⇔ φ = ι,
(iv) By(φ, ι, λ) = By(ι, φ, λ),
(v) By(φ, k, λ+ s) ≤ By(φ, ι, λ)⊙By(ι, k, s),
(vi) By(φ, ι, .) : (0,∞) → [0, 1] is continuous mapping and lim

λ→∞
By(φ, ι, λ) = 1 for all λ > 0,

(vii) Dy(φ, ι, λ) > 0,
(viii) Dy(φ, ι, λ) = 0 ⇔ φ = ι,
(ix) Dy(φ, ι, λ) = Dy(ι, φ, λ),
(x) Dy(φ, k, λ+ s) ≤ Dy(φ, ι, λ)⊕Dy(ι, k, s),
(xi) Dy(φ, ι, .):The mapping from (0,∞) → [0, 1] is continuous.and lim

λ→∞
Dy(φ, ι, r) = 0 for all r > 0.

Then (A,By, Dy,⊙,⊕) is an IFMS.

Definition 2.6. [14] A NMS is a 6-tuple (A,BY,DY,EY,⊙,⊕), where: A is a non-empty set. ⊙ and ⊕ are CTN
and CTCN, respectively. BY,DY,EY are neutrosophic sets defined on A×A× (0,+∞) mapping to [0, 1]. These
components meets the subsequent assertions for all φ, ι, κ ∈ A and λ, s > 0:
(i) BY(φ, ι, λ) + DY(φ, ι, λ) + EY(φ, ι, λ) ≤ 3,
(ii) BY(φ, ι, λ) > 0,
(iii) BY(φ, ι, λ) = 1 ⇔ φ = ι,
(iv) BY(φ, ι, λ) = BY(ι, φ, λ),
(v) BY(φ, κ, λ+ s) ≤ BY(φ, ι, λ)⊙ BY(ι, κ, s),
(vi) BY(φ, ι, ·) : (0,∞) → [0, 1] is a continuous mapping,
(vii) DY(φ, ι, λ) > 0,
(viii) DY(φ, ι, λ) = 1 ⇔ φ = ι,
(ix) DY(φ, ι, λ) = DY(ι, φ, λ),
(x) DY(φ, κ, λ+ s) ≥ DY(φ, ι, λ)⊕DY(ι, κ, s),
(xi) DY(φ, ι, ·) : (0,∞) → [0, 1] is a continuous mapping,
(xii) EY(φ, ι, λ) > 0,
(xiii) EY(φ, ι, λ) = 1 ⇔ φ = ι,
(xiv) EY(φ, ι, λ) = EY(ι, φ, λ),
(xv) EY(φ, κ, λ+ s) ≥ EY(φ, ι, λ)⊕ EY(ι, κ, s),
(xvi) EY(φ, ι, ·) : (0,∞) → [0, 1] is a continuous mapping.

Definition 2.7. A space (A,BY,DY,DY,⊙,⊕) is referred to as a natural NMS if, and only if, it meets the
subsequent assertions: lim

λ→+∞
BY(φ, ι, λ) = 1, lim

λ→+∞
DY(φ, ι, λ) = 0, lim

λ→+∞
EY(φ, ι, λ) = 0, for all φ, ι ∈ A.

Example 2.8. Let (A,BY,DY,DY,⊙,⊕) be a NMS. Define BY,DY and EY on A2 × (0,+∞) by

BY(φ, ι,ϖ(φ, ι)) =
1

1 +ϖ(φ, ι)2
, DY(φ, ι,ϖ(φ, ι)) =

ϖ(φ, ι)

1 +ϖ(φ, ι)
, EY(φ, ι,ϖ(φ, ι)) =

1

1 +ϖ(φ, ι)
,

for all φ, ι > 0. Then (A,BY,DY,DY,⊙,⊕) is a natural NMS.
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George and Veeramani presented the idea of k-NMS, where k ∈ {1, 2, 3, . . .}, Fuzzy metric spaces were
expanded upon and generalized in 1994.. In this paradigm, the degree of nearness between two places is specified
by k- parameters. The basic concept behind the k-neutrosophic metric is shown here.

