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1. Introduction

Fretchet introduced the concept of metric space in his dissertation from 1906. Later, in 1922, Banach proved the
Banach contraction principle in his doctoral dissertation. Since then, several researchers have been experimenting
with this idea that have been under numerous circumstances. It is thought to be the most important tool for
non-linear analysis. It explains why there is only one fixed point in all contractive mappings in complete metric
spaces. It is an extension and generalisation of many metric space types. Zadeh [22] originated the idea of a
fuzzy set in 1965. It is a modified form of a conventional set wherein each element has a membership value that
goes within a reasonable range.In 1998, Smarandache coined the phrase “neutrosophic set” and proved it next to
Sowndrarajan [21]. As a team, they revealed a number of noteworthy findings from neutrosophic metric space.
Simsek and Kirisci [13] moved out in 2019 and proposed neutrosophic metric space (N M .S). Remarkable fixed
point results in neutrosophic metric space were validated in 2020 by Sowdrarajan and Jeyaraman et al. [21].

Very recently, in 2016, Mutlu and Gurdal [?] created their concept of bipolar metric spaces (BM S). They also
evaluated several fixed point conclusions on this space. In the present paper, we will keep trying to study fixed
points in the Neutrosophic n-Controlled Bipolar Metric space (NnCBM S). Especially some common fixed-point
results for an array of contra variants and covariant.Plenty of structures were obtained and the results were
standardised across numerous spaces using this topic. It could be achieved to preserve some of the fundamental
findings on this topic, such as controlled metric type spaces (C'M.S) and the associated contraction principle in
[20], controlled neutrosophic metric spaces (C'N M .S) and certain associated fixed point results in [4], and, more
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recently, the unique characteristics of metric spaces in [20].

We establish a number of fixed point findings using n-non-comparable functions.Likewise, we provides several
non-trivial cases and extend the results using a variant of the Banach contraction principle. We illustrate the validity
and value of the hypothesis based on the results achieved. The ensuing findings corroborate and expand upon the
concepts outlined in the paper [20] in a number of afterward literatures.

2. Preliminaries

Definition 2.1. [21] An ordered 6-tuple (Q,Z, K,Y,®,®) is called NMS if Q #0,® NCTN, ® NCTC and
Z,K,Y are NS on @ x @ x (0,00) the following requirements are met : For all f,g,h € Q,0,z > 0.

(a)0< Z(f,9,0) <1;0< K(f,9,0) < 1;0 < Y(f,g,0) < 1;

(b) Z(f,0,0)) + K(f,9,0) + Y (f,9,0) < 3

() Z(f,9,0)=1,V0 >0, f=gq;

d) Z(f, g, ©) =Z(9,f,0), for © > 0;

(e) Z(f,9,0)® Z(g,h,z) < Z(f,h,©0 +2)VO,x > 0;

) Z(f, g, ) : (0,400) — [0,1] is NCT'S and ZETOO Z(f,9,0) =1,

(g)K(fvga@) :O,VQ >07<:>f:g’

(h) K(f,9,0) = K(f,9,0), for © > 0;

() K(f,9,0) ® K(g,h,z) > K(f,h,© + 2)VO,z > 0;

(G) K(f,9,.) : (0,400) = [0,1] is NCTS and ZEI-POO K(f,9,0) =0;

)
Kk Y(f9,0)=0,VO >0, f=g;
D Y(f,0,0) =Y(0,¢,z); for © > 0;
(m) Y(f,9,0) ® D(g,h,z) > Y (f,h,© +2)VO,z > 0;
() Y (f,9,.): (0,400) = [0,1] is NCT'S and zETmY(f’g’ 0)=0;

Then, (Q, Z,K,Y,®,®) is called a NMS.

Definition 2.2. [20] Given T, let Q@ # () and T : Q x Q — [1,+00) are incompetent mapping, if Z : Q x Q —
(0, +00) is said to be a CM S if

(a) Z(¢,0) =0 iff e =0;

(b) Z(e,0) = Z(O, ¢);

(©) Z(,0) < Y(e,n)Z(e,n) + Y(n,©)Z(n,O); for every ¢,0,n € Q.

