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1. Introduction

Atanassov introduced the concept of intuitionistic fuzzy sets, which expanded the framework of fuzzy sets
by incorporating the degree of hesitation alongside membership and non-membership [1]. This significant
advancement has inspired further research in generalized metric spaces and fixed-point theory.

George explored fuzzy metric spaces and established foundational results that became integral to studies in
this domain [2]. Kramosil developed the concept of fuzzy metrics, linking them with statistical metric spaces
to provide a broader understanding of their theoretical underpinnings [9]. Poovaragavan extended this work to
multidimensional common fixed-point theorems and contraction in V-fuzzy metric spaces, providing new avenues
for research [5, 6, 10, 11].

Gopal investigated k-NMS, presenting the first contraction principle in such spaces, which has broadened the
application of fixed-point theorems [3]. Johnsy contributed to generalized NMS, particularly focusing on fixed-
point results for (1) — ¢)-contractions [7].

Huang explored fuzzy f-contractions and established fixed-point theorems in fuzzy metric spaces, highlighting
their practical applications in mathematics and engineering [4]. Park introduced intuitionistic fuzzy metric spaces,
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providing an extension to classical metric spaces and enabling more robust modeling of uncertainty [12]. Patel et
al. [13] explored k-fuzzy metric spaces and their applications, providing valuable insights into the theoretical and
practical aspects of these spaces in nonlinear analysis.

Sowndrarajan expanded fixed-point theory to NMS, demonstrating the potential of contraction theorems in this
context [14]. Simsek further advanced the study of NMS by proving fixed-point results specific to these spaces
[15]. Kirisci developed a comprehensive theory of NMS, focusing on their unique properties and applications [8].

Smarandache introduced neutrosophy, a generalized theory for dealing with uncertainty, which has been applied
extensively in various mathematical frameworks [16]. Vasuki contributed significantly to the study of Cauchy
sequences and fixed-point theorems in fuzzy metric spaces, establishing results that have found broad applicability
[17].

Wardowski explored fuzzy contractive mappings, providing new insights into fixed points in fuzzy metric spaces
and their practical applications [18]. Finally, Zadeh’s seminal work on fuzzy sets laid the foundation for all
subsequent developments in this domain [19]. In this present paper, the authors investigate Tirado-type contractions
and their fixed-point results within the framework of k-NMS. The study extends existing fixed-point theorems by
introducing these contractions, which are useful in handling imprecision and uncertainty inherent in neutrosophic
spaces. The findings offer new insights into applying these contraction mappings in various real-world problems
where ambiguity and partial truth are present.

2. Preliminaries

Definition 2.1. [2] A transformation ® defined on [0, 1]? to [0, 1] is referred to as a continuous triangular norm
(CTN) if it meets the subsequent assertions:

(i) Commutativity and Associativity: ©(e, f) = O(f,e) and ©(G(e, f),g) = O(e,©(f, g)) foralle, f, g € [0, 1],
(i1) Continuity: © is a continuous function;

(iii) Neutral Element: 1 © e = eforall e € [0, 1],

(iv) Monotonicity: e © f < g © h whenevere < gand f < hforalle, f,g,h € [0, 1].

Definition 2.2. [12] A transformation & defined on [0, 1] x [0, 1] to [0, 1] is referred to as a continuous triangular
conorm (CTCN) if it meets the subsequent assertions:

(i) Commutativity and Associativity: ®(e, f) = ®(f, e) and &(D(e, f),9) = D(e, ®(f, g)) foralle, f, g € [0,1],
(i1) Continuity: @ is a continuous function,

(iii) Neutral Element: 0 ¢ e = e forall e € [0, 1],

(iv) Monotonicity: e ® f > g ® h whenever e > g and f > h, forall e, f, g, h € [0, 1].

Examples of ¢-norms and ¢-conorms include:
Meof=e-f, edf=min{ef},

(i) e ® f = min{e, f}, e® f =max{e, [},

(ii)e® f =max{e+ f— 1,0}, e@ f=min{e+ f,1}.

Definition 2.3. Let U be a universe of discourse. A neutrosophic set A in U is defined as
A= {<‘T7 TA(I), IA(I)a FA('I» HEURS U}’
where

e T4 (x) denotes the degree of truth-membership of the element = in A,
¢ I4(x) denotes the degree of indeterminacy-membership of the element x in A,
* F4(z) denotes the degree of falsity-membership of the element x in A.