Definition 2.9. A definite set A is specified, ⊙ and ⊕ are CTN and CTCN, respectively, k is a positive integer, and
BY,DY,EY are the neutrosophic sets on A2 × (0,+∞)k known as k-Neutrosophic metric for every φ, ι, κ ∈ A
and λ1, λ2, . . . , λk > 0 meets the subsequent assertions:
(i) BY(φ, ι, λ1, λ2, . . . , λk) + DY(φ, ι, λ1, λ2, . . . , λk) + EY(φ, ι, λ1, λ2, . . . , λk) ≤ 3,
(ii) BY(φ, ι, λ1, λ2, . . . , λk) > 0,
(iii) BY(φ, ι, λ1, λ2, . . . , λk) = 1 if and only if φ = ι,
(iv) BY(φ, ι, λ1, λ2, . . . , λk) = BY(ι, φ, λ1, λ2, . . . , λk),
(v) For any q ∈ {1, 2, 3, . . . , k}, we have:

BY(φ, ι, λ1, λ2, . . . , λq−1, t, λq+1, . . . , λk)⊙ BY(ι, κ, λ1, λ2, . . . , λq−1, s, rq+1, . . . , λk)

≤ BY(φ, κ, λ1, λ2, . . . , λq−1, t+ s, λq+1, . . . , λk);

(vi) BY(φ, ι, ·) : (0,+∞)k → [0, 1] is a continuous mapping,
(vii) DY(φ, ι, λ1, λ2, . . . , λk) > 0,
(viii) DY(φ, ι, λ1, λ2, . . . , λk) = 1 if and only if φ = ι,
(ix) DY(φ, ι, λ1, λ2, . . . , λk) = DY(ι, φ, λ1, λ2, . . . , λk),
(x) For any q ∈ {1, 2, 3, . . . , k}, we have:

DY(φ, ι, λ1, λ2, . . . , λq−1, t, λq+1, . . . , λk)⊕DY(ι, κ, λ1, λ2, . . . , λq−1, s, λq+1, . . . , λk)

≥ DY(φ, κ, λ1, λ2, . . . , λq−1, t+ s, λq+1, . . . , λk),

(xi) DY(φ, ι, ·) : (0,+∞)k → [0, 1] is a continuous mapping,
(xii) EY(φ, ι, λ1, λ2, . . . , λk) > 0,
(xiii) EY(φ, ι, λ1, λ2, . . . , λk) = 1 if and only if φ = ι,
(xiv) EY(φ, ι, λ1, λ2, . . . , λk) = EY(ι, φ, λ1, λ2, . . . , λk),
(xv) For any q ∈ {1, 2, 3, . . . , k}, we have:

EY(φ, ι, λ1, λ2, . . . , λq−1, t, λq + 1, . . . , λk)⊕ EY(ι, κ, λ1, λ2, . . . , λq−1, s, λq+1, . . . , λk)

≥ EY(φ, κ, λ1, λ2, . . . , λq−1, t+ s, λq+1, . . . , λk),

(xvi) EY(φ, ι, ·) : (0,+∞)k → [0, 1] is a continuous mapping.
The notation of k-NMS is (A,BY,DY,EY,⊙,⊕).

Remark 2.10. A k-NMS reduces to a standard NMS when k = 1. To illustrate this, consider the following
mathematical formulas for a k-neutrosophic metric in the context of examples. For k = 1, the calculations simplify
to a neutrosophic metric where the components depend on the distance between elements and a parameter λ1 > 0:

BY(x1, x2, λ1) = e−
|λ1|
λ1 , DY(x1, x2, λ1) = 1− e−

|λ1|
λ1 , EY(x1, x2, λ1) =

1

1 + e−
|λ1|
λ1

.

These formulas represent the truth, falsity, and indeterminacy components of the neutrosophic metric, which
depend explicitly on the parameter λ1. Therefore, the k-NMS (A,BY,DY,EY,⊙,⊕) transitions into a NMS when
k = 1.
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Example 2.11. The ϖ is a metric on A, ⊙,⊕ be CTN and CTCN, w > 0, and k be a positive integer. Describe:
BY,DY and EY on A2 × (0,+∞)k by

BY (φ, ι, λ1, λ2, . . . , λk) =
wλ1λ2 · · ·λk

wλ1λ2 · · ·λk +ϖ(φ, ι)

DY (φ, ι, λ1, λ2, . . . , λk) =
ϖ(φ, ι)

wλ1λ2 · · ·λk +ϖ(φ, ι)

EY (φ, ι, λ1, λ2, . . . , λk) =
ϖ(φ, ι)

wλ1λ2 · · ·λk + 2ϖ(φ, ι)

for all φ, ι ∈ A and λ1, λ2, . . . , λk > 0. Then (A,BY,DY,EY,⊙,⊕) is a k-NMS.