Definition 2.3. [4] Let Q #0 and T :Q x Q — [1,+0),® NCTN, ® NCTC and Z,K,Y are NS on
Q x Q x (0, 00) the following requirements are met: For all f,g,h € Q,0,z > 0

(@0<Z(f9,0) <L0<K(f9,0) <L,0<Y(f,g,0) <1

(b) Z(f,9,0) + K(f,9,0) + Y (f,9,0) < 3;

(c) Z(f,9,0) = 0;
d) Z(f,0,0) =1,V >0, f=g;
(e) Z(f,9,0) = Z(9.1,0);

) 2(F,1,0 + 1) > 7 (1,9, viy) © 7 (9.0 vz ):

(2) Z(f,g,.) : (0, +oo) — [0,1] is CT'S and liI_iI_l Z(f,9,0) =1,
Z—r+00

(h) K(f,9,0) =

(1) K(f, 9, )70 VO >0 f=g;

() K(f,9,0) = K(9,f,0);

0 K(f,h0+2) < K (£,9, 185 ) © K (9.0 75 ):

() K(F,g,)  (0,+50) = [0,1] is CTS and_lim K (Fg,©) = 0;
Z—>+00

(m) Y(f,9,0) =1
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mY(f,g,0)=0,v0>0f=g;

(0)Y(f,9,0) =Y(g,f,0);

() Y(f,h,0 + )gY(f,g,%)@Y(gah’%)?
(,

(@ Y(f,0,.): (0,+00) = [0,1] is CT'S and lir}ra Y(f,9,0) =0;
Z—r+00
Then, (Q,Z,K,Y,®,©®) is calleda NCMS.

Definition 2.4. [9] Suppose Q,L # @ and Y : Q x Q — [1,+00) are considered as a incompetant mappings,
® as CTN defined as r ® s = min{r,s} and ©® as CTC defined as r ® s = max{r,s} and Z,K,Y are NS
on @ x L x (0,4+00) is characterized NBM S, if for each one (Q, L, Z, K,Y,®,®) fulfills all f € Q,l € L and
O, x,z > 0 holds the following:

@0<Z2(f9,0) <1,0<K(f,9,0) <1,0<Y(f,9,0) <1

(b) Z(f,9,0) + K(f,9,0) + Y (f,9,0) <3

(c) Z(f,9,0) > 0, for every value f,g € Q x L;

(d) Z(f, g 0)=1 iff f=Iiforfe@,gecL;

(e) Z(f,9,0) = Z(g,f,0), for every value f,g € Q N L;

) Z(fhgg,@ +l‘ + Z) > Z(fl,gl,@) ® Z(fg,gl,x) ® Z(fg,gg,z) forf;,fo € Qand gy,02 € LVO, 2,2 > 0;
(&) Z(£,9,.) : [0,+00) — [0, 1] is CTS;

(h) Z(f,qg,.) is non decreasmg for every value f € Q,g € L;

(i) K(f,9,0) < 1, for every value f,g € @ x L;

(G) K(f,9,0)=1 iff f=lforfeQ,g€L;

(k) K(f,9,0) = K(g,f,0), for every value f,g € QN L;

D) K(f1,02,0+x+2) > K(f1,01,0) © K(f3,01,2) © K(f,02,2) for fi,fo € Qandgy,92 € LVO, 2,2 > 0;
(m) K(f,g,.):[0,+00) = [0,1] is CTS;

(n) K(f,g,.) is non increasing for every value f € Q,g € L;

(0) Y(f,9,0) < 1, for every value f,g € Q x L;

(P Y(f,9,0)=1 iff f=1 for feQ,g9€ L;

(QY(f,9,0) =Y(g,f,©), forevery value f,gec QN L;

(1) Y(fl,gg7@ +x+ Z) > Y(flygh@) © D(fg,gl,z) © D(fg,QQ,Z) for f1,f2 S Q and 01,02 € LV@,x,z >
0;

() Y(f,9,.): [0,4+00) — [0,1] is CT'S;

(t) Y (f, g, .) is non increasing for every value f € ), g € L.

Then, (Q, L, Z,K,Y,®,®) is called a NBMS.

Definition 2.5. [19] Suppose Q, L # @ and Y : Q x L — [1,+00) are considered as an incompetant mappings, ®
as CTN and ©® as CTC and Z,K,Y are NS on Q x L x (0,+00) is characterized NCBM S, if for each one
(Q,L,Z,K,Y,®,0) fulfills all f € Q,g € L and z, ©, z > 0 holds the following:

(a)0< Z(f,0,0) <1;0< K(f,9,0) <1;0<Y(f,g,0) <1, forevery value (f,g) € Q@ x L;

(b) Z(f,9,0) + K(f,9,0) + Y (f,9,0) < 3;

(c) Z(f,9,0) = 0, forevery value (f,g) € @ x L;

(d) Z(f, g, O)=1 iff f=9g for fe Q,g€ L;

(e) Z 0) = Z(g,f,0), foreveryvalue f,ge QNL;