Here,
Ta(z), La(z), Fa(z) C[0,1],

and they are independent, i.e.,

0 <infTy(x) +inf I4(x) + inf Fa(z) < supTa(x) +supla(z) 4+ sup Fa(z) < 3.
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Definition 2.4. An ordered triple (A, B,, ®) is a FMS if A is nonempty. ® is a CTN. By, is a FS on A? x (0, o)
fulfilling the following claims, for all p, ¢,k € Aand A\, s > 0

@) By(p,t,A) >0,

(ii) By(¢,t,A) = 1lif and only if ¢ = ¢,

(iii) By((p> LA) = By (05 A),

(V) By(9, 1)) © By (1, k, ) < By, k, A+ 5),

(V) By(p,t,.) : (0,400) — [0, 1] is continuous.

Definition 2.5. A IFMS is a 5-tuple (4, B,, D,,, ®, &) where A is a non-empty set. © and & are CTN and CTCN
respectively. By, D, be FS, on A? x (0, +o0) fulfills the following assertions, for all ¢, € A and ), s > 0,
(i) By(p, 6, A) + Dy(p,1,\) <1,

(ii) By(p,t,A) >0,

(iil) By(p,t,\) =1 p =4,

(iv) By(p,t,A) = By(t, ¢, ),

(vi) By(p,¢,.) : (0,00) — [0, 1] is continuous mapping and /\li_>ngo By, (p,t,A\) =1forall A >0,

(vii) Dy(p, 1, A) > 0,

(viil) Dy(p, 0, A) =0 p =1,

(ix) Dy (@, 1, A) = Dy(r, 0, N),

(X) Dy(p, b, A+ 8) < Dy(p,6,A) @ Dy (1, k, 8),

(xi) Dy (¢, ¢, .):The mapping from (0, co) — [0, 1] is continuous.and /\11_}1{)10 Dy(p,t,7) =0forall r > 0.

Then (A, By, Dy, ®, ®) is an IFMS.

Definition 2.6. [14] A NMS is a 6-tuple (A, By, Dy, Ey,®, ®), where: A is a non-empty set. ® and & are CTN
and CTCN, respectively. By, Dy, Ey are neutrosophic sets defined on A x A x (0, +o0c0) mapping to [0, 1]. These
components meets the subsequent assertions for all ¢, ¢, x € A and A, s > 0:

(1) By (¢, 1,A) + Dy (9,4, A) + Ex(p,¢,A) < 3,

(ii) By (12,2, A) > 0,

(i) By(p,t, \) =1 p=uy,

(iv) By (o, ¢, A) = By (¢, 0, M),

V) By (o, 6, A+ 5) <By(p,t,A) @By (s, &, s),

(vi) By (¢, t,-) : (0,00) — [0,1] is a continuous mapping,

(vii) Dy (p,¢,A) > 0,

(viii) Dy (p, 0, A) =1 & p =14,

(ix) Dy (g, ¢, A) = Dy (¢, 0, A),

x) Dy (¢, 5, A+ 8) > Dy(p,t,\) & Dy (s, &, 8),

(xi) Dy (p,¢,-) : (0,00) — [0, 1] is a continuous mapping,

(xii) Ey (p,¢,A) > 0,

xiil)) Ey(p,, \) =15 p =14,

(xiv) Ey (p,¢,A) = Ey (1, 0, M),

xv) Ey (¢, k, A+ 8) > Ey(p, 1, \) ® Ey (¢, K, $),

(xvi) Ev (¢, ¢, ) : (0,00) — [0,1] is a continuous mapping.

Definition 2.7. A space (A,By,Dy,Dy,®,®) is referred to as a natural NMS if, and only if, it meets the
subsequent assertions: lim By (p,t,A) =1, lim Dy(p,¢,A) =0, lim Ev(p,¢,A) =0, forall p,¢ € A.
A—~-o00 A—+o00 A—+oo

Example 2.8. Let (A, By, Dy, Dy, ®,®) be a NMS. Define By, Dy and Ey on A? x (0, +00) by

B 1  w(p,e) B 1
—Wa Dy (¢t @m(p,t) = ————~ EY(%MW(%L))—HTW»

By (¢, 1, w(p, 1)) T 14 w(p,0)’

for all ¢,¢ > 0. Then (A, By, Dy, Dy, ®, ®) is a natural NMS.
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George and Veeramani presented the idea of k-NMS, where k € {1,2,3,...}, Fuzzy metric spaces were
expanded upon and generalized in 1994.. In this paradigm, the degree of nearness between two places is specified
by k- parameters. The basic concept behind the k-neutrosophic metric is shown here.