Definition 2.12. A k-NMS (A,BY,DY,EY,⊙,⊕) known as q-natural k-NMS if there is q ∈
{1, 2, . . . , k}, corresponding to lim

pq→∞
BY(δ, υ, p1, p2, . . . , pk) = 1, lim

pq→∞
DY(δ, υ, p1, p2, . . . , pk) = 0,

lim
pq→∞

EY(δ, υ, p1, p2, . . . , pk) = 0, ∀ δ, υ ∈ A.

To keep things simple, we indicate BY(δ, υ, p1, p2, . . . , pk) by BY(δ, υ, p
k
1).

Example 2.13. Consider a set A = R (the set of real numbers) equipped with the usual Euclidean distance ϖ, i.e.,
for any two points a, b ∈ R, the distance between them is given by: ϖ(a, b) = |a− b| Define:

BY(a, b, p1, p2) =
wp1p2

wp1p2 +ϖ(a, b)
, DY(a, b, p1, p2) =

ϖ(a, b)

wp1p2 +ϖ(a, b)
, EY(a, b, p1, p2) =

ϖ(a, b)

wp1p2
.

where w > 0 is a constant, and p1, p2 > 0 are positive parameters associated with each of the 2 dimensions. Now,
let p1, p2 be parameters that we will vary. According to the definition, the space is an q-natural 2-NMS if there
exists some q ∈ {1, 2} such that:
lim

pq→∞
BY(a, b, p1, p2) = 1, lim

pq→∞
DY(a, b, p1, p2) = 0, lim

pq→∞
EY(a, b, p1, p2) = 0 ∀ a, b ∈ A.

Proposition 2.14. Assume that (A,BY,DY,EY,⊙,⊕) is a k-NMS, each of p, p1, p2, . . . , pk is strictly positive.
While pq < p for a few q ∈ {1, 2, . . . , k}, then

BY(a, b, p
k
1) ≤ BY(a, b, p1, p2, . . . , pq−1, p, pq+1, . . . , pk),

DY(a, b, p
k
1) ≥ DY(a, b, p1, p2, . . . , pq−1, p, pq+1, . . . , pk),

EY(a, b, p
k
1) ≥ EY(a, b, p1, p2, . . . , pq−1, p, pq+1, . . . , pk), ∀ a, b ∈ A.

Definition 2.15. Assume that (A,BY,DY,EY,⊙,⊕) is a k-NMS. A sequence {an} in A is claimed to be
convergent to a point a in A iff for each real ϵ ∈ (0, 1) there exists n0 is a natural number as to ensure that
BY

(
an, a, p

k
1

)
> 1− ϵ, DY

(
an, a, p

k
1

)
< ϵ and EY

(
an, a, p

k
1

)
< ϵ, for each n, n0 ≤ n and p1, p2, . . . , pk are all

non-negative.

Example 2.16. Let (A,BY,DY,EY,⊙,⊕) be a 2-NMS. Define:

BY(δ, υ, p1, p2) =
p1p2

p1p2 + |δ − υ|
, DY(δ, υ, p1, p2) =

|δ − υ|
p1p2 + |δ − υ|

, EY(δ, υ, p1, p2) =
|δ − υ|
p1p2

.

Here, p1 = 1, p2 = 2, so p1p2 = 2. For an = 1
n and a = 0,

BY(an, 0, p1, p2) =
2

2 + |an − 0|
=

2

2 + 1/n
.
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As n→ ∞, BY(an, 0, p1, p2) → 2
2 = 1. For a specific ϵ = 0.1, 1− ϵ = 0.9. We need n0 such that for n ≥ n0,

BY(an, 0, p1, p2) > 0.9.

2

2 + 1/n
> 0.9 =⇒ 2 > 0.9(2 + 1/n) =⇒ 2 > 1.8 + 0.9/n =⇒ 0.2 > 0.9/n =⇒ n >

0.9

0.2
.

Thus, n0 ≈ 5. For n ≥ 5, BY(an, 0, p1, p2) > 0.9.

DY(an, 0, p1, p2) =
|an − 0|

2 + |an − 0|
=

1/n

2 + 1/n
.

As n→ ∞, DY(an, 0, p1, p2) → 0. For ϵ = 0.1, we need n0 such that for n ≥ n0, DY(an, 0, p1, p2) < 0.1.

1/n

2 + 1/n
< 0.1 =⇒ 1/n

2
< 0.1 =⇒ 1

2n
< 0.1 =⇒ n >

1

0.2
= 5.

Thus, n0 ≈ 5. For n ≥ 5, DY(an, 0, p1, p2) < 0.1. And

EY(an, 0, p1, p2) =
|an − 0|
p1p2

=
1/n

2
.