(f.g
(f) Z(f1792>®+$+2) > 7 (f17gla T ll)) ®Z (f2agl7 T ll)) ®Z <f27927 T f ) )) for f17f2 € Q and
gl;gQ GL
(2) Z(f,g9.) : [0,400) — [0,1] is CT'S;
(h) Z(f,g,.) isnon decreasing for every value fe€ Q,g € L;
() K(f,9,0) = 1;
() K(f,9,0) =0 iff f=g for feQ,ge L;
(k) K(f,9,0) = K(g,f,0), foreveryvalue f,ge QN L;
W) K(f1,92,0 + 0+ 2) < K (fu,00 727 ) © K (f2.01, vy ) © K (T2 02 5y ) for fi,f2 € Q and
01,92 € L;
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(m) K(f,9,.):[0,+00) = [0,1] is CT'S;
(n) K(f,g,.) is non increasing for every value fe Q,g¢€ L;

(0)Y(f,9,0) =1

(P Y(f,9,0)=0 iff f=g for fe Q,ge€ L;

(Q Y(f,9,0)=Y(g,f,©), foreveryvalue f,ge QnNL;

)Y (F1,02,0 +2+2) <V (f1.00 71257 ) © D (fo. 01 7y ) © D (Fo. 0, gy ) for fifoe @ and
01,02 € L,

() Y(f,9,.) : [0,+00) = [0,1] is CT'S;

(t) Y(f, g, .) is non increasing for every value f € ), g € L.

Then, (Q, L, Z,K,Y,®,®) is calleda NCBMS.

Example 2.6. LetQ [0,1),L =1, )DeﬁneZKDareNSoanQx(O +00) as

Z(£,9,0) = grorg K(£,0,0) = 510l Y (f,1,0) = 4G9 with the CTN @ such that
©1 ® O3 = min{O1,0,} and © as CTC defined as ©; ® @2 max{©1,02}. Define T : Q x Q@ — [1,+00) as
T(f,g) = 1 iff e @Qandg € L .

max{f, g} otherwise
Then (Q,L,Z,K,Y,®,®) bea NCBMS.

Definition 2.7. [16] Suppose Q,L #( and 7Y,0,x:@ x L — [1,+00) are considered as an incompetant
mappings, ® as CTN and Z are NS on @ x L x (0,+00) is characterized FTCBMS on @, if for each one
(Q,L, Z,®) fulfills all f € Q,g € L and z, ©, z > 0 holds the following:

(a) Z(f,9,0) > 0, forevery value (f,g) € Q x L;

(b) Z(f,g,0) =1 iff f=g for feQ,g€L;

(c) Z(f,9,0) = Z(g,f,0), foreveryvalue f,ge QNL;

(d) Z(fl,gg7@+x+z) >7Z (f17917 T(F, gl)) ® 7 (fg d1, T gl)) ® Z (fg,gg, T 92)) for f1,f2 S Q and

gl; 92 S L
(e) Z(f,9,.): [0,+00) = [0,1] is CT'S Z(f, g, .) is non decreasing for every value f € Q,g € L.
Then, (Q L, Z,K,Y,®,®)is calleda FTCBMS.

3. Main results

Definition 3.1. Suppose Q, L # () and Y, 0,x : @ x L — [1,400) are considered as a incompetant mappings, ®
as CTN and ® as CTC and Z, K,Y are NS on Q X L x (0,+00) is characterized NTCBM S, if for each one
(Q,L,Z,K,Y,®,0) fulfills all f € Q,g € L and x, ©, z > 0 holds the following:

(a)0< Z(f,0,0) <1;0< K(f,9,0) <1;0<Y(f,g,0) <1, forevery value (f,g) e @ x L;

(b) Z(f,9,0) + K(f,9,0) + Y (f,9,0) <3

(c) Z(f,9,0) > 0, forevery value (f,g) € Q x L;

(d) Z(f, g, O)=1 iff f=9g for fe Q,g€ L;

(e) Z(f,9,0) = Z(g,f,0), foreveryvalue f,ge QNL;

G Z(fl,gz,e+x+z>zz(fl,gl,%)@Z(fz,gl,m)@z(fz,gz,m) for f.f, €Q and
gl;ngL

(®) Z(f,9,.) : [0, +00) = [0,1] is CT'S;

(h) Z(f,qg,.) is non decreasmg vfeQ,9€L;
(i) K(f,9,0) <

G)K(f,g,@)—O iff f=g for feQ,geL;