Definition 2.9. A definite set A is specified, ® and & are CTN and CTCN, respectively, k is a positive integer, and
By, Dy, Ey are the neutrosophic sets on A2 x (0, +00)* known as k-Neutrosophic metric for every ¢, :,x € A
and A1, Ag, ..., A\r > 0 meets the subsequent assertions:

(1) BY(@a 2 Alv AQv SRR >\k) + DY(@, 2 )\17 A27 BN} Ak:) + EY(@) Ly Alv )\Qa R )‘k) <3,

(11) BY(()Da Ly )‘17 A27 RN} Ak) >0,

(iii) By (¢, ¢, A1, Aa, ..., Ax) = Lif and only if ¢ = ¢,

(IV) BY(<)07 Ly >\17 )\Za ceey )‘k‘) = BY([” @, >\1a )‘23 ceey )‘k)’

(v) Forany q € {1,2,3,...,k}, we have:

BY(@7L7)‘17)‘2>‘"7Aqfl7t7)\q+l7"‘7)\k) CD:BY(L7 K/7)‘17)\27"'7)\q71>s7rq+17"'7)‘k)
S BY(SO) l</7)\1a)\25"'a)‘q—17t+57Aq+17"'7Ak);

(vi) By (¢, ¢,-) : (0,4+00)* — [0, 1] is a continuous mapping,
(vii) Dy(<p7 LA, Aoy, )\k) >0,

(viii) Dy (¢, ¢, A1, A2, ..., A\x) = 1if and only if ¢ = ¢,

(IX) Dy((p, Ly )\1, /\27 ey /\k) = Dy(L, @, /\17 )\2, ey )\k),

(x) Forany q € {1,2,3,...,k}, we have:

DY(@) Ly )‘17>\27 . °7>\q717t7)\q+17 .. '7)\16) ®DY(L7"€7)‘17A27‘ . ‘7)‘(171787)‘614*1’ .. '7)\k)
> Dy((p,li,)\l,)\g,...,Aq,17t+S,Aq+1,...,Ak),

(xi) Dy (¢, t,-) : (0, +00)¥ — [0, 1] is a continuous mapping,
(xii) Ey(tp, Ly A1, Aoy, )\k) >0,

(xiii) By (0, 6, A1, A, ..., \g) = 1 if and only if ¢ = ¢,

(XiV) Ey(go, Ly )\1, )\2, ey )\k) = Ey(b, @, )\1, )\2, ey )\k),
(xv) Forany q € {1,2,3,...,k}, we have:

Ey((p, L,)\17>\2,.. .7>\q,1,t7>\q+ ]-7~~'7>\k) @Ey(b, H,)\l,>\2,...7)\q,1,8,)\q+17...,)\k)
> EY(SOH‘{‘) )\1,)\2,...7>\q,1,t+8,)\q+17...,)\k)7

(xvi) Ey (¢, t,-) : (0, +00)¥ — [0, 1] is a continuous mapping.
The notation of k-NMS is (A, By,Dy,Ev,®,®).

Remark 2.10. A k-NMS reduces to a standard NMS when k£ = 1. To illustrate this, consider the following
mathematical formulas for a k-neutrosophic metric in the context of examples. For k = 1, the calculations simplify
to a neutrosophic metric where the components depend on the distance between elements and a parameter \; > 0:

Al Ml

_ 1
By (z1,22,\1) =€ ™1, Dy(x1,22,\1)=1—€ 21, Ey(z1,22,\1) =

EST

1+e ™
These formulas represent the truth, falsity, and indeterminacy components of the neutrosophic metric, which
depend explicitly on the parameter \;. Therefore, the k-NMS (A, By, Dy, Ev, ®, ®) transitions into a NMS when
k=1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Example 2.11. The @ is a metric on A, ®,® be CTN and CTCN, w > 0, and k be a positive integer. Describe:
By, Dy and Ey on A% x (0, +00)* by

w)\l)\z"')\k
v (@6, A1, Agy oy AR) WAL A2 - - A, + (0, 1)
@(p;)
D A, A2, e, Ag) =
Y(SDaLa 1, A2y ’ k) wAl/\zAk‘i‘w(@a[’)
@(p, )

EY (3071”)‘17)\2’"'7)\]6) =

WAL A« - Ag + 2w (0, 0)
forall o, € Aand A1, Aa,..., Ax > 0. Then (A, By,Dy,Ey,®,®) is a k-NMS.
Definition 2.12. A k-NMS (A,By,Dy,Ey,®,®) known as g-natural k-NMS if there is q¢€
{1,2,...,k}, corresponding to lim By (6,v,p1,p2,...,pk) = 1, lim Dy (4,v,p1,p2,...,pk) =0,
pq—>00 ;Dq—>OO
lim Ev(d,v,p1,p2,...,pk) =0, Vd,v € A.