As n→ ∞,EY(an, 0, p1, p2) → 0. For ϵ = 0.1, we need n0 such that for n ≥ n0,

1/n

2
< 0.1 =⇒ 1

2n
< 0.1 =⇒ n >

1

0.2
= 5.

Thus, n0 ≈ 5. For n ≥ 5, EY(an, 0, p1, p2) < 0.1.
For p1 = 1 and p2 = 2, the sequence {an = 1

n} converges to a = 0 in the k-NMS because all three conditions
(B, D, E) are satisfied for n ≥ n0 = 5.

Lemma 2.17. Assume that (A,BY,DY,EY,⊙,⊕) is a k-NMS. A sequence {an} in A
converges to a point a ∈ A if and only if lim

n→∞
BY

(
an, a, p

k
1

)
= 1, lim

n→∞
DY

(
an, a, p

k
1

)
= 0,

lim
n→∞

EY

(
an, a, p

k
1

)
= 0, p1, p2, . . . , pk are all non-negative.

Definition 2.18. Assume that (A,BY,DY,EY,⊙,⊕) is a k-NMS, and {an} be a sequence in A.
(i) {an} is referred to as a M-Cauchy sequence if for each ε ∈ (0, 1), there exists n0 ∈ N such that
BY

(
am, an, p

k
1

)
> 1− ε,DY

(
am, an, p

k
1

)
< ε,EY

(
am, an, p

k
1

)
< ε, each n,m ≥ n0 and p1, p2, . . . , pk are

all non negative,
(ii) {an} is referred to as a G-Cauchy sequence if lim

n→∞
BY

(
an, an+p, p

k
1

)
= 1,

lim
n→∞

DY

(
an, an+p, p

k
1

)
= 0, lim

n→∞
EY

(
an, an+p, p

k
1

)
= 0, p1, p2, . . . , pk, p are all non negative.

Example 2.19. Consider the metric space (R, d), with ⊙ and ⊕ defined as the product t-norm and t-conorm,
respectively. Let d > 0 and k be any non negative integer. Define fuzzy sets BY,DY,EY on R2 × (0,∞)k as
follows:

BY(δ, υ, p
k
1) =

d
∏k

q=1 pq

d
∏k

q=1 pq + d(δ, υ)
, DY(δ, υ, p

k
1) =

d(δ, υ)

d
∏k

q=1 pq + d(δ, υ)
, EY(δ, υ, p

k
1) =

d(δ, υ)

d
∏k

q=1 pq
,

for all δ, υ ∈ R and pq > 0. These fuzzy sets BY,DY,EY form a k-neutrosophic metric on R.
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Now, consider the sequence Ps = 1 + 1/2 + 1/3 + · · ·+ 1/s for s ∈ N. Then, we have:

BY(Ps+p,Ps, p
k
1) =

d
∏k

q=1 pq

d
∏k

q=1 pq + |Ps+p − Ps|
=

d
∏k

q=1 pq

d
∏k

q=1 pq +
1

s+1 + · · ·+ 1
s+p

,

DY(Ps+p,Ps, p
k
1) =

|Ps+p − Ps|
d
∏k

q=1 pq + |Ps+p − Ps|
=

1
s+1 + · · ·+ 1

s+p

d
∏k

q=1 pq +
1

s+1 + · · ·+ 1
s+p

,

EY(Ps+p,Ps, p
k
1) =

|Ps+p − Ps|
d
∏k

q=1 pq
=

1
s+1 + · · ·+ 1

s+p

d
∏k

q=1 pq
.

As s→ ∞, it follows that:

BY(Ps+p,Ps, p
k
1) → 1, DY(Ps+p,Ps, p

k
1) → 0, EY(Ps+p,Ps, p

k
1) → 0,

for each p > 0. Thus, {Ps} is a G-Cauchy sequence but is clearly not an M-Cauchy sequence.
Assume, for contradiction, that {Ps} is an M-Cauchy sequence. Then:

BY(Pm,Ps, p
k
1) =

d
∏k

q=1 pq

d
∏k

q=1 pq + |Pm − Ps|
,

DY(Pm,Ps, p
k
1) =

|Pm − Ps|
d
∏k

q=1 pq + |Pm − Ps|
,

EY(Pm,Ps, p
k
1) =

|Pm − Ps|
d
∏k

q=1 pq
.

This means that if {Ps} is a Cauchy sequence in the standard metric space (R, d), then M-Cauchy. It is commonly
known, nevertheless, that |Pm − Ps| ≈ ln(m/s), which increases dramatically when m > s Consequently, {Ps} is
not Cauchy in (R, d), and as a result, it is not M-Cauchy in the k-NMS on R.