(k) K(f,9,0) = K(g,f,©), forevery Value f,oe@QnNlL;
) K(fl,gg,@+x+z) <K (fl,gl, T(f o )> e K (fg,gl, T(f ) )@K (fg,gg, ’I‘(f 9 )) for f;,f; € Q and
01,92 € L;
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(m) K(f,9,.):[0,+00) = [0,1] is CT'S;

(n) K(f,g,.) is non increasing for every value f € Q,g € L;

(0) Y (f,9,0) <

(p) Y(f, 9, @)_0 iff f=gVvVfe,geL;

@Y(f,9,0) =Y(g,f,0)vfige QNL;

)Y (F1,02,0 +2+2) <V (f1.00 71257 ) © D (fo. 01 7y ) © D (Fo. 0, gy ) for fifoe @ and
01,02 € L;

() Y(f,9,.) : [0,+00) = [0,1] is CT'S;

(t) Y(f,g,.) is non increasing Vf e Q,g € L;

Then, (Q, L, Z,K,Y,®,®) is called a NTCBMS.

Definition 3.2. Suppose Q,L #® and Y, :Q x L — [1,400)(1 <4 <n) are considered as a incompetant
mappings, ® as CTN and ® as CTC and Z, K,Y are NS on @ x L x (0,+400) is characterized NnCBM S, if
for each one (Q, L, Z, K,Y,®, ©) fulfills all f € Q,g € L and ©; > 0 holds the following:

(0< Z(f,9,0)<1;0< K(f,0,0) <1;0<Y(f,9,0) <1, forevery value (f,g) €@ x L;

(b) Z(f,9,0) + K (f,0,0) + Y(f,,0) < 3;

(c) Z(f,9,0) > 0, forevery value (f,g) e Q x L;

@ Z(f, g ©)=1 iff f=gvfeQ,9eL;

(e) Z(f,9,0) = Z(g,f,0), foreveryvalue f,ge QNL;

® Z(fl,ge,@1+@2+@3+@4"'+® )

9, O O,
2 Z (f1,01, Toi(fe, 91)) ®Z (f2’gl’ Ta(f2 gl)) ®Z <f2’g2’ Ts(f;:gz)) ®Z <f9,90—17 Tnfl(fSyglJS—l)> ®

z(fg,ggWr O )Vfl,f2 fpcQ and g1,0s...00 € L;
(2) Z(f,9,.) : [0,4+00) — [0,1] is CT'S;

(h) Z(f,q,.) is non decreasing for every value f € Q,g € L;
(i) K(f,9,0) < 1, forevery value (f,g) € Q x L;

() K(f,9,0) = 0ifff=gVfe Q,g € L;

(k) K(f,9,0) = K(g9,f,0)vVf,ge QN L;

(1) K(f1,00,01 + 02 +03+0,---+06,)

S K (flaglv T; (?1191)) @K (fZagl» T, (f2, 91)) @K <f2vg27 T (f2 gz)) t @K (fa,gaq, Tin_l@(:;;eil)) ©

K (0,90, 732557 ) Vi fe o fo € Qand 01,0200 € Ls
(m) K(f,9,.) : [0, +00) = [0,1] is CT'S;

(n) K(f,g,.) is non increasing for every value f € Q,g € L;
() Y(f,9,0) <1V(f,9) € @ x L;

(P Y(f,9,0)=0 iff f=gvVfeQ,ge L;
(@Y(f,9,0)=Y(9,f0)vfgeQNL;

) Y(f1,00,01+0O3+03+0,---4+0,) < (ﬁﬂm%) © <f27917%> ©Y(f2ag%%)'“

D (fg, Jo— 1,m) @Y (fg Jo, T, (feg )> for fi,fy...fp € @ and 01,92...09 € L;
()Y (f,9,.): [0,+00) = [0,1]is CT'S;

(t) Y (f,g,.) is non increasing for every value f € Q,g € L;

Then, (Q,L,Z, K,Y,®,®) is called a NnCBMS.

Example 3.3. Let Q = [0, 5], L = [52+,1] and T;: Q x L — [1,00), (1 < i < 9) be nine non-comparable
mappings defined as
Ti(f1,01) =F1+ 01+ 1, To(f2,01) =Fa+ 01 + 1, T3(f2,02) =Fo + 02+ 1,
Yy(f3,02) =3+ 92+ 1, 5(f3,03) = f3 + 03 + 1, T6(Fs,03) =fs + 93 + 1,
T7(fs,94) =f4+ 91+ 1,Ts(f5,04) =5 + 94 + 1, To(f5,95) =f5 + 95 + 1. _

Define Z(fy,05,0;) = %, for every value ©; > 0, K(f1,05,0;) = %, for every value
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0;>0 and Y(f},050;) = %, for every value ©; >0, fe @ and g€ L. Clearly,
(Q,L,Z,K,Y,®,0) isa NnCBMS, where ® is a CTC defined as ©; ® O3 = ©,05 and ® is a CTN defined
as @1 © @2 = max{@l, @2}

Proof

The first three conditions are met easily so we go for fourth condition Z, K, Y as follows:
For fz 75 g; and ©; > 0.