Pgq—>00

To keep things simple, we indicate By (6, v, p1, pa2, - - - , ) by By (3, v, p¥).

Example 2.13. Consider a set A = R (the set of real numbers) equipped with the usual Euclidean distance w, i.e.,
for any two points a, b € R, the distance between them is given by: w(a, b) = |a — b| Define:

w(a,b)
wp1p2 + w(aa b) ’

w(a,b)
wp1p2 '

wp1p2
wp1p2 + w(a,b)’

BY(aabaplaPZ) = DY(a,bvplvp2) = EY(avbvplap2) =
where w > 0 is a constant, and p;, p2 > 0 are positive parameters associated with each of the 2 dimensions. Now,
let p1, po be parameters that we will vary. According to the definition, the space is an g-natural 2-NMS if there
exists some q € {1, 2} such that:

lim BY(a’abaplap2) = 17 lim DY(CL, b7p17p2) = 07 lim EY(avbaplapQ) =0 va’ab €A
Pq—0 Pq—>00 Pq—>00
Proposition 2.14. Assume that (A, By,Dvy,Ev,®,®) is a k-NMS, each of p, p1, ps, ..., p is strictly positive.
While p, < pforafewq e {1,2,...,k}, then

BY(a/7b7plf) S BY(a7bap1ap2a ~ee3Pq—15,P,Pg+15--- apkr)a
DY(a7bapllc) Z DY(aab7p17p27"'apq—17papq+17" '7pk)7
EY(a’a b7plf) Z EY(avb7p17p27 «v o3 Pq—15D,Pq+1y - - - 7pk)7 Vavb € A.

Definition 2.15. Assume that (A,By,Dy,Ey,®,®) is a k-NMS. A sequence {a,} in A is claimed to be
convergent to a point a in A iff for each real € € (0,1) there exists ng is a natural number as to ensure that
By (an,a,p’f) >1—¢ Dy (an,a,p’f) < e and Ey (an,a,p’f) < ¢, for each n, ng < n and py,ps,...,ps are all
non-negative.

Example 2.16. Let (A, By, Dy, Ey,®, ®) be a 2-NMS. Define:

DP1D2 |0 — v |0 — v|
By (6, v, p1, =—=—— Dvy(6,v,p1, =—————  Ey(6,v,p1, = .
v(6,.01.22) p1p2 + [0 — v ¥(0,0.01,02) pip2 + 10 — v ¥ (6,0, p1,72) P1p2
Here, py = 1, po = 2,50 p1p2 = 2. Fora, = L and a = 0,
2 2

B n7077 = = .
vian, 0:p1,p2) = 5o = 551/
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As n — o0, By(an,0,p1,p2) — % = 1. For a specific e = 0.1, 1 — e = 0.9. We need ng such that for n > ny,
BY(an7O7p17p2) >0.9.

0.9
—_— . 2 9(2+1 2> 1. 2 —
2+1/n>09:> >092+1/n) = 2>18+09/n = 0. >09/n:>n>02

Thus, ng = 5. For n > 5, By (ay, 0,p1,p2) > 0.9.

la, =0 1/n
2+a, —0]  2+1/n

DY(ana07p1ap2) =
As n — o0, Dy(an,0,p1,p2) — 0. For e = 0.1, we need ng such that for n > ng, Dy (an,0,p1,p2) < 0.1.

1/n 1/ 1 1
1 = 1 = — <01 = — =5,
Eayr <0. 5 <0 n>oo =5

Thus, ng ~ 5. For n > 5, Dy (ay,,0,p1, p2) < 0.1. And

|a, — 0] l/n

DP1D2 2

E ((17“0 p17p2)

Asn — 00,Ey(an,0,p1,p2) — 0. For e = 0.1, we need ng such that for n > ny,

1/n 1 1
3 = on = "7 02T
Thus, ng ~ 5. For n > 5, Ey(a,,0,p1,p2) < 0.1.
For p; = 1 and p; = 2, the sequence {a,, = +} converges to a = 0 in the k&-NMS because all three conditions
(B, D, E) are satisfied for n > ng = 5.