Definition 2.20. Let (A,BY,DY,EY,⊙,⊕) be a k-NMS.
(i) Each M-Cauchy sequence in A converges to a certain P ∈ A, then k-NMS is known as M-complete.
(ii) Each G-Cauchy sequence in A converges to some P ∈ A, then k-NMS is known as G-complete.

Remark 2.21. The M-completeness and G-completeness of a k-NMS are equal to the M-completeness and G-
completeness of a NMS when k = 1.

3. Main Results

Definition 3.1. Let (A,BY,DY,EY,⊙,⊕) is said to be generalized natural property of a k-NMS if there exist one
or more than one parameter(s) qi ∈ {1, 2, . . . , k} where i = 1, 2, . . . ,m, m ≤ k such that

lim
λq1

,λq2
,...λqm→+∞

BY (φ, ι, λ1, λ2, . . . , λqı , . . . , λk) = 1,

lim
λq1

,λq2
,...λqm→+∞

DY (φ, ι, λ1, λ2, . . . , λqı , . . . , λk) = 0,

lim
λq1

,λq2
,...λqm→+∞

EY (φ, ι, λ1, λ2, . . . , λqı , . . . , λk) = 0, for all φ, ι ∈ A.

We can see an example of generalized naturalness of k-NMS.
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Example 3.2. Let A = Rk, where k is a positive integer, w > 0 and ⊙ and ⊕ be the product t-norm. Define a fuzzy
set BY,DY,EY on A2 × (0,+∞)k by

lim
λ1,λ2,...,λk−1→+∞

BY (φ, ι, λ1, λ2, λ3, . . . , λk) = lim
λ1,λ2,...,λk−1→+∞

w

[
w +

k−1∑
i=1

|φi − ιi|
λi

]−1

= 1

lim
λ1,λ2,...,λk−1→+∞

DY (φ, ι, λ1, λ2, λ3, . . . , λk) = lim
λ1,λ2,...,λk−1→+∞

w

[
w +

k−1∑
i=1

|φi − ιi|2

λ2i

]−1

= 0

lim
λ1,λ2,...,λk−1→+∞

EY (φ, ι, λ1, λ2, λ3, . . . , λk) = lim
λ1,λ2,...,λk−1→+∞

w

[
w +

k−1∑
i=1

|φi − ιi|
λ2i

]−1

= 0

for all φ = (φ1, φ2, . . . , φk−1) , ι = (ι1, ι2, . . . , ιk−1) ∈ A. Then (A,BY,DY,EY,⊙,⊕) has a generalized natural
property of k-NMS.

Remark 3.3. If we put m = 1 in Definition (3.1), the space reduces into q natural k-NMS.

Definition 3.4. Assume that (A,BY,DY,EY,⊙,⊕) is a k-NMS. Consider a mapping P : A → A is called a Tirado-
type k-neutrosophic contraction mapping if there exists a constant δ in (0, 1) such that, for every φ, ι in A with
φ ̸= ι, and for parameters λ1, λ2, . . . , λk > 0,These disparities are true:

1− BY

(
P(φ),P(ι), λk1

)
≤ δ(1− BY

(
φ, ι, λk1

)
,DY

(
P(φ),P(ι), λk1

)
≤ δDY

(
φ, ι, λk1

)
,EY

(
P(φ),P(ι), λk1

)
≤ δEY

(
φ, ι, λk1

)
.

Here, λk1 represents the vector of parameters (λ1, λ2, . . . , λk), and the functions BY, DY, and EY are the
neutrosophic metric functions defined on A. Under these conditions, we can establish a fixed-point result for P
using the Tirado-type k-neutrosophic contraction principle.

Theorem 3.5. Let P : A → A be a Tirado-type k-neutrosophic contraction mapping and
(A,BY,DY,EY,⊙,⊕) be a G-complete k-NMS. Consequently, P has a unique fixed point.

Proof
Choose φ0 ∈ A be any arbitrary point. Construct a sequence {φn} by Picard iteration method φn = Pφn−1 for
each n in N ∪ {0}. It is necessary to demonstrate that this sequence is G-Cauchy. For anyone n in N ∪ {0}, we
have

1− BY

(
φn, φn+1, λ

k
1

)
≤ δ(1−

(
BY

(
φn−1, φn, λ

k
1

))
),

DY

(
φn, φn+1, λ

k
1

)
≤ δ

(
DY

(
φn−1, φn, λ

k
1

))
,

EY

(
φn, φn+1, λ

k
1

)
≤ δ

(
EY

(
φn−1, φn, λ

k
1

))
.