: _ _ 1§ _ 1§ _2¢ _ 1 _1 3 4 — :
By assuming f; =0,fo =5, fs3=sfu=¢,f5=35,00= 3,02 = 5,g3 = 2,g4 = 4,05 =1 we obtain a non-
trivial sequence as

(f1,95) = {(f1,01), (F
0,1 ={(0.1), (5

Z(f17g57@i) =

1 11 1 1 2 1 1 2 1
Z(O7 1’9) 2 Z (0’ 7) ) @ Z (7 77 ) @ Z (’ 77 ) @ Z (7 7’ >

@1 @2 @3 )
=Z(f,01,m———— | ®Z (| f0,01, ——— | ®Z | fo, 00, —— | -+ ®
< Lo T1(f1,ll)> <2 % T2(f2,l1)> (2 9 T3(f2,12)

On_1 O
Z f 5 —1s ~FA 2 7~ @Z f ’ SN €T\
(9 do-1 Tn—1(f0,19—1)) (9 % Tn(févle))

_ max(f, 1) - min(f,)
K(f1,05,0:) = max(f,l) + ©

11 11 1 12 1 12 1
K0,1,9)<K|0,-,0—= |0K |-, -, |OK |z, o, =5 | K | =, =, =—~
o<k (orrgn) ok (Grray) G rnry) X Ginan)
11 1 21 1
K(zz— )oKk (Z =, —
© <5’2’T5<;,;>)@ (5’2%(?,;))
@1 92 > ( 63 >
= fa SN F o~ ) ©K f> S A f o~ @K fa SN (o~ SO
(1 9 T1(f1 91)> <2 o To(f2,01) 202 Ts5(f2,02)

O
f ) ) 7’ ! @K <f ) 7n>
<9 Jo-1 n 1(f0,99 1)> 090 Tn(feage)
max(f,!) — min(f, )

max(f,l) + ©

1 1 11 1
Y0,1,9)<Y(0,-,———— | @Y | =, -, ————
(0.1.9) ( y n(o,p) (6 y n(g,i))
©

, for every value ©; > 0

Y(f1,05,0;) =

, for every value ©; > 0

21 1
5727 Y6(2,3)
S SH < O3 )
:Y f bl bl @Y f 5 I rvenra— Y f s B @
( Lo T1(f1,91)> (2 o To(f2,01) 202 T3(f2,02)

@nfl @n
fo,00-1,————— | ©Y | f9,09, =———— | , for every value ©; > 0.
0,901 Tn—1(f9,99—1)> <6 9 Tn(fe,ge)) Y
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Similarly we can prove other cases.
The following diagram shows the graphical behaviour of the above example: By calculating the above, which meets

., B o, I8

LT, I B Dy, b B [N

Figure 1. Shows the graphical behaviour of Z, K andY in the above example

the necessary criterion. We are also able to prove other cases. Similarly, we can demonstrate a greater value of n.
Thus, (Q,L,Z,K,Y,®,®) isa NnCBMS. O

Lemma 3.4. Let (Q,L,Z,K,Y,®,®) be a NnCBMS given by Z(f,9,00) > Z(f,g,0) for, f€ Q,g € L,0 €
(0,+00) and 6 € (0,1). Then f = g.

Proof
Given that,

Z(f.9,00) > Z(f,9,0), K(f,9,60) < K(f,9,0),Y(f,9,60) < Y(f,g,0) for®© > 0. (3.4.1)
Since 60 < O for every value © > 0 and § € (0, 1), by (h),(n),(t) of definition (3.2),we have

Z(f,9,00) > Z(f,9,0),K(f,9,00) < K(f,9,0),Y(f,9,00) <Y(f,g,0)for® > 0 (3.4.2)
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From the definition of NnCBM S (see (d),(j),(p)), we obtain f = g. ]

Definition 3.5. If every Cauchy bisequence is present, it is considered as complete then (Q, L, Z, K, Y, ®, ®) be a
NnCBMS in @ x L is convergent in it.