Lemma 2.17. Assume that (A,By,Dv,Ey,0,¢) is a k-NMS. A sequence {a,} in A
converges to a point a€A if and only if lim By (as,a,p}) =1, lim Dy (an,a,pf) =0,
n—oo n—oo

lim Ey (an,a,p}) =0, p1,p2,...,py are all non-negative.
n—oo

Definition 2.18. Assume that (A, By, Dy, Ey,®,®) is a k-NMS, and {a,, } be a sequence in A.
(1) {an} is referred to as a M-Cauchy sequence if for each ¢ € (0,1), there exists ng € N such that

By (am7an7plf) >1- EaDY (am,an,p’f) < gaEY (amaanaplf) <g, each n,m = ng and P1,P2;---,Pk are

all non negative,

(i) {an,} is referred to as a G-Cauchy sequence if lim By (an, anip, pf) =1,
n—o0

lim Dy (an, @np,pf) =0, Jim By (an, @np,PY) =0, p1,p2, ..., Dk, p are all non negative.

n— o0

Example 2.19. Consider the metric space (R,d), with ® and & defined as the product t-norm and ¢-conorm,
respectively. Let d > 0 and k& be any non negative integer. Define fuzzy sets By, Dy, Ey on R? x (0,00)" as
follows:

d(0,v)

d k
Hq 1pq DY((s,’U,p’f) (5 U) . ,
qu:l Pq

EY((saU»pk) =
A1, pg +d(8,v) AT pg +d(8,v) !

BY(53 U,plf)

for all §,v € R and pq > 0. These fuzzy sets By, Dy, Ey form a k-neutrosophic metric on R.
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Now, consider the sequence P, =1+ 1/2+4+1/3 +--- 4+ 1/s for s € N. Then, we have:

d H§:1 Dq

k
qu:l pq

BY (Ps+p7 Psa plf) =

|Ps+p — PS‘

k = %
ATTgo1Pa + Pep = Pal ATy pq+ 55+

1 1
1t s

DY(P8+1)7 Psvplf) =

k = k
quzlpq+|Ps+p7PS‘ qu:lpq+s—}-1+.“+Sj-P
1 1
p _Pp 4+t
EY(PS+p7P87p]f) = | S+€€ 5‘ = = k — '
qu=1 Pq qu=1 Pq

As s — 00, it follows that:

BY(Ps+p7 PS7p]f) — 17

DY(P8+1)7 Psaplf) — 07

EY(Ps+p7 PS7p]f) — 07

for each p > 0. Thus, {P,} is a G-Cauchy sequence but is clearly not an M-Cauchy sequence.
Assume, for contradiction, that {P,} is an M-Cauchy sequence. Then:

k
qu:l pq

By (P, Py, pt) =

k )
qu:lpq+ |Pm _PS|

[P — P

DY(Pma P87p11€) =

EY(Pma P97p]1€)

k )
qu:lpq+ |Pm _P5|
_ [P — Py

% .
qu:l pq

This means that if {P} is a Cauchy sequence in the standard metric space (R, d), then M-Cauchy. It is commonly
known, nevertheless, that |P,,, — P;| ~ In(m/s), which increases dramatically when m > s Consequently, {P} is

not Cauchy in (R, d), and as a result, it is not M-Cauchy

in the £-NMS on R.

Definition 2.20. Let (A, By, Dy, Ey,®,®) be a k-NMS.
(i) Each M-Cauchy sequence in A converges to a certain P € A, then k-NMS is known as M-complete.
(i1) Each G-Cauchy sequence in A converges to some P € A, then k-NMS is known as G-complete.

Remark 2.21. The M-completeness and G-completeness of a k-NMS are equal to the M-completeness and G-

completeness of a NMS when k& = 1.

3. Main Results

Definition 3.1. Let (A, By, Dy, Ey, ®,®) is said to be generalized natural property of a k-NMS if there exist one

or more than one parameter(s) ¢; € {1,2,...,k} where i = 1,2,...,m, m < k such that
li B Ay A, ey Ag ey Ap) =1
)\q17>\q27~~1-1>1\};m—>+00 Y (()07L7 1y N2, ) NGy ) k) ’
li D ALy A ey Ag ooy AR) =
)\ql,)\m,..l.r)gmﬁ%»oo Y (907[/7 1 N\2 s NGy 5 k) 07
lim Evy (¢, A1, A2, ..., Agyy -5 M) =0, forall p, 0 € A.