By doing this repeatedly, we get

1− BY

(
φn, φn+1, λ

k
1

)
≤ δn(1−

(
BY

(
φ0, φ1, λ

k
1

))
),

DY

(
φn, φn+1, λ

k
1

)
≤ δn

(
DY

(
φ0, φ1, λ

k
1

))
,

EY

(
φn, φn+1, λ

k
1

)
≤ δn

(
EY

(
φ0, φ1, λ

k
1

))
.

(3.5.1)

for each n ∈ N . As n→ +∞ and since δ ∈ (0, 1), we conclude by (3.5.1),

lim
n→+∞

1−
(
BY

(
φn, φn+1, λ

k
1

))
≤ lim

n→+∞
δn(1−

(
BY

(
φ0, φ1, λ

k
1

))
),

lim
n→+∞

(
DY

(
φn, φn+1, λ

k
1

))
≤ lim

n→+∞
δn

(
DY

(
φ0, φ1, λ

k
1

))
,

lim
n→+∞

(
EY

(
φn, φn+1, λ

k
1

))
≤ lim

n→+∞
δn

(
EY

(
φ0, φ1, λ

k
1

))
.

lim
n→+∞

1− BY

(
φn, φn+1, r

k
1

)
= 0, lim

n→+∞
DY

(
φn, φn+1, r

k
1

)
= 0, lim

n→+∞
EY

(
φn, φn+1, r

k
1

)
= 0.
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That is,

lim
n→+∞

BY

(
φn, φn+1, λ

k
1

)
= 1, lim

n→+∞
DY

(
φn, φn+1, λ

k
1

)
= 0, lim

n→+∞
EY

(
φn, φn+1, λ

k
1

)
= 0. (3.5.2)

for all λ1, λ2, λ3, . . . , λk > 0. For each n ∈ N and p > 0,

BY

(
φn, φn+p, λ

k
1

)
≥ BY

(
φn, φn+1, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
⊙ BY

(
φn+1, φn+p, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
,

DY

(
φn, φn+p, λ

k
1

)
≤ DY

(
φn, φn+1, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
⊕DY

(
φn+1, φn+p, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
,

EY

(
φn, φn+p, λ

k
1

)
≤ EY

(
φn, φn+1, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
⊕ EY

(
φn+1, φn+p, λ1, λ2, . . . ,

λq
2
, . . . , λk

)
.

And
BY

(
φn, φn+p, λ

k
1

)
≥ B2

Yq

(
φn, φn+1, λ

k
1

)
⊙ B22

Yq

(
φn+1, φn+2, λ

k
1

)
⊙ . . .

⊙ B2p−1

Yq

(
φn+p−2, φn+p−1, λ

k
1

)
⊙

⊙ B2p

Yq

(
φn+p−1, φn+p, λ

k
1

)
,

DY

(
φn, φn+p, λ

k
1

)
≤ D2

Yq

(
φn, φn+1, λ

k
1

)
⊕D22

Yq

(
φn+1, φn+2, λ

k
1

)
⊕ . . .

⊕D2p−1

Yq

(
φn+p−2, φn+p−1, λ

k
1

)
⊕

⊕D2p

Yq

(
φn+p−1, φn+p, λ

k
1

)
,

EY

(
φn, φn+p, λ

k
1

)
≤ E2

Yq

(
φn, φn+1, λ

k
1

)
⊕ E22

Yq

(
φn+1, φn+2, λ

k
1

)
⊕ . . .

⊕ E2p−1

Yq

(
φn+p−2, φn+p−1, λ

k
1

)
⊕

⊕ E2p

Yq

(
φn+p−1, φn+p, λ

k
1

)
.

(3.5.3)

for all λ1, λ2, . . . , λk > 0. Letting the limit as n→ +∞ and by using (3.5.2), we have

lim
n→+∞

Ba
Yq

(
φn, φn+1, λ

k
1

)
= 1, lim

n→+∞
Da

Yq

(
φn, φn+1, λ

k
1

)
= 0, lim

n→+∞
Ea
Yq

(
φn, φn+1, λ

k
1

)
= 0,

for all λ1, λ2, . . . , λk > 0 and a > 0. This inequality (3.5.3) yields

lim
n→+∞

BY

(
φn, φn+p, λ

k
1

)
≥ 1⊙ 1⊙ 1⊙ . . .⊙ 1 = 1,

lim
n→+∞

DY

(
φn, φn+p, λ

k
1

)
≤ 0⊕ 0⊕ 0⊕ . . .⊕ 0 = 0,

lim
n→+∞

EY

(
φn, φn+p, λ

k
1

)
≤ 0⊕ 0⊕ 0⊕ . . .⊕ 0 = 0.