Proposition 3.6. In a NnC'BM S, every convergent has a biconvergence in the Cauchy bisequence .

Proof
Let (Q,L,Z,K,Y,®,©) be a NnCBMS and a biconvergence (f,,9,,) € @ x L such that f,, — g as n — +o0
and g,, — fasn — 400, where n € L and f € Q. Since (f,,,g,,) is a convergent Cauchy bisequence , we obtain

Z(f,,00,0) = 1, K(f,,00,0) = 0and Y (f,,,09¢,0) — 0 as n — oo (3.6.1)

for every value © > 0. Now, from (3), we conclude that Z(f,g,0) = 1, K(f,9,0) = 0 and Y (f, g, ©) = 0 for every
value © > 0. Therefore, by (f),(g),(r) of definition (3.2) we obtain that the biconvergence (f,, g,) is biconvergent
O

Proposition 3.7. In a NnCBM S, every biconvergent bisequence is a Cauchy bisequence.

Proof
Let (Q,L,Z,K,Y,®,®) be a NnCBM S and a biconvergence (f,,,0,) € Q x L converges to a point fp € Q N L
Vn,0 € N and ©,e > 0. By (f),(g),(r) of definition (3.2), we have biconvergence

[S) e [S)
> e e e
Z(f’n?ggve) = Z (f an (fn,f0)> (f07f05 (f07f0)> <f07f07 (fo,fo))
] <]
Z | fo,fo, =—=— ] --®Z f;w,+ )
<0 0 T4(f0,fo)> (0 J (190,199)>

o ©
Y<K (f,,f K (fy,f fo.fo, 2=~
K(fn,90,0) < ( O (o) fn,fo © (0’ 0 (fo,fo)> <°’ o7 (f07f0)>

e
fo,fo, f07f0 > (f(hgw, M)

) €]
< e
Y(fn7ge7®) = Y <f777f0a fn,f() @ <f05f07 (f07f0)> <f07f07 (f07f0))

o
@Y | fy,fy, =—2— 0,00, ——~ | .
<0 0 T4<f0,fo>) <° J Tn(ﬂo,w))

As n,0 — oo, we obtain Z(f,,,00,0) > 1, K(f,,00,0) <0 and Y (f,,99,0) < 0 for every value ©,e > 0. This
implies that Z(f,,,0¢,0) — 1, K(f,,,00,©) — 0 and Y (f,,, gg, ©) — 0 for every value O, e > 0. Hence (f,,g,,) is
a Cauchy bisequence . U

Lemma 3.8. Let (Q,L,Z,K,Y,®,0) be a NnCBMS and Q2 € QN L is a sequence’s limit, then it is the
sequence’s unique limit.

Proo

Get {fn} € @ be a sequence. Consider that {f,} — g € L and also {f,} — Q € Q N L, then for ©; > 0, we have
Z(§,0,01+ 02 +03+04---+0,)
> Z(0,9,01)® Z(Q2,9,0:) ® Z(2,9,03)® - ® Z(f,,Q,0,_1) ® Z(f,0,05),
K(Q,0,014+6024+03+04---+0,)
< K(w,w,01)® K(w,w,02) ® K(w,w,03)© -+ © K(f,,w,0,-1) ® K(f,,9,0,),
Y(2,0,01 +02+03+04---40y,)
<Y(Q2,92,01)0Y(Q2,Q,0,) @Y (Q2,Q,03)@---0Y(f,,2,0,_1) @Y (fn,0,05).
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As n — oo, we obtain Z(Q,9,01 +02+03+0,---+0,)>1,K(2,0,0:+02+03+0,---+0,) <0,
Y(9Q,9,01 + 603+ O3+ 04+ 6,) <0 which suggest that Q2 = g, i.e., sequence {f,, }, has a unique limit. ]

Theorem 3.9. Let (Q,L,Z,K,Y,®,®) be a complete NnCBM S with n non-comparable functions T, : Q x
L — [1,00) given by

lim Z(f,0,0) =1, lim K(f,g,0) =0, lim Y(f,g,0) =0, for every valuef € Q,g € L. (3.9.1)
[SERYS) ©—oc0 ©—00
Get=: QUL — QU L be a mapping satisfying
@ "(Q) C Q and E(L) € L;
(i) [],(E(F),E(9),00) > Z(f,9,©) for every value f € Q,g € L, and © > 0, where § € (0, 1). Assume moreover
that hm T ( n,0) and lim Y;(g,f,), exist and are finite for each f € Q. Then = has a F'P that is unique.
n—00 n—00
Proof

Fix fo € Q and gy € L and consider that =(f,,) = f,,11 and Z(f,,) = ¢,,+1 Vn € NU {0}. Next, we get (f,,9,) as
a biconvergence on NnCBM S (Q, L, Z, K, Y, ®,®). Now, we have

2(61.91.0) = 2(2(10). 26,0 > 7 (fo.0. § ).
(f0).2(90), ©) < K<f0,90,§)>»

C]
Y(flagh@) = Y(E( ) E(go) ) < Y(fo,go, K)V@ > 0andn € N.