Adg s Adg see-Agm =00

We can see an example of generalized naturalness of k-NMS.
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Example 3.2. Let A = R¥, where k is a positive integer, w > 0 and ® and @ be the product t-norm. Define a fuzzy
set By, Dy, Ey on A% x (0, +00)* by

k—1 | ul -1
lim By (¢, 6, A1, A2, Az, .0y Ag) = lim w|w+ E 1%i — il =1
A1 A2, A g —1—> 00 A1 A2,0e s A g —1—>+00 — i
1=
k—1 2 -1
lim Dy (@, 6, A1y Aoy Agy - oy A) = lim wlw+ ) @ =0
A1,A2,0 Ak —1—+00 A1 A2, A —1—+00 Pt )‘i
1=

lim Ev (¢, 0, A1, A0, Az, ..., Ap) = lim w

AL A2y A1 =400 AL A2se oAb 1= 400

for all ¢ = (1,02, ,0r—1),t = (t1,t2,...,tk—1) € A. Then (A, By,Dy,Ey,®, ®) has a generalized natural
property of k-NMS.

Remark 3.3. If we put m = 1 in Definition (3.1), the space reduces into q natural k-NMS.

Definition 3.4. Assume that (A, By, Dy, Ey,®, ®) is a k-NMS. Consider a mapping P : A — A is called a Tirado-
type k-neutrosophic contraction mapping if there exists a constant ¢ in (0, 1) such that, for every ¢, ¢ in A with
© # , and for parameters A1, Ao, ..., Ay > 0,These disparities are true:

1—By (P(¢),P(1),A}) <6(1 =By (#,1,A7) . Dy (P(¢), P(1),Af) < 6Dy (¢4, AF) ,Ey (P(¢), P(1),Af) < 6Ey (0,4, Af).

Here, )\’f represents the vector of parameters (A, \a,...,\x), and the functions By, Dy, and Ey are the
neutrosophic metric functions defined on A. Under these conditions, we can establish a fixed-point result for P
using the Tirado-type k-neutrosophic contraction principle.

Theorem 3.5. Let P:A— A be a Tirado-type k-neutrosophic contraction mapping and
(A,By,Dy,Ey,®, ®) be a G-complete k-NMS. Consequently, P has a unique fixed point.

Proof

Choose o € A be any arbitrary point. Construct a sequence {(, } by Picard iteration method ¢,, = Py,,_1 for
each n in NU {0}. It is necessary to demonstrate that this sequence is G-Cauchy. For anyone n in NU {0}, we
have

1 — By (¢ns @nt1, A7) < 0(1 = (By (¢n—1,9n,A}))),
Dy (¢ns @nt1,AY) <0 (Dy (pn-1,0n,A})),
Ey (¢n, ¢n+1,AY) <6 (By (0n-1,0n,AY)) .
By doing this repeatedly, we get

1—-By (sﬁn7<,0n+1,>\]f) <6"(1- (By (‘Poﬂpl,)\]f))),
Dy (sﬁmﬁpn+17)\]f) < 6" (Dy (o, 8017/\]16)) ) (3.5.1)
Ey ((1077,7 Pn+1; )\}{’) < o" (EY (L)OO’ #1, )‘If)) :

for eachn € N. As n — 400 and since § € (0, 1), we conclude by (3.5.1),

lim 1= (By (¢n,ns1,A7)) < lim 6"(1 = (By (20, 01,A1))),

n—-+o0o n—-+o0o

lim (Dy (¢n, ens1,A7)) < lim 6" (Dy (o, 01, A7)) 5

n—-+oo n—-+oo

lim (B (#n,¢ns1,AT)) < Tim 0" (By (90, 01,A7))

n—-+oo

lim 1- By (g0n,<pn+1,7‘]f) =0, lim Dy (@n;%ﬁn+177"11€) =0, lim Ey (‘Pn7§07L+17T]f) =0.

n—-+oo n—-+oo n—-+oo
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That is,
lim By (¢n,@nt1,Af) =1, lim Dy (¢n, oni1,A}) =0,

n—-+oo n—-+oo

. EIEOO Ey (¢n, @nt1,A}) = 0. (3.5.2)

for all A1, A2, A3, ..., A\ > 0.Foreachn € Nand p > 0,

A A

BY (@na‘ﬂn+pa)\11€) Z BY (@na@n—&-la/\l))\%- LS} ?q7' . '5Ak> QBY <907L+17S07L+p)A17>\27 ey ?‘17. . 7>\k> )
A A

DY (@na‘Pn—i—pa)\’f) S DY <<)0n7g0n+17A17)\2?"'72q7"'7Ak> @DY <<pn+lagpn+pa)\17A27"'72(15"'3)\]{}) 3
A

>

EY (SDTUSDTLera)\lf) S EY ((pn7g0n+17)\1))‘27"'?2{17"'7)\14:) EBEY (Son+1;90n+p7)\1))\27"'72q?' ))\k) .