(3.5.4)

For all λ1, λ2, . . . , λk, p > 0. Hence, in A, the sequence {φn} is a G-Cauchy sequence. There exists u ∈ A such
that the sequence {φn} converges to u since the space (A,BY,DY,EY,⊙,⊕) is G-complete.

lim
n→+∞

BY

(
φn, u, λ

k
)
= 1, lim

n→+∞
DY

(
φn, u, λ

k
1

)
= 0, lim

n→+∞
EY

(
φn, u, λ

k
1

)
= 0. (3.5.5)

for all λ1, λ2, . . . , λk > 0. For a self-map P, we now need to demonstrate that u is a fixed point.

1− BY

(
φn+1,Pu, λ

k
1

)
= 1− BY

(
Pφn,Pu, λ

k
1

)
≤ δ

(
1− BY

(
φn, u, λ

k
1

))
,

DY

(
φn+1,Pu, λ

k
1

)
= DY

(
Pφn,Pu, λ

k
1

)
≤ δ

(
DY

(
φn, u, λ

k
1

))
,

EY

(
φn+1,Pu, λ

k
1

)
= EY

(
Pφn,Pu, λ

k
1

)
≤ δ

(
EY

(
φn, u, λ

k
1

))
.
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Letting the limit as n→ +∞ and by using (3.5.5),

lim
n→+∞

1− BY

(
φn+1,Pu, λ

k
1

)
= 0, lim

n→+∞
DY

(
φn+1,Pu, λ

k
1

)
= 0, lim

n→+∞
EY

(
φn+1,Pu, λ

k
1

)
= 0.

lim
n→+∞

BY

(
φn+1,Pu, λ

k
1

)
= 1, lim

n→+∞
DY

(
φn+1,Pu, λ

k
1

)
= 0, lim

n→+∞
EY

(
φn+1,Pu, λ

k
1

)
= 0.

that is,
BY

(
φn+1,Pu, λ

k
1

)
= 1,DY

(
φn+1,Pu, λ

k
1

)
= 0,EY

(
φn+1,Pu, λ

k
1

)
= 0, (3.5.6)

for all λ1, λ2, . . . , λk > 0. For each n ∈ N, we have

BY

(
u,Pu, λk1

)
≥ B2

Y

(
u, φn+1, λ

k
1

)
⊙ B2

Y

(
φn+1,Pu, λ

k
1

)
,

DY

(
u,Pu, λk1

)
≤ D2

Y

(
u, φn+1, λ

k
1

)
⊕D2

Y

(
φn+1,Pu, λ

k
1

)
,

EY

(
u,Pu, λk1

)
≤ E2

Y

(
u, φn+1, λ

k
1

)
⊕ E2

Y

(
φn+1,Pu, λ

k
1

)
.

Letting the limit as n→ +∞ and using (3.5.5) and (3.5.6), we have

BY

(
u,Pu, λk1

)
= 1,DY

(
u,Pu, λk1

)
= 0,EY

(
u,Pu, λk1

)
= 0,

for all λ1, λ2, . . . , λk > 0. This suggests that u is a fixed point of P, or that Pu = u.
Let v be an additional fixed point. of P such that u ̸= v for uniqueness. Then λ1, λ2, . . . , λk > 0 exist in such a way
that

BY

(
u, v, λk1

)
< 1,DY

(
u, v, λk1

)
≥ 0,EY

(
u, v, λk1

)
≥ 0,

Now,
δ(1− BY

(
u, v, λk1

)
) ≥ 1− BY

(
Pu,Pv, λk1

)
= 1− BY

(
u, v, λk1

)
,

δDY

(
u, v, λk1

)
≥ DY

(
Pu,Pv, λk1

)
= DY

(
u, v, λk1

)
,

δEY

(
u, v, λk1

)
≥ EY

(
Pu,Pv, λk1

)
= EY

(
u, v, λk1

)
.

which implies that δ ≥ 1, which are the contradiction. The fixed point of P must therefore be unique, meaning that
u = v.