[I]

K(flagh@) :K(

By simple induction, we get,
Z(fnagnae)) :Z(E(f’nfl)ag(gnfl%@) Z Z (f07g075 )

= - o"
K(fna On, 9) = K(‘:‘(fnfl)v ':(gnfl)v 6) S K (f()nga * ) ’

Y(fna gna 9) = Y(E(fn—1)7 E(gn—l)a 6) S Y (f07907 > ) (392)

and

5
Y (Fas1,0n, ©) = Y (E(f,), 2(Gn_1),0) < <f1,go, © ) VO > 0andn € N. (3.9.3)

Letn < wVn,w € N. Then

(S e

an7 wa@ ZZ fn7 nv4 ®Z fn ) n»é ®Z fn )y yn ’ ®
( g ) ( g Tl(fmgn)> < +1,8 T2(fn+17gn)> < 1842 T3 n+lagn+1 )
€] €]

e
Z fn s YUn 7% ®®Z fwv w— 7% ®Z Wy Yws )
< +2) 81 T4(fn+279n+1)> < Gt Tnl(fomgwl)> ( g Tn(fuhgw))
€] €]

€]
Kfn7 w,@ SK fna Ny N~ (£ o~ @K fn ) na% @K fn y gn 7# ©
( g ) ( g Tl(ffhgn)) < i g TQ(fn-i-l?gn)) < 1 g i T3(fn+1agn+1)>
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9
e o )
K fn b n 7— @ e @ K fUJ7 w— 7% @ K fw? w %
< 2 g i T4( n+27gn+1)> ( g ! Tn—l(fw7gw—1)) ( g Tn(fwagw)>
€] €] €]
ana UJ;® SY fna nvé ©Y fTL ) ’n?% ©Y fn yIn 7% @
(Fa, 0., ©) < g T1(fmgn)> < +18 Tz(fn+179n)> < 1 On T3(fn+1,9n+1))
o [E) e
Y fn b n 7% @ e @ Y fw’ w— 7% @ Y fUJ7 wH % .
( 2 g i T4(fn+27gn+1)) ( g ! Tn—l(fwvgw—1)> ( g Tn(fw,gw)>
With (3.9.2) and (3.9.3) applied to each and every term on the RHS of the inequality above, we now get
) e o
Z fn7 w,@ Z Z f 9 a% Z f 9 9 - Z f 1) ) o
(fr. 0 ) (0 % g, (fn7gn)> ® < 1o q”“Tz(an,gn)) ® ( na qn+2T3(fn+1,gn+1)> @
e e e
f7 , T ®---®Z f’ , T ® 7 f’ 7% ,
< a1 n+3T4 fn+27gn+1)> < 10 qw_lTn—l(fW7gw—l)> < 090 qun(fW7gW)>
€] o ]
K fna W S K f 9 7% K f 9 L K f ) 9 L
( g @) ( 0,90 "T (fnagn)> © ( 19 qn+1T2(fn+1vgn)) © ( 1o qn+2T3(fn+1vgn )> ©
e e e
f ) ) ! (ORERNO) K|f 9 ) e © K|f ) ) — 9
< 20 ﬁ+3T4 fn+2agn+1)> ( 190 qw_lTn 1( w> Jw— 1)> ( 0:90 qu7z(fwagw)>
e e o
Y(f,,0,,0) <Y | fy,00, —————— | @Y { f1,00, r @Y | f,01, T
(T, 9 ) (0 Jo Q”T1(fmgn)> ( 190 q"HTz(an,gn)) < na g2 (Fr1, Ong1)
e €] e
Y | f2,01, T ©---0Y [ fi,090, r @Y |(fy,00, ———-—|.
( 28 qn+3T4(fn+27gn+1)) ( 19 QWITn—l(fwvgw—l)) ( 0-90 q“’Tn(fMgw)>
From (4), as n,w — oo, we get Z(f,,, 0o,

0)>1,K(f,,0,,0) <0,Y(f,,0.,0) <0 for every value © > 0.
Bisgnce (f,,,09,) is hence a Cauchy bisequence . Given the completeness of (Q,L,Z,K,Y,®,®)

the
b b b b b K
biconvergence (f,,, 0, ) is a convergent Cauchy bisequence . Proposition (3.6) states that the biconvergence (f,,, g,,)
is a biconvergent sequence.