And
By (‘Pna Pn+p> )‘llc) 2 B%{q (‘an Pn+1, )‘]16) © B%fq (‘Pn-&-la Pn+2, Allc) ©...

@ BQYP(;1 (¢n+p727 QPnerfl, )\lf) @
© B%{pq (@n-&-p—l, Pn+p, )\If) ,

DY (‘Pn; Pntp, )\lf) < D%{q (@'m Pn+1, /\Ilc) 52 D%{Zq (¢n+1a Pn+2; )‘]f) D...

® D%/pq_l (Pntp—2: Prtp—1, A1) B (3.5.3)
D DY, (Pntp-1,Pnip AT) s
By (n, @nips AT) < EY, (00, 0ni1,AT) EBE%(ZQ (Pnt1s Enya, AT) @ ...
OEY " (Pntp—2, Prtp—1,A}) @
® E%(pq (@ntp—1, Prtp AF) -
for all A1, Aa,..., A > 0. Letting the limit as n — 4oc and by using (3.5.2), we have
Jim By (e @nen, AT) =1, lim DY, (0n,0n41,AT) =0, lim BY (n, 0041, AT) =0,
for all Aj, Aa,...,Ar > 0and a > 0. This inequality (3.5.3) yields
nETooBY (@ns Pnap Af) 210101060...01=1,
Jim Dy (€ns Prap Af) <08060@...H0=0, (3.5.4)
nETOQEY (€ns Pnip, A) <0B0@0...00=0.

For all A1, Aa,..., A, p > 0. Hence, in A, the sequence {(,} is a G-Cauchy sequence. There exists u € A such
that the sequence {,, } converges to u since the space (A, By, Dy, Ey, ®, ®) is G-complete.

lim By (¢n,u,\") = 1,nglfoo Dy (¢n,u, A}) = O’nEToo Ey (¢n,u, Af) =0. (3.5.5)

n—-+oo

for all A1, Ao, ..., Ax > 0. For a self-map P, we now need to demonstrate that u is a fixed point.

1 =By (¢pn+41, Pu,Af) =1 =By (Pon, Pu,AY) <6 (1 - By (¢n,u,A})),
DY (‘pn—&-l; P’LL, )\]f) = DY (PQD’VHPU'? )\116) < 4 (DY (@n,u, )\]16)) )
EY (Spn+17Pu7 )‘If) = EY (P(pna P’LL, )\If) < o (EY (()Dnauﬁ )‘]f)) .
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Letting the limit as n — +o0 and by using (3.5.5),

lim 1—By (¢n4+1,Pu,A}) =0, HETOO Dy (¢n41, Pu,Af) =0, lim By (¢nq1,Pu,Af) = 0.

n——+o0 n—-+o00

lim By (¢nt+1,Pu,AY) =1,  lim Dy (¢n41,Pu,Af) =0, lim Ey (pn41,Pu,AY) =0.

n——+oo n—-+o00 n—-+oo

that is,
BY (@n—i—h Pu7 )‘]]f) = 1a DY (@n-‘rlv P’LL, A]f) = Oa EY (Qpn-l,-l, Pua )‘If) = 07 (356)

for all Ay, Ao,..., Ax > 0. For each n € N, we have
By (u,Pu,Af) > BY (u, @n41, AF) @ BY (#nt1,Pu, AY)
Dy (u,Pu, )\’1‘) < D% (u, ©Ont1, /\If) @ D% ((an, Pu, )\’f) ,
Ey (u,Pu, A}) < BY (v, 0nt1,A}) @ EY (pns1, Pu, AY)
Letting the limit as n — +o0o and using (3.5.5) and (3.5.6), we have
By (u,Pu, Af) = 1,Dy (u,Pu,\}) = 0,Ey (u, Pu, A}) =0,

for all A1, Ag, ..., Ar > 0. This suggests that u is a fixed point of P, or that Pu = w.
Let v be an additional fixed point. of P such that u # v for uniqueness. Then A1, Ao, ..., A\x > 0 exist in such a way
that