Example 3.6. Let A = [0, 1]2 and (A, ϖ) be a standard metric, and let ⊙ and ⊕ be the product of t-norm, w > 0,
and k ∈ Z+. Define a membership function BY,DY,EY : A2 × (0,+∞)k → [0, 1] by

BY (φ, ι, r1, r2, r3) =
w

w +ϖ(φ, ι)
(

1
r1

+ 1
r2

) ,
DY (φ, ι, r1, r2, r3) =

ϖ(φ, ι)
(

1
r1

+ 1
r2

)
w +ϖ(φ, ι)

(
1
r1

+ 1
r2

) ,
EY (φ, ι, r1, r2, r3) =

ϖ(φ, ι)
(

1
r1

+ 1
r2

)
w

.

for all φ = (φ1, φ2) , ι = (ι1, ι2) ∈ A and r1, r2, r3 ∈ (0,+∞). Then (A,BY,DY,EY,⊙,⊕) is a G-complete 3-
NMS. In addition,

lim
r1,r2→+∞

BY (φ, ι, r1, r2, r3) = 1, lim
r1,r2→+∞

DY (φ, ι, r1, r2, r3) = 0, lim
r1,r2→+∞

EY (φ, ι, r1, r2, r3) = 0.

For all φ, ι ∈ A and r3 > 0, the space (A,BY,DY,EY,⊙,⊕) is a generalized natural 3-NMS. Establish a mapping
P : A → A by

P (φ1, φ2) =
(φ1

2
,
φ2

2

)
, for all (φ1, φ2) ∈ A.
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Consider φ = (φ1, φ2) , ι = (ι1, ι2) ∈ A and r1, r2 > 0, we have:

δ(1− BY (φ, ι, r1, r2, r3)) = δ

1−

 w

w + (|φ1 − ι1|+ |φ2 − ι2|)
(

1
r1

+ 1
r2

)


= δ

(
1−

(
wr1r2

wr1r2 + (|φ1 − ι1|+ |φ2 − ι2|) (r1 + r2)

))
.

When δ ∈ ( wr1r2
2wr1r2+(|φ1−ι1|+|φ2−ι2|)(r1+r2)

, 1), we get:

δ (1− BY (φ, ι, r1, r2, r3)) ≤
(
1− 2wr1r2

2wr1r2 + (|φ1 − ι1|+ |φ2 − ι2|) (r1 + r2)

)

=

(
|φ1−ι1|

2 + |φ2−ι2|
2

)(
1
r1

+ 1
r2

)
w +

(
|φ1−ι1|

2 + |φ2−ι2|
2

)(
1
r1

+ 1
r2

)
= 1− BY (Pφ,Pι, r1, r2, r3) .

Consider,

δ(DY (φ, ι, r1, r2, r3)) = δ
ϖ(φ, ι)

(
1
r1

+ 1
r2

)
w +ϖ(φ, ι)

(
1
r1

+ 1
r2

) = δ
(|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

)
w + (|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

) .
When δ ∈ ( (|φ1−ι1|+|φ2−ι2|)(r1+r2)

2wr1r2+(|φ1−ι1|+|φ2−ι2|)(r1+r2)
, 1), we get:

δDY (φ, ι, r1, r2, r3) ≥
(|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

)
2w + (|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

)
=

(
|φ1−ι1|

2 + |φ2−ι2|
2

)(
1
r1

+ 1
r2

)
w +

(
|φ1−ι1|

2 + |φ2−ι2|
2

)(
1
r1

+ 1
r2

)
= DY (Pφ,Pι, r1, r2, r3) .

And,

δEY (φ, ι, r1, r2, r3) = δ
ϖ(φ, ι)

(
1
r1

+ 1
r2

)
w

= δ
(|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

)
w

.

When δ ∈
(

2w
w+(|φ1−ι1|+|φ2−ι2|)(r1+r2)

, 1
)

, the inequality becomes:

δEY (φ, ι, r1, r2, r3) ≥
(|φ1 − ι1|+ |φ2 − ι2|)

(
1
r1

+ 1
r2

)
2w

=

(
|φ1−ι1|

2 + |φ2−ι2|
2

)(
1
r1

+ 1
r2

)
w

= EY (Pφ,Pι, r1, r2, r3) .

Thus, P is a Tirado-type k-neutrosophic contraction mapping. Therefore, (0, 0) is the unique fixed point of the
self-map P.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



N. MUTHULAKSHMI, J. JOHNSY, M. JEYARAMAN 11

4. Conclusion

This study established a fixed-point theorem under G-completeness by introducing Tirado-type k-fuzzy contraction
mappings and k-NMS. These findings fill in gaps in the literature on metric space and generalize current theories.
The usefulness of the framework is demonstrated by an example. Future research will examine practical uses
in mathematical modeling, optimization, and decision-making. It will also broaden the theoretical framework to
incorporate dynamic or higher-dimensional neutrosophic systems.
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