Due to the biconvergence of (f,,, g,,), both the {f,,} and {g,,} sequences have a limit at @ € @ N L. Lemma (3.8)
states that each of the sequences {f,,} and {g,,} has a distinct limit. Examine (f), (g), and (r) of definition (3.2)

<)
Z(2(9),Q,0)> Z <E(Q),E(gn)

)> ® 7 <E(fn),5(gn), Tl(fi),gn)) ®

"Y1(Q,90)
o
(), E(9n+1) T3(fn+17gn+1)> < (1), E(Gnr) T4(fn+179n+1)>

Z
e (€]
Z ( (fwfl)’E(gwfl)v T 1(fwr 10w 1)> ® Z (E(fw)7E(Q)7 T) )

ﬁ\@(Q

[I]

(1]

— T, (f, )
o e
KE(0),0.0) < K (20262, 1657 ) © K (20,200 7 55 ) ©
o o
(fn), 2(Gn1) Ts(fn+179n+1)> ( (Tt1), E(Gnv) T4(fn+1»9n+1)>
e
K (E(fwl),E(gwl)v -

Tn_1<fw_1,gw_1>> oK <E(f“)’5(m’ Tném) |
e e
1<s3,gn)> oY <E(f")’5(9")’ T1<f2,gn>> ©

€] S)
Y Z2(f,),2(0ns1); ==——"——— | OY f. 20nt1), =———]©@---©@
(Fn), 2(Gn+1) T3(fn+1,gn+1)> ( (Fot1), E(Gn-1) T4(fn+179n+1)>
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© e
T

Y (:(fwl),:(gw1)7 ’I‘n_l(fw_l,gw_1)> © Y (:(fw),:(ﬂ), w) ,Vn,w € Nand© > 0.

As n — oo, implies

Z(2(Q2),2,0) s 1lelelel--@lel=1,

K(E(2),2,0) 20000000---©@0©0 =0,
Y(2(2),2,0) 2 00©000©0---©@0©0 = 0.

From (d) of definition (3.2), we obtain Z(Q2) = Q. Let f € Q N L be one more F'P of =. Then

Z(Qk,0)=2Z(Z(n),=(f),0)>Z <Q,k, ?) ,

K(Q.k,0) = K(

[1]
[1]

(2).2(9,0) sx(a,k, ?)

Y(Q,k,0)=Y(Z(Q)(

(1]

(M.0) <Y (Q k. f) .
For g € (0,1) and V© > 0. By Lemma (3.4), finally we get 2 = f. O

Example 3.10. Let Q = [0,1"] ,L = {%"H, 1}, and T; : Q x L — [1,00), (1 < i < 9) be nine non-comparable

mappings defined as

Ti(f1,01) =F1 +01 +1,Ta(f2,01) =fo + 91 + 1, T3(f2,02) =fo + g2 + 1,

T4(f3,gg) = f3 =+ J2 =+ 1, T5(f3,g3) = f3 + OF} + 1, T6(f47g3) = f4 + OF} + 1,

Y7(f4,04) =F4+ 94+ 1, ¥s(f5,04) = F5 + 04 + 1, To(F5,95) = f5 + g5 + 1.

Define Z(f1,05,0;) = m, K(f1,05,0;) = G)il_fﬁlf;f’fgﬂ, Y(f,05,0;) = % for every value ©; > 0,

feQandge L. Clearly, (Q,L,Z,K,Y,®,®) isa NnCBM S, where ® is a CTC defined as ©; ® O, = 010,

and ® is a CT'N defined as ©; ® O3 = max{©1, O }.

Define Z: QUL - QUL by 5(@) = { 2+ i Q€ [05].
- - 0, if Qe [z5,1],

criteria’s of Theorem (3.9) are satisfied. Hence = has a unique F'P, i.e., 2 = 0. On the same lines, we can prove

for higher value of n.

for every value Q2 € Q U L. Obviously, the

4. Conclusion

We provide the idea of Nn — C'BM S in this study. Several F'P outcomes are established using n-non-comparable
functions. We also extend the results using a variation of the Banach contraction principle and provide a number of
non-trivial instances. We then use the key results to solve fractional differential equation issues related to financial
modelling. Future study on additional criteria that would ensure the presence of /'Psin Nn — C BM S is something
we find intriguing.
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