By (u,v,/\’f) < 1,Dy (u,v,)\]f) >0,Ey (u,v, )\If) >0,

Now,
§(1 =By (u,v,A})) By (Pu,Pv,Af) =1 — By (u,v,A}),

>1-
6Dy (u,v,)\’f) > Dy (Pu,Pv,)\]f) =Dy (u,v,/\lf) ,
0Ev (u,v,)\’f) > Ev (Pu, Pv,/\lf) =Evy (u,v,/\]f) .
which implies that 6 > 1, which are the contradiction. The fixed point of P must therefore be unique, meaning that

u = . O

Example 3.6. Let A = [0, 1]? and (A, @) be a standard metric, and let ® and @ be the product of t-norm, w > 0,
and k € Z*. Define a membership function By, Dy, Ey : A2 x (0, +00)* — [0,1] by

BY ((pa 2 7’1,7‘2,7"3) = )
)

DY (307 L, 7(‘177ﬂ277"3) =

Ey (‘pa 2 7’1,7‘2,7"3) =

for all o = (p1,92),t = (t1,t2) € A and r1,79,73 € (0,+00). Then (A, By, Dy,Ey,®,®) is a G-complete 3-
NMS. In addition,

lim By (¢,t,7m1,72,73) =1, lim Dy (p,¢,r1,72,73) =0, lm  Ey (p,¢,71,72,73) = 0.
71,72 —>400 71,72 —>+00 71,72 —>400

For all ¢, € A and r3 > 0, the space (A, By, Dy, Ey, ®, ®) is a generalized natural 3-NMS. Establish a mapping
P:A— Aby

P (¢1,02) = (%7 %) , forall (¢1,¢02) € A.
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Consider ¢ = (¢1,¢2),t = (t1,t2) € A and r1, 79 > 0, we have:

w

wt (g1 —ul+lgz ) (& + %)

wrire
=51+ )
wrirz + (|¢1 — 1] + o2 — t2]) (r1 +12)

wrira .
When § € (211)7"11”2+(|Lp1—L1|—Hg02—/,2|)(r1+r2) , 1), we get:

5(17BY (¢7L3T17T27T3)) = (]‘

<1 2wriTy >
2wrire + (1 — ta] + [p2 — t2|) (11 +72)

lor—t1l | |p2—ta] 1 1
(fegtd bl (34 2)

w —+ (|4P12—L1\ + |<P22—L2\> <%+i>

=1- By (PgO, PL,Tl, ro, Tg) s

o (1 - BY (@v LT, 7’2,7’3)) S

Consider,

w(p.0) (2 +2) 50w—m+M—mm%+i)

5(DY (QO’L7T17T2;T3)) =0 1 ) = . - )
w+ w(p,t) (;+E) w+ (|1 — 1] + o2 — ta]) (H+E>

(p1—ta|+lpa—ta|)(r1t+r2) .
When § € (2wrlr2+(|%ﬂl‘Hwﬂzl)(rﬁw) , 1), we get:

(o1 = url + I = al) (£ + %)
20+ (o1 —ul + g2 = ial) (% + %)
lpr—ui] | Jwa—ta] 1 1
(tegtd bl (3 + )

w4 (|W1;L1| + |W2;L2|) (% + %)

=Dy (Py,Pt,11,12,73) .

Y

5DY (90’ L, T1,T2, T3)

And,
1 1 1 1
w(p,t) (;‘f‘g) (|<P1—L1|+|<P2—L2|)(;+g)
0Ev (p,t,71,72,73) =0 =9 )
w w
2w : : .
When 6 € (lewl_Ll|+‘¢2_L2|)(T,1+,’_2) , 1) , the inequality becomes:

(lpr = al +lp2 = ial) (£ + L)
2w
lpr1—t1]| | |p2—ta] 1 1
7(%’21 + ¢222)<E+E>
o w
=Ey (Po,Pi,r1,72,73) .

6EY (807 L, T, T2, TS) Z

Thus, P is a Tirado-type k-neutrosophic contraction mapping. Therefore, (0, 0) is the unique fixed point of the
self-map P.
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4. Conclusion

This study established a fixed-point theorem under G-completeness by introducing Tirado-type k-fuzzy contraction
mappings and k-NMS. These findings fill in gaps in the literature on metric space and generalize current theories.
The usefulness of the framework is demonstrated by an example. Future research will examine practical uses
in mathematical modeling, optimization, and decision-making. It will also broaden the theoretical framework to
incorporate dynamic or higher-dimensional neutrosophic systems.